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NORM OF A LINEAR COMBINATION OF
TWO OPERATORS ON A HILBERT SPACE

TAKAHIKO NAKAZI AND TAKANORI YAMAMOTO

Let o, 8,7, 0 be complex numbers such that v§ # 0. If A and B are bounded linear
operators on the Hilbert space H such that vA + 8B is right invertible then we
study the operator norm of (aA + 8B)(vA + 6B)™! using the angle ¢ between two
subspaces ran A and ran B or the angle ¥ = (A, B) between two operators A and

B where '
cos (4, B) = sup{|<Af, Bf)|/(I1Af1-IBSN) 5 f € H, Af #0, Bf # o}.

1. INTRODUCTION

Let B(H) be the set of all bounded linear operators on the Hilbert space H. Let
P € B(H) satisfy P2 = P and let Q = I — P where I denotes the identity operator on
H. Denote by ¢(H,, H,) the minimal angle between two subspaces H; and H, of H:

(f,9)|
cos ¢(Hy, Hy) = sup ‘l—'—
(i Ho) = e e AT Tol

Then 0 € ¢(H,, Hy) € m/2. Let ran P denote the range of P. If ¢ = ¢(ran P,ran@Q) > 0
then

\ =

1Pl =il = sed = —

-

(see (2, p.339]). Let J = P~ Q. Then
1 1
Pl =1Q =—( J +——)
12l =Nl = 5 {11 oI

(see [6, Lemma 2], [1]). Hence

171 = 1211+ /IPIE = 1 = (csc + cot)d = cot g.
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Let o and 8 be complex numbers, and let ¢ be a nonnegative number. Then we
define a function F(a, §,t) which is the generalisation of max(]a], I,BI) = F(e, 3,0).
DEFINITION 1. Let
mmmw=¢“;
Then F(a,f,t) is a nondecrea,smg function of ¢, t > 0 and satisfies
max(|a, |]) = F(a, 8,0) < F(a, B,t) < oo, (t3>0).
Feldman, Krupnik and Markus [1] established the following formula.
FELDMAN, KRUPNIK AND MARKUS FORMULA. Let P € B(H) satisfy P # 0,I and
P2=P LetQ=1—-P. Let a,8 € C. Then
laP + BQI| = F(a, B, ||PII* - 1).
Let ¢ = ¢(ran P, ranQ). Since ||P]| = csc ¢, it follows that ||P||2 — 1 = cot? ¢.
Hence ||aP + BQ|| = F (a, B, cot® ¢).

DEFINITION 2. For two nonzero operators A,B on H, let (A, B) satisfy 0 <
¥(A,B) < 7/2 and

lal + )ﬂl \/Ia B, Ial iﬂl)

t+

- [af,Bf)|
arsobrzo TAST - IBFI
Since cos ¥(A, B) < cos ¢(ran A, ran B), it follows that (A, B) > ¢(ran A, ran B).
We call ¥(A, B) as the angle between two operators A and B. If P2 = P(#0,) and
Q@ = I — P then ¢(ran P,ran Q) = ¢(P, Q), because if h = Pf + Qg then

[Pr.Qe)|  |(Ph,Qn)]
IPFI-1IQgll — PRI - QR
In this paper, we shall study the operator norm of (A + SB)(vA + 6B)™'. We use
#(ran A,ran B) in Section 2, and we use (4, B) in Section 4. Let K =ran A N ran B.
In Section 2, we shall study in the case when K # ran A and K # ran B. In Theorem 1,
we shall use the Feldman, Krupnik and Markus formula [1] and Lemma 1 to establish the
formula of the operator norm of (¢4 + SB)(yA + 6B)™" using the angle ¢(ran A, ran B)
in the case when K = {0} and A + éB is right invertible. In Theorem 2, we shall use
Theorem 1 to estimate the norm from below using the angle qS(ranA e K,ranBo K ) in

cos (A, B) =

the case when K is a nonzero invariant subspace of A(yA + 6B)_1. In Section 3, we shall
study in the case when K = ran B. We shall consider the nilpotent operator B on H.
The results in Sections 2 and 3 follow from the Feldman, Krupnik and Markus formula.
In Section 4, if ¥(A4,B) > 0 and vA + 6B is right invertible or left invertible then we
shall estimate ”(aA + AB)(vA + 6B)_1” from above. In Theorem 3, we do not assume
the boundedness of two operators A and B. As a corollary of Theorem 3, we shall show
that if ||A + B|| < oo and (A, B) > 0 then ||A|| < oo and ||B|| < oo. The results in
Section 4 do not follow from the Feldman, Krupnik and Markus formula.
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2. NORM FORMULA USING THE ANGLE ¢ BETWEEN ran A AND ran B

Let A,Be B(H), A#0,B#0and let K =ranA N ranB. In this section we
shall study in the case when K # ran A and K # ran B. In Theorem 1, if K = {0} and
ran (YA + 6 B) = H then we shall use the Feldman, Krupnik and Markus formula [1], and
establish the norm formula of ”(aA + BB)(yA+46B)™! ” using the angle ¢(ran A, ran B).
In Theorem 2, if K is an invariant subspace of A(yA4 + 6B)™! then we shall estimate the
norm from below using ¢(ran Ae K,ranBo K).

The operator X € B(H) is said to be right invertible if there exists an operator
Y € B(H) such that XY = I. The operator Y is called the right inverse to X and is
denoted by X~'. Then X~! € B(H) is not uniquely defined (see [3, Volume I, p.63]). If
YA + 4B is right invertible then

-1
) |(24+ 8B) |
[+ omaacon’| = s Toavom]

where (yA + 6B)™" denotes one of the right inverses to yA + 6 B.

LEMMA 1. Let A,B € B(H) satisfy A # 0, B # 0 and ran(A+ B) = H. The

following assertions are equivalent:
(1) ranA N ran B = {0}.
(2) ranA N ranB = {0}.
(3) ¢(ran A, ran B) > 0.

Suppose (1) to (3) hold. Let (A + B)™' denote one of the right inverses to A + B.
Let P = A(A+ B)™" and let Q = B(A+ B)™'. Then P and Q do not depend on the
choice of (A+ B)™'. Then P2=P #0,I, P+Q = I, ran P = ran A and ran () = ran B.

PrROOF:  (2) = (1) is trivial.

(1) = (3): Let H, = ker(A+ B), and let H, = H{t. Then H = H, & H,. Since
(A+ B)|n, = 0, it follows that Ay, = —B|g,. By (1), Aly, = Blg, = 0. Let T =
(A+ B)|n,- Then T € B(H,, H) and kerT = {0}. Since ran (A + B) = H, it follows
that ranT = H. By the open mapping theorem, there exists S € B(H, H;) such that
ST = Iy, and TS = Iy. Hence (A+ B)S =TS = Iy = I. Hence S is a right inverse to
A+ B. Let C be one of the right inverses to A+ B. Then P+Q = (A + B)C = I. Hence
AC-S)=-B(C-S). By (1), A(C-8)=—-B(C—-8)=0. Hence P = AC = AS
and Q = BC = BS. Hence P and Q do not depend on the choice of (A + B)™'. By (1),

ranP Nran(/ — P)=ranP N ranQ CranA N ran B = {0}.

Since P(I — P) = (I — P)P, this implies that P2 = P. Suppose P = 0. Then AS =
0 and hence A|y, = AST = 0. Since A|y, = 0, it follows that A = 0. This is a
contradiction. Hence P # 0. Suppose P = I. Then BS = Q = I — P = 0 and hence
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Blg, = BST = 0. Since By, =0, it follows that B = 0. This is a contradiction. Hence
P # 1. Since P# 0,1 and @ = I — P, it follows from Gohberg and Krein [2, p.339] that
[|P|| = csc ¢(ran P,ran Q). Hence

cos ¢(ran P, ran Q) = —'”Pl|2_1 <1
’ 2|l
Hence ¢(ran P, ran @) > 0. Since A|g, = B|g, =0, it follows that
ran P = ran AS =ran Aly, = ran 4,

ran @ = ran BS = ran B|y, = ran B.

Hence

¢(ran A, ran B) = ¢(ran P, ranQ) > 0.
(3) = (2): Suppose ranA N ran B # {0}. Then there exists an h € H and sequences
{fa},{9n} C H such that h #0, ||Af, — h|| = 0, ||Bg, — h|| = 0 as n — co. Hence

(Af, Bg)| [(Afa.Bga)|  |(h,B)]

cos ¢(ran A, ran B) = sup L— > lim = =1.

( roeh |AF| - |Bgll = n== [JAfall - | Bgall &I - l|A]]

Hence ¢(ran A, ran B) = 0. Lemma 1 is proved. 0

The assertions in Lemma. 1 are equivalent to the formula:
"A(A + B)_IH = csc ¢(ran A, ran B).

If a =~ =06=1and 8 =0 then the following Theorem 1 implies this formula. Let Py,
(respectively Pp,) denote the orthogonal projection from H onto H; (respectively H,).
By Lemma 1, if H; N H, = {0} and ran (Py, + Py,) = H then ¢(H,, H,) > 0.
THEOREM 1. Let o, 3,7, be complex numbers such that v6 # 0. Let A,B ¢
B(H) satisfy A#0, B# 0, ran(yA+6B)=H andran A N ran B = {0}. Then

lea + BB)(vA+5B)| = F(% g cot? ¢).
where ¢ = ¢(ran A,ran B) > 0 and (yA +0B)™"' denotes one of the right inverses to

YA+ 6B.

ProOF: It is sufficient to prove when v = 4§ = 1. Let P = A(A + B)_1 and let
Q = B(A+ B)™!, where (A + B)™" denote one of the right inverses to A + B. Then
P+Q=1I Bylemmal,if A#0and B#0then P2= P #0,I, ran P = ran A and
ran Q = ran B. Since ||P|| = csc ¢(ran P,ranQ), it follows from the Feldman, Krupnik
and Markus formula [1] that

@A+ 8B)(A+ B)™Y| = lleP + 8Q
=F(a, B, ||IPI*-1)
= F(a, B, cot® ¢(ran P, ran Q))
= F(a, B, cot? ¢(ran A, ran B)).
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Theorem 1 is proved. |
In Theorem 1, if AB = BA then
|(eA + B8B)(vA+6B)7}| = | (YA + 6B) (A + BB) || = F(% g, cot? ¢).

We have assumed that ranA N ranB = {0}. This is equivalent to the assertions in
Lemma 1. If (ad — By)yd # 0 then a/y — B/6 # 0 and hence the norm formula in
Theorem 1 is equivalent to the assertions in Lemma 1. By Theorem 1, if P € B(H)
satisfy P2= P # I,0 and Q = I — P then

1PIl = IQIl = csc ¢(ran P,ran Q),

which is in the book of Gohberg and Krein (2, p.339). If A = P and B = @ then
Theorem 1 becomes the Feldman, Krupnik and Markus formula ([1]).

In Theorem 1, if A = P and B = Q* then A + B becomes invertible and we can
compute the norm ”(aA + BB)(A + B)_ll as the following. For all f € H,

((A*A+ B'B)f, f) = ||AfI* + | Bf|]
= AP +1If - A fI
= I+ |Af — A fII?
= 1£11%.

Hence A*A + B*B is invertible. Similarly, AA* 4+ BB* is invertible. Since
(A+ B)(A”+ B*) = AA* + BB*

and
(A*+B*){(A+B)= A*A+ B*B,

it follows that A + B is invertible. Since ran A 1 ran B, it follows that ¢(ran A,ran B) =
7/2. By Theorem 1,

l(a4+8B) A+ B)™| = F(e, 8,0) = max(|al, |6]).

Let Py = A(A+ B)™' and Qo = B(A+ B)™". Since (A + B)*A = A*(A + B), it follows
that Py and @ are selfadjoint. By Lemma 1, Py and Qg are selfadjoint idempotent.

COROLLARY 1. Let A,B € B(H) satisfy ran(A+ B) = H. Let o and 3 be
complex numbers. Let p, q,r, s be complex numbers satisfying p+r = q+s =1, ps—qr #
0, ran (pA+¢B) # H, ran(rA + sB) # H and ran (pA + ¢B) N ran(rA + sB) = {0}.
Then

oA+ pBA+ B = (ST B2 cortg),

, , cot
ps —qr ' ps—gqr
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where ¢ = ¢(ran (pA +¢B), ran(rA+ sB)), and (A+ B)™' denote one of the right
inverses to A + B. .
Proor: Let A =pA+¢gB andlet B =rA+ sB. Then Then A+ B = A"+ B'.

Define @' and §' by
o = LT pr and 4 = pB—qa —a@
ps —gqr DS —qr
Then A + B = &’A' + 'B’'. Since ranA’ # H, ranB' # H and ran A’ + ran B' =
ran (A + B) = H, it follows from Theorem 1 that

|(@a+8B)(A+B)™ | = (4 +BB)A +B)| = F(«, 8, cot* (4", B)).

Corollary 1 is proved. a

There are many operators A, B € B(H) such that p(A,B) = 1 and p(pA + ¢B,
rA+sB) < 1. If p=s=1and ¢ = r =0 then Corollary 1 implies Theorem 1. Let
K =ran ANranB. In Theorem 1, we have established the norm formula in the case when
K = {0}. Next we shall consider the case when K # {0}. Then ¢(ran A,ran B) = 0. In
the following Theorem 2, we shall estimate the norm ”(aA + BB)(A + B)_IH from below
in the case when K # ran A and K # ran B.

THEOREM 2. Let ,f3,7,6 be complex numbers such that v§ # 0. Let A,B €
B(H). Let vA + 0B be invertible. Let K =ran A N ran B be an invariant subspace of
A(YA + 6B)™" such that K # ran A and K # ran B. Then

|(ea + BB)(va +6B)™"|| > F(% g, cot? ¢),

where ¢ = ¢(ranAeK,ranBeK) > 0.
ProoOF: It is sufficient to prove that when y =6 =1

“(aA + (BB)(A + B)_IH > F (a, B8, cot? ¢) .

Let X = A(A+B) ' andlet Y = B(A+B)™'. Then X +Y = I. Let Py denote
the orthogonal projection from H onto K and let Py denote the orthogonal projection
from H onto K*. Let X; = Px1X|gr and let Y) = Py.Y|x1. We shall show that
ran X; Nran?Y; = {0}. Let h € ranX; NranY;. Then h € K*. There exist f,g € K+
such that h = Py Xf = Pg.Yg. Then Xf=h+ PxkXf and Yg = h+ PxYg. Hence
Xf—Yge K. Since Yg € ran B, it follows that Xf € ranA N ranB C K. Hence
h € K n K+ ={0}. Therefore ran X, NranY; = {0} and X;+Y; = I|x.. By Lemma 1,
this implies that X, and Y, are idempotent operators on K+, and ¢(ran X;, ran Y1) > 0.
Then ran X, and ranY; are closed subspaces of H. By Theorem 1,
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|(ea+ BB)(A+ B)™|| = llaX + gY|

o o Prtex o] “ |ty + Y1) 1|
irA 71 P A F]
= |laX; + fY1llke

=F (oz,ﬂ,cot2 é(ran X, ran Yl)) )

If f € ran X © K then there exists g, +h, € K ® K+ such that ”f—X(g71 + h,,)” —0as
n — o0o. Since K is an invariant subspaces of X, it follows that X g, € K. Since f € K L
Xihy, = Pgo Xhy, P Xg, =0 and ||Pg2|| = 1, it follows that

17 = Xalall = [Pres (7 = X(ga + b)) < £ = X (g0 + )]

Hence ran X © K C ran X; = ranX,. Since K is an invariant subspace of X and
X +Y = I, it follows that K is an invariant subspace of Y. By the similar proof,
ranY © K C ranY;. Since A + B is invertible, it follows that ranX = ran A and
ranY =ran B. Hence

1 > cos¢(ran X, ranY;)
> cos¢(ranXeK,ranY6K)
= cos¢(ranAeK,ranBeK).

Hence

0 < ¢(ran X;,ran ¥y) € qS(ranAeK,ranBeK),

and thus

0o > cot ¢(ran X;,rany;) > coth(ranA 6 K,ranB© K).

Since F(a, f,t) is a nondecreasing function of ¢, (¢ > 0), it follows that

|(ca + 8B)(A + B)™|| > F(a, B, cot? §(ran X;, ran 1))
> F(a, ﬁ,cot2¢(ranA ©K,ranBo K))
Theorem 2 is proved. 0

By Theorem 1, if K = {0} then the equality holds in the inequality in Theorem 2.
There are many operators A, B € B(H) such that ¢(ran A,ran B) = 0 and

d)(ranAeK,ranBeK) > 0.

If AB = BA then A(yA+6B)"'B = BA(yA+6B)™" and hence K =ranA N ranB is
an invariant subspace of A(YA +éB)™'. Even when the conditions in Theorem 2 do not
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hold, the similar result holds as the followings. If A, B € B(H) satisfy A # 0, B # 0,
A + B is right invertible, and M is the closed subspace of H satisfying

ranA N ranB C M Cran B,
then
|(ea+BB)(A+B)| > F (o, 8,c0t? ),
where ¢ = ¢(Pyr A(A+ B) '|pse, Pyr B(A+ B)Hye) > 0.

3. NORM FORMULA WHEN A =1 AND B* =0

Let K = ran A Nran B. In Section 2, we have considered two operators A, B € B(H)
satisfying K # ran A and K # ran B. In this section we shall consider two operators
A and B satisfying K = ran B. In general, suppose Ay, By € B(H), ran By C ran 4,
and ker By # {0}. Then there are many Cy € B(H) such that Cy(ran By) C ker By. Let
A = CyAp and B = CyBy. Then

Co(aAp + ﬂBg) = aA+ 3B.

Since ran By C ran Ay, it follows that ranB C ran A and hence K = ran B. Since
Co(ran By) C ker By, it follows that B? = 0. Hence, in many cases, the linear combination
aA + BB for A,B € B(H) satisfying B2 = 0 appears. We shall prove the following
Proposition 1 using the Feldman, Krupnik and Markus formula [1]. The first author
([5]) proved it in the different way.

PROPOSITION 1. Let B € B(H) satisfy B2 = 0. Let o and 8 be complex

numbers. Then
B sz 2, |B
lot + 881 = /|| 1BIP + lal? +| 1B

Proor: It is sufficient to prove that when o = ~1 and 8 = 2:

2B — I|| = VIIBII> + 1 + | BI|

Let Py denote the orthogonal projection from H onto ran B. For ¢ > 0 let

a:&—g
£
Then
propy-f28 Bl _p B_p
£ [ £

Let Q. = I — P.. Then

2B - I =2(Pg — P.) — (P. +Qc) = 2¢Pg — (1+ 2¢)P, — Q..
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Since |leP.|| = |lePs — B|| — ||B|| as € = 0, it follows from the Feldman, Krupnik and
Markus formula [1] that
128 - 1| = lim|[(1 + 22)P. + Q¢
-1 2 _
= lim F(1+2¢,1,|| R 1)

= lim(y/e2(IPI - 1) + (1 + e + (IR - 1) +&2)

= VIBI?+1+|B].

Proposition 1 is proved. 0
Suppose A is invertible. Let C = A™'B. If A~}(ran B) C ker B then C? = 0. In
Proposition 1, we have considered ||al + SC||. Then

llal + BC||

A S led+ BBl <Al Nl + BCT.

For example, if A is invertible, B2 = 0 and AB = BA then A~!(ran B) C ker B. If
|lAll = |A7!|| then inequalities become equalities. Then A is a unitary operator.

PROPOSITION 2. Let n be an integer satisfying n > 2. Let B € B(H) satisfy
B® =0. Let @ and 8 be complex numbers. Then

flal + 8B|| 2 \/Igr "Blm + |2 + Igl "Blm .

4. NORM FORMULA USING THE ANGLE ¢ BETWEEN A AND B

In this section, we shall estimate the operator norm of (a4 + SB)(vA + 6B) ™" from
above in the case when (A, B) > 0 where % is defined in Introduction. We do not
assume the boundedness of two operators A and B on H. In the proof of Theorem 3
(1), we do not use the linearity of A and B. We do not use the Feldman, Krupnik and
Markus formula [1] in this section.

DEFINITION 3. For f,g € H, let

[(£.9)|
o(f,9) =4 TfI-Tgl

0 otherwise

if f#0and g#0

Then

cos ¢(ran A, ran B) = sup p(Af, Bg) = sup p(Af, Bf) = cos(A, B).
J.geH feH
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LEMMA 2. Let « and 8 be distinct complex numbers. Let x and p be real numbers
satisfying = > rnax(|a|, 16 I) and 0 € p < 1. The following assertions are equivalent:

(1) zzﬁ(mmlfﬁ)

0
(2) z* - (1 —gle = B +lef? + Iﬁl"’)z2 +laBl* > 0.

|z — af| 5 1

® o= Bz > Vi
(4) (2~ laf?) (= - 18F) > *|s* - B "

The equivalence holds for not only inequalities but also equalities.
ProoOF: (1) & (2): Since z > 0, (1) is equivalent to

T Y (e ki

2 1-2 1 2 2 1-2 7 2

Since z > max(lal, ]ﬂl), this is equivalent to (2).
(2) = (3): By (2),

(&2 - la)(=* = 10) > 125l - %%

Hence
|x2 - aﬁlz —lo— Bz > i—]a - B|%a?
= 1 _ p2 -

This implies (3).
(3) = (4): By (3),

-_12 —|2
|22 ~ 0| - la - %> > p? |2 - aB| -

This implies (4).
(4) = (2): By (4),

(1= 2°) (2 - laf?) (= - 181) 2 Al - Bz’

This implies (2). Lemma 2 is proved. 0

LEMMA 3. Let o, f,v,6 be complex numbers satisfying ¥v6 # 0, and let f,g be
nonzero elements in the Hilbert space H satisfying p = p(f,g) < 1. Then

laf+Bgll _ (o B 2
[/ + ol SF('y’ a"—l_pz)-
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Proor: It is sufficient to prove when a # § and vy =6 = 1. Let p = p(f, ¢), and
let ¢ = F(a, B, ($%/1 - ¢%)). By Lemma 2, (s2 — |a?) (2% - |8I?) = #?|2® — aB|>. Hence
(% = lof?) (=2 - 18P) 1 1Pllgll” = |22 ~ oBP|(f. 9)] -

Hence
(2% = [e)ILFI? + (22 = 1B1?) llg® + 2Re( (2% - 0B)(f, 9))
> 2/22 — |of2y/z2 = |BPIIf] - lgll — 2l=® — Bl - [(£. 9)| = 0.

Therefore
laf + Bgll* < 2®IIf + gl
Lemma 3 is proved. : 0
THEOREM 3. Let A and B be nonzero linear operators on H satisfying ¥(A, B)
> 0. Let a, 8,7,6 be complex numbers such that v6 # 0. Then
(1) yA+éB #0 and

o B

|(ca + 5B)f
7%

sup
(vA+6B)f#0 ”('yA + (5B)f!
(2) If~yA + 6B is right invertible then

| < F( cot2z/)(A,B)>.

l@a+8B)A+6B)7| < F (2.5 004, B),
where (YA + 6B)™" denotes one of the right inverses to YA + 6 B.
(3) IfyA + 4B is left invertible then

”(aA + BB)(vA + 53)-‘” < “(7A +6B)(vA + 53)-‘||F(3 b

’Y, E;
where (yA + 6B)™" denotes one of the left inverses to YA + 6 B.

Proor: It is sufficient to prove when v = § = 1. We shall prove (1). Suppose
f € H satisfies Af # 0, Bf # 0 and p(Af, Bf) < 1. By Lemma 3,

aA+ BB 2

I ] P(as, p(Af, Bf) )
lia+By| L— p(Af, Bf)

Since y = F(a, B, (z?/1 —12)) is a nondecreasing function of z, 0 € z < 1, and

y > max(|el, |5]).

cot? (4, B)) ,

[tes +£B)/]

| adedtd | _p(AS, BI)
sy [(A+ B < ?‘SEF(O“ b arB f)2)

cos? (A, B)
(a,ﬂ, 1 —cos? (A, B))

- F(a‘ 8. cot? (A B)).
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Secondly we prove (2). For every g € H, let f = (A+ B)™'g. Since (A+ B)™*
the right inverse to A + B, it follows that

Nea+smiarny l(ea+sB)f]|
su B A E——— TR
po llgl u+B)fz0 [(A+ B)f|

By (1), this implies (2).
Finally we prove (3). Let ¢ = ”(A+ B)}(A + B)'1” and let f = (A+ B)™'g. Since
(A + B)™' is the left inverse to A + B, it follows that

[(ea+BB)(A+ B)” g” |(ea+ BB)(A+ B) 4|
sup

g#0 llgll S C(A+B)(il4l-%) 1940 ” (A+ B)(A+ B)~ g”
<o s @A +pB)f|
(A+B)f#0 " (A+ B) f”
By (1), this implies (3). Theorem 3 is proved. 0

By Theorem 1, if 9(A, B) = ¢(ran A,ran B) then the equality holds in Theorem 3
" (2). In many cases (A, B) = ¢(ran A,ran B). Let P be an analytic projection on the
weighted L? space. Helson and Szegé [4] used the equivalence of 4(P,I —~ P) > 0 and
1P| < oo.
COROLLARY 2. Let A and B be linear operators on H. If ||A + B|| < oo and
¥(A, B) > 0 then ||A|| < oo and ||B|| < oo.

ProoF: By Theorem 3 (1), if 9)(A, B) > 0 and ||4 + B|| < co then
|4 +8B) 1] < F(e:8,c0t* (4, B))| (A + B)f| < F (e, 5,0t v(4, B)) | A+BI- I £1,
for all f € H. Hence
leA + BBI| < F(a, B, cot? (A, B)) || A+ B < oo,

for every complex numbers o and 3. Corollary 2 is proved. 0
LEMMA 4. Let A and B be nonzero operators on H satisfying (A, B) > 0. Let

o, 3,7,0 be complex numbers such that v§ # 0. Then

wp  sup lata+8B)f| " l(ed+ptB)f]

up —_— T
teC (vtA+6B) f#0 ”('ytA +0B) f” zec (YA+68tB) f£0 || YA + 6tB) f”

= F(—, g,co(:2 P(A, B))

Proor: It is sufficient to prove that

|(cta + 8B) 1|
sup s

teC (:A+BI))f;eo W =F (a, B, cot? (A, B)) )
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Let
"(atA + BB) f||
c = sup

sup p————
teC (tA+B)f;é0 || (tA+ B) f”

We shall prove that ¢ = F(a,ﬂ,cot2¢(A,B)). By Theorem 3 (1), ¢ < (a B,
cot? (A, B)). Hence it is sufficient to prove that»c p] (a, B, cot? (A, B)) Since

_ latas + B/|

° Tarver <O

it follows that
1P (¢ = o) NASI + (¢ — 1B I BSI* + 2Re(t(c* — aB)(AS, Bf)) > 0
for all t € C. Hence
|? — aB| (A7, B[ < (&~ 1al) (2 - 18P) I AFIPIBSI

Hence

p(Af,Bf)? | - oB| < (¢~ la?) (¢ ~ IB1)-

p(Af, Bf)
F (“’ﬂ "1 - plAf, Bf)2> !

By Lemma 2,

for all f € H. Hence

2
C? SupF(a"B’_p(A—'f’B_'_f)_z_> .
feH 1—p(Af, Bf)
Since y = F(a,ﬂ, (z?/1 - :1:2)) is a nondecreasing function of z, 0 < z < 1, it follows
that 2(A, B)
cos
> —_— 24(A, B)).
F(ob gt ) = Fle 8ot w(4, B))
Lemma, 4 is proved. 0

COROLLARY 3. Let A and B be nonzero linear operators on H satisfying (A, B)
>0, AB = BA =0 and yvA + 6B is right invertible. Let o, 3,7,6 be complex numbers
such that vé # 0. Then

B

|(@a+8B) (v +35B)| = F (7 ,

,cotZ (A, B)).

Proor: It is sufficient to prove when v = § = 1. Suppose A+ B is right invertible.
By Lemma 4, it is sufficient to prove the equality:

learsns] _ et sB)s]
(A+B)P};eo II(A+B f" teg(tA+B)f¢0 ”(tA-i—B)f"
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Since A + B is right invertible, it follows that ran A + ran B = ran (A + B) = H. Since
A and B are linear operators satisfying AB = BA = 0, it follows that

"(aA + BB) f||

|(ota + 8B)f|
sup < sup T
(A+B)f#0 ”(A + B) f”

teC (¢A+B)f#0 ” (tA+ B)f”
ol + 53]
Ag+Bhzo ||Ag + Bh||

N

_ lloAg + BBh||
—t sSu —_—
Ag+Bh#0geran Aheran B ||Ag + Bh||

|(ca+8B)(g+n)|
= sup
(A+B)(g+h);£0,g€ranA heran B ” (A+B)(g+h) ”
@A+ 8B)f|
(A48} /%0 l(a+B)f|

Corollary 3 is proved. 1]

(1]
2]
(3]
(4]
(8]
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