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The Functional Equation of Zeta
Distributions Associated With
Non-Euclidean Jordan Algebras

Salem Ben Saı̈d

Abstract. This paper is devoted to the study of certain zeta distributions associated with simple non-

Euclidean Jordan algebras. An explicit form of the corresponding functional equation and Bernstein-

type identities is obtained.

1 Introduction

In 1859 B. Riemann published his only paper on number theory which introduces

the use of complex analysis into the subject. Riemann’s main goal was to outline the

eventual proof of the prime number theorem by counting the primes using complex

integration. In doing this, he introduced what is nowadays called the Riemann zeta

function ζ(s) =
∑∞

n=1 n−s, for Re(s) > −1. Riemann proved that his ζ-function ex-

tends meromorphically to the entire complex plane and satisfies the functional equa-

tion

π−s/2
Γ

( s

2

)

ζ(s) = π(1−s)/2
Γ

( 1 − s

2

)

ζ(1 − s).

This is the symmetric form of the functional equation, which represents one of the

fundamental results of zeta function theory.

Since then, there have been many generalizations of ζ(s), which are also known

as zeta functions. These functions arise naturally in many branches of analytic and

algebraic number theory, and their study has many important applications. Many

of these functions admit an analogue of the functional equation for ζ(s), and bear

other similarities to ζ(s). Probably the most important generalization of ζ(s) is due

to Hecke, where the functional equation of the twisted zeta function of algebraic

number fields was proved. In his celebrated 1950 Ph.D. thesis [20], Tate lifted the

zeta function to a zeta integral defined on an adelic space and reinterpreted Hecke’s

results in terms of Fourier analysis on the adelic object and its quotients, and the right

mixture of their multiplicative and additive structures. Tate’s method is powerful

enough to uniformly reprove the analytic continuation and functional equations of

Hecke’s L-functions.

In the Archimedean case, the general theory of zeta integrals really begins around

1970 when Bernstein and Gel’fand jointly [5], and Atiyah independently [1], proved
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4 S. Ben Saı̈d

the fundamental theorem of complex powers. This theorem states that the zeta in-

tegrals have a meromorphic continuation to the whole complex plane with poles in

a finite number of arithmetic progressions of negative rational numbers. Bernstein

later proved the theorem again using his theory of Bernstein polynomials [4].

In 1972, Godment and Jacquet [11] generalized Tate’s results obtaining functional

equation for zeta integrals on the space of square matrices M(n, F), where F = R,C,
or H. We mention that the study of zeta integrals and their functional equations in

the setting of prehomogeneous vector spaces has a long and rich history [19, 17, 18,

16, 6, 8]. (Of course, this list of references is not complete.)

The purpose of this paper is to give an explicit expression for the Fourier trans-

form of a new class of zeta integrals associated to a certain class of Lie groups defined

by Jordan algebras. We consider Lie groups which are related to conformal groups of

a non-Euclidean Jordan algebra. See the tables below for a precise list of the groups

under consideration. Bernstein-type identities are also obtained. Our results gen-

eralize the functional equation and the Bernstein polynomials obtained in [3]. The

Euclidean case was treated earlier in [16].

To be more precise, let V be a non-Euclidean Jordan algebra of dimension m and

rank n, and let L be the structure group of V. According to the tables below, there

exists one and only one open and dense L-orbit O in V (cf. [9]).

Let ν be a Cartan involution of V, and set V = ν(V). For s = (s1, s2, . . . , sn) ∈ C
n,

let ∇s (resp. ∇s) be a type of generalized power function defined on V (resp. V).

For instance, when V is the Jordan algebra of complex symmetric matrices, we have

∇s = |∇1|s1 |∇2|s2−s1 · · · |∇n|sn−sn−1 where ∇ j is the determinant of a block matrix of

size (n − j + 1) × (n − j + 1). Let S(V) be the space of Schwartz functions on V. For

h ∈ S(V) and f ∈ S(V), define the following zeta integrals

Z(h, s) =

∫

O

∇s(X)h(X) dX, Z( f , s) =

∫

O

∇s(Y ) f (Y ) dY.

Here O is the open and dense L-orbit in V. The S ′-distributions defined by analytic

continuation of these two integrals are called zeta distributions. The main result of

the paper is to give, in a uniform way, an explicit expression of the functional equa-

tion involving Z and Z for non-Euclidean Jordan algebras. The existence of such a

functional equation can be found in [7]. In order to do so, it is enough to find the

functional equation for a special subclass of functions in S(V). Using a decomposi-

tion theorem proved in [13], we prove that

(1) Z( f , s) = π−m
2 π−|s|

n∏

j=1

Γ
( s j +(e+1)+d(n− j)

2

)

Γ
( −s j−d(n− j)

2

) Z
(

F( f ),−s
∗ − m

n

)

,

where −s
∗ − m

n
=

(
−sn − m

n
,−sn−1 − m

n
, . . . ,−s1 − m

n

)
, |s| = s1 + · · · + sn, and

F( f ) is the Fourier transform of f . Here d and e are certain integers which depend

on V. In [6], the authors prove (1) where V is the complexification of a Euclidean

Jordan algebra. Further, in the particular case where s1 = s2 = · · · = sn, equation (1)

coincides with the functional equation proved in [3].
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Using (1), we prove certain Bernstein-type identities for ∇s, in the sense that

∇ℓ(∂X)2∇s(X) =

n∏

κ=ℓ

(
sn−κ+1 + d(κ− 1)

)(
sn−κ+1 + (e − 1) + d(κ− 1)

)
∇s(ℓ) (X)

where s
(ℓ)

= (s1 − 2, . . . , sn−ℓ+1 − 2, sn−ℓ+2, . . . , sn) for 1 ≤ ℓ ≤ n.

2 Preliminary Results

Let V be a simple Jordan algebra. The structure group L of V is the group of linear

transformations g of V for which the polynomial det(X), the determinant of X ∈ V,
is semi-invariant, i.e.,

det(gX) = χ(g) det(X),

where χ is the R
∗-valued character of L. Denote by N the group of transformations

nX : v 7→ v + X, for v ∈ V,

and let P := L ⋉ N . Let j be the rational transformation of V defined by j(X) =

−X−1, the inverse in Jordan algebra sense. The conformal group G, or Kantor–

Koecher–Tits group of V, is the group of rational transformations of V generated

by P and j. It is a Lie group and P is a maximal parabolic subgroup of G, where N is

abelian and isomorphic to V. Hence, the Lie algebra n := Lie(N) has a natural struc-

ture of a Jordan algebra. Next we shall make precise the list of the groups G under

consideration.

For X,Y ∈ V, let L(X)Y := XY , and define τ (X,Y ) := tr(L(XY )). Set ν to be

a Cartan involution of V, i.e., ν is an involutive automorphism of V such that the

bilinear form τ (ν(X),Y ) is positive definite. The involution

θ(g) := ν ◦ j ◦ g ◦ j ◦ ν, g ∈ G

is a Cartan involution for G. By abuse of notation, we also use θ to indicate its differ-

ential.

Let g = Lie(G) and l = Lie(L), and let g = k ⊕ p be its Cartan decomposition

with respect to θ. The Lie algebra g is called the Kantor–Koecher–Tits algebra of the

Jordan algebra V. Fix a maximal toral subalgebra t in the orthogonal complement of

k ∩ l in k. The rank of V is n := dimR(t). The roots of tC, the complexification of t, in

gC form a root system of type Cn, and we fix a basis {γ1, γ2, . . . , γn} of t∗ such that

∆(gC, tC) = {±(γi ± γ j)/2,±γ j}.

For the subsystem ∆(kC, tC), there are three possibilities

An−1 = {±(γi − γ j)/2}, Dn = {±(γi ± γ j)/2}, and Cn.

The An−1 case arises when V is a Euclidean Jordan algebra.
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Now we turn our attention to gC. For the Lie algebra sl2(C), we define

x =

[
0 1

0 0

]

, y =

[
0 0

1 0

]

, h =

[
1 0

0 −1

]

,

X =
1

2

[
i 1

1 −i

]

, Y =
1

2

[
−i 1

1 i

]

, H = i

[
0 1

−1 0

]

.

The Cayley transform is the automorphism of sl2(C) given by

c = Ad
1√
2

[
1 i

i 1

]

.

It satisfies

c(X) = x, c(Y ) = y, c(H) = h.

For 1 ≤ j ≤ n, let Ψ j be the holomorphic homomorphisms

Ψ j : sl2(C) → gC,

such that Ψ j(X) spans the root space pγ j
, and write

X j = Ψ j(X), x j = Ψ j(x), h j = Ψ(h), . . . .

The Cayley transform of gC is the product

c =

n∏

j=1

exp{ad
iπ

4
(x j + y j)}.

Thus we obtain an R-split toral subalgebra a defined by

a = c(it) = Rh1 ⊕ · · · ⊕ Rhn.

The roots of a in g are

∆(g, a) = {±ǫi ± ǫ j ; ±2ǫ j} where ǫi =
1

2
γi ◦ c

−1.

Let 2d be the multiplicity of the short roots, and let (e + 1) be the multiplicity of

the long roots. If m := dim(V), then m = n((e + 1) + d(n − 1)). The integers d and e

are listed in the tables below.

Recall that for X,Y ∈ V, L(X)Y = XY . If x is a primitive idempotent element,

then the possible eigenvalues of L(x) are 1, 1/2, and 0, and the Peirce decomposition

of V associated to x is given by V = V(x, 1) ⊕ V(x, 1
2
) ⊕ V(x, 0), where V(x, λ) :=

{v ∈ V | L(x)v = λv}. For ℓ = 1, . . .n, write V
(n−ℓ+1)
r := V(xℓ + · · · + xn, 1). Each

V
(n−ℓ+1)
r is a Jordan algebra of rank n − ℓ + 1, and V

(1)
r ⊂ V

(2)
r ⊂ · · · ⊂ V

(n)
r = V.

Also, one can define the subalgebras V
(ℓ)
l := V(x1 + · · · + xℓ, 1) of rank ℓ.
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Let G be the set of conformal transformations defined at 0. Then G is an open

dense set in G and

{g ∈ G | g(0) = 0} = P,

where P := L ⋉ N and N = θ(N). Moreover, G = NLN, and the map ψ : N ×
L × N → G is a diffeomorphism. The latter decomposition is called the Gelfand–

Naimark decomposition. One can prove that if g ∈ G and X ∈ V, then gnX ∈ NLN,

and its Gelfand–Naimark decomposition is given by

gnX = ng·XDg(X)n ′,

where Dg(X) ∈ L is the differential of the map X 7→ g · X, and n ′ ∈ N (cf. [14,

Proposition 1.2.2]).

Set V := ν(V). Observe that the Lie algebra n (resp., n) of N (resp., N) can be

identified with V (resp., V).

Define Λℓ :=
∑n

k=ℓ ǫk, and let V
(n−ℓ+1) (resp., V

(n−ℓ+1)
) be a Jordan algebra in V

(resp., V) of rank n − ℓ + 1. On open and dense subsets of V
(n−ℓ+1) and V

(n−ℓ+1)
,

respectively, we may define the functions

∇ℓ(X) := eΛℓ log(D j(X−1)),

for X ∈ V and 1 ≤ ℓ ≤ n, and the functions

∇1(X) := ∇1(ν(X)), ∇ℓ(X) :=
∇1(ν(X))

∇n−ℓ+2(ν(X))
,

for X ∈ V and 2 ≤ ℓ ≤ n. We mention that our definition of ∇ℓ and ∇ℓ is different

from the one in [6]. (See also Remark 3.7 below.) Using [10, Section II.3], one can

see that ∇ℓ and ∇ℓ are given in terms of the principal minors associated to V and

V, respectively. See Tables 1–3 for more information. Moreover, ∇2
ℓ and ∇2

ℓ are two

homogeneous polynomials of degree 2(n − ℓ + 1). Thus, both ∇ℓ and ∇ℓ extend to

well defined functions on V
(n−ℓ+1) and V

(n−ℓ+1)
, respectively.

For a given simple non-Euclidean Jordan algebra, the Kantor–Koecher–Tits group

and algebra are not quite unique. Groups with different centers or fundamental

groups may arise. Below we give the precise list of the Lie groups G under considera-

tion. We shall also use the following notations: for 1 ≤ ℓ ≤ n, we denote by detℓ the

determinant of the block matrix





aℓ,ℓ · · · aℓ,n
...

...

an,ℓ · · · an,n




 .

For X = (X1, . . . ,Xn) ∈ C
n, we shall write ‖X‖1 = |X1|2 − |X2|2 − · · · − |Xn|2,

and ‖X‖2 = |X1| + |Xn|. Further, we will view the quaternionic matrices as complex

matrices of the form [
A B

−B A

]

.
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V G L ∇ℓ d e

Sym
n
(C) Sp

n
(C) GLn(C) | detℓ | 1 1

Mn(C) SL2n(C) S(GLn(C)2) | detℓ | 2 1

Skew2n(C) SO4n(C) GL2n(C) | Pfaffianℓ | 4 1

Herm3(O)C E7,C E6,C × C
∗ |deg.(4 − ℓ)C − poly.| 8 1

C
n SOn+1(C) On−1 × R

+ ‖ · ‖ℓ n − 2 1

Table 1: Non-Euclidean Jordan algebras of type I: the complex cases

V G L ∇ℓ d e

Sym
2n

(C) ∩ Mn(H) Sp
n,n GLn(H) | detℓ(A + iB)| 2 2

Mn(H) SL2n(H) GLn(H)2 | detℓ(A + iB)| 4 3

R
n×1 SOn,1 On−1 × R

∗ ‖ · ‖
1/2

ℓ 0 n − 1

Table 2: Non-Euclidean Jordan algebras of type I: the non-complex cases

V G L ∇ℓ d e

Mn(R) GL2n(R) GL2n(R)2 | detℓ | 1 0

Skew2n(R) O2n,2n GLn(R) Pfaffianℓ 2 0

Herm3(Os) E7(7) E6(6) × R
+ |deg.(4 − ℓ)R-poly.| 4 0

R
p−1 × R

q−1 Op,q, p, q ≥ 3 SOp−1,q−1 ×R
+ ‖ · ‖ℓ (p + q − 4)/2 0

Table 3: Non-Euclidean Jordan algebras of type II

3 The Functional Equation

Next, we turn our attention to the functional equation. For that we need to introduce

some notation for the Fourier transform. Recall that τ (X,Y ) = tr(L(XY )), and ν
is an involution of V such that τ (ν(X),Y ) is positive definite. We consider the inner

product on V defined by

(2) 〈X,Y 〉 :=
n

m
τ (X,Y ).
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The Functional Equation of Zeta Distributions 9

The corresponding norms are

‖X‖2 := 〈ν(X),X〉 for X ∈ V, and ‖Y‖2 := 〈ν(Y ),Y 〉 for Y ∈ V.

These norms determine the Lebesgue measure dX on V and dY on V, in a standard

way.

Recall that g denotes the Lie algebra of the conformal group G. Set

〈〈 · , · 〉〉g =
n

4m
B( · , · )

to be the non-degenerate pairing between n ∼= V and n ∼= V. Here B is the Killing

form of g.

Lemma 3.1 Let V
(ℓ) ⊂ V be a smaller Jordan algebra of rank ℓ ≤ n. If gℓ denotes the

Lie algebra of the conformal group Gℓ associated to V
(ℓ), then the restriction of 〈〈 · , · 〉〉g

to gℓ × gℓ coincides with 〈〈 · , · 〉〉gℓ
.

Proof Since gℓ is simple and 〈〈 · , · 〉〉g is gℓ-invariant, there exists a nonzero constant

c such that 〈〈 · , · 〉〉g = c〈〈 · , · 〉〉gℓ
on gℓ × gℓ. To see that c = 1, compute

〈〈H1,H1〉〉g = tr(ad(H1)2) =
n

4m
8(d(n − 1) + (e + 1)) = 2,

and, if mℓ = dim(V
(ℓ)), then

〈〈H1,H1〉〉gℓ
= tr

(
ad(H1)2

|gℓ

)
=

ℓ

4mℓ
8(d(ℓ− 1) + (e + 1)) = 2.

The significance of the above lemma is that when we pass from V to a smaller

Jordan algebra V
(ℓ) in the induction argument below, the pairing (2) is unchanged.

Set O
(n)
ξ to be the open L-orbit of the element

∑n
j=1 ξ jx j in a simple Jordan algebra

V, where ξ j = ±1. If V is a Euclidean Jordan algebra, then ξ j = 1 for 1 ≤ j ≤ p and

ξ j = −1 for p + 1 ≤ j ≤ n and there are n + 1 open L-orbits. If V is a Jordan algebra

of type I or of type II, and for the choices of G we work with, we have ξ j = 1 for all

1 ≤ j ≤ n (cf. [9]). Denote by O
(n)
1

the orbit of the element
∑n

j=1 x j , which is open

and dense in V, and is a semisimple symmetric space.

For s = (s1, s2, . . . , sn) ∈ C
n, define

∇s(X) := ∇1(X)s1∇2(X)s2−s1 · · ·∇n(X)sn−sn−1 , for X ∈ V,

and

∇s(Y ) := ∇1(Y )s1∇2(Y )s2−s1 · · ·∇n(Y )sn−sn−1 , for Y ∈ V.

Denote by S(V) and S(V) the spaces of Schwartz functions on V and V, respec-

tively. For f ∈ S(V) and h ∈ S(V), define

Z( f , s) :=

∫

O
(n)

ξ

f (Y )∇s(Y ) dY, Z(h, s) :=

∫

O
(n)

ξ

h(X)∇s(X) dX.

https://doi.org/10.4153/CJM-2006-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-001-7


10 S. Ben Saı̈d

For the case when V is a Euclidean Jordan algebra, a functional equation involving

Z( · , s) and Z( · , s) was proved in [16, Theorem 1]. Thus, we shall restrict our atten-

tion to the cases where V is of type I and type II.

In the set s ∈ C
n for which ∇s and ∇s are absolutely convergent on V and V,

respectively, the integrals Z( f , s) and Z(h, s) are complex meromorphic functions of

s ∈ C
n. Next, we will show that there is a meromorphic continuation to all of C

n,

and a functional equation relating the two integrals, via the Fourier transform, holds.

A general reason for the existence of the functional equation and the meromorphic

continuation can be found in [7]. Since O
(n)
1

is dense in V, we may rewrite Z( f , s)

and Z(h, s) as integrals over V and V, respectively.

For p, q ∈ {0,±1}, let

g(p, q; ℓ) =
{

X ∈ g | ad(h1 + · · · + hℓ)X =
p

2
X, ad(hℓ+1 + · · · + hn)X =

q

2
X

}
.

By [13], we have V ∼= V
(ℓ)
l ⊕ g(1,−1; ℓ) ⊕ V

(n−ℓ)
r . Fix ℓ. For the smaller Jordan

algebras V
(ℓ)
l and V

(n−ℓ)
r , we will denote the analogs of ∇ j by ∇l, j and ∇r, j . Similarly,

we write ∇l, j and ∇r, j for V
(ℓ)
l and V

(n−ℓ)
r .

If h ∈ L1(V, dX) and f ∈ L1(V, dY ), then by [13] we have

(3)

∫

V

h(X)dX =

∫

g(1,−1;ℓ)

∫

V
(n−ℓ)
r

∫

V
(ℓ)
l

h
(

exp(u)(X + X ′)
)
∇l,1(X)2d(n−ℓ) dXdX ′du,

and

(4)

∫

V

f (Y )dY =

∫

g(1,−1;ℓ)

∫

V
(n−ℓ)
r

∫

V
(ℓ)
l

f
(

exp(v)(Y + Y ′)
)
∇r,1(Y ′)2dℓ dY dY ′dv,

(see [3] for the proof). Here we give the subspaces g(1,−1; ℓ),V
(ℓ)
l ,V

(n−ℓ)
r ,V

(ℓ)
l , and

V
(n−ℓ)
r the Lebesgue measures determined by the restriction of 〈 · , · 〉 to each sub-

space, and we normalize them in the same way as the measure dX on V and dY on V.

Remark 3.2 (i) For u ∈ g(1,−1; ℓ)

ad(u) : V
(ℓ)
l → g(1, 1; ℓ), ad(u) : g(1, 1; ℓ) → V

(n−ℓ)
r , ad(u) : V

(n−ℓ)
r → 0.

Hence Ad(exp(u)) = I + ad(u) + 1
2

ad(u)2 on V
(ℓ)
l , and ad(u)2 : V

(ℓ)
l → V

(n−ℓ)
r .

(ii) For u ∈ g(1,−1; ℓ) and X in a compact set in V
(ℓ)
l , such that ∇l,1(X) 6= 0,

there exist two constants C and C ′ such that C‖u‖ ≤ ‖ ad(u)(X)‖ ≤ C ′‖u‖.

For f ∈ S(V) and h ∈ S(V), define the Fourier transforms by

F( f )(X) =

∫

V

f (Y )e−2πiτ (X,Y ) dY, F(h)(Y ) =

∫

V

h(X)e−2πiτ (X,Y ) dX.

We normalize the Lebesgue measures on V and V by

F
2( f )(X) = f (−X) and F

2(h)(Y ) = h(−Y ).
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The Functional Equation of Zeta Distributions 11

Further, we define T f ∈ C
∞(V

(ℓ)
l × V

(n−ℓ)
r ) and Th ∈ C

∞(V
(ℓ)
l × V

(n−ℓ)
r ) by

T f (Y,Y ′) =

∫

g(1,−1;ℓ)

f (exp(u)(Y + Y ′)) du,

Th(X,X ′) =

∫

g(1,−1;ℓ)

h(exp(v)(X + X ′)) dv.

The functions T f and Th are not defined everywhere. For example the integral defin-

ing Th(0, 0) is not convergent when h(0, 0) 6= 0. However, among other things, we

can show that T f and Th are defined almost everywhere for the Schwartz functions f

and h.

Henceforth we fix ℓ = 1. For V
(1)
l , set

O
(1)
l := {X ∈ V

(1)
l | ∇l,1(X) 6= 0}.

The orbit O
(1)
l is open and dense in V

(1)
l .

Lemma 3.3 Let h ∈ S(V) and f ∈ S(V).

(i) For fixed X ′ ∈ V
(n−1)
r (resp., Y ∈ V

(1)

l ), the integral defining Th(X,X ′) (resp.,

T f (Y,Y ′)) is finite when ∇l,1(X) 6= 0 (resp., ∇r,1(Y ′) 6= 0), i.e., Th and T f are

defined almost everywhere.

(ii) For a compact K in O
(1)
l and an integer N, there exists a constant C such that

Th(X,X ′) ≤ C(1 + ‖X ′‖)−N , for X ∈ K.

Further, for X ∈ O
(1)
l , Th(X, · ) ∈ S(V

(n−1)
r ).

Proof (i) Recall that Ad(exp(u)) = I+ad(u)+ 1
2

ad(u)2 on V
(1)
l . Since h is a Schwartz

function in each variable, then for an integer N , there exists a constant C such that

∣
∣h

(
exp(u)(X + X ′)

) ∣
∣ =

∣
∣h

(
X + ad(u)X + X ′ +

1

2
ad(u)2(X)

) ∣
∣

≤ C(1 + ‖ ad(u)X‖)−N

≤ C ′(1 + ‖u‖)−N .

Now if N is big enough, then (1 + ‖u‖)−N is an L
1-function on g(1,−1; 1). The

corresponding statement for T f follows in a similar way.

(ii) Again, since h is a Schwartz function in each variable, then for M,N ∈ N,

there exists a constant C such that

∣
∣h

(
exp(u)(X + X ′)

) ∣
∣ ≤ C

(
1 + ‖X ′ +

1

2
ad(u)2(X)‖

)−N(
1 + ‖ ad(u)X‖

)−M
.

Using Remark 3.2 and the fact that

1 + ‖X ′‖
1 +

∥
∥X ′ + 1

2
ad(u)2(X)

∥
∥

≤ 1 +
∥
∥
∥

1

2
ad(u)2(X)

∥
∥
∥ ,

https://doi.org/10.4153/CJM-2006-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-001-7


12 S. Ben Saı̈d

we can see that for X ∈ K, Th(X,X ′) ≤ C ′(1+‖X ′‖)−N . The last claim in (ii) follows

by using the same method applied to the derivatives of h with respect to the variable

in V
(n−1)
r .

Let O :=
{

X ∈ V | Proj(X) ∈ O
(1)
l

}
where Proj : V → V

(1)
l is the orthogonal pro-

jection. For an arbitrary domain Ξ, we denote by D(Ξ) the set of smooth functions

having compact support in Ξ.

Lemma 3.4 If h ∈ D(O), then Th ∈ D
(
O

(1)
l × V

(n−1)
r

)
.

Proof The change of coordinates (X, u,X ′) 7→ exp(u)(X + X ′) is a smooth one-

to-one map V
(1)
l × g(1,−1; 1) × V

(n−1)
r → V, and is a diffeomorphism from O

(1)
l ×

g(1,−1; 1) × V
(n−1)
r onto O, with Jacobian ∇l,1(X)2d(n−1) as proved in [3, Lemma

3.14]. Then h(exp(u)(X + X ′)) = h(X + ad(u)X + X ′ + 1
2

ad(u)2X) is smooth and

has a compact support contained in O
(1)
l × g(1,−1; 1) × V

(n−1)
r . Hence, the lemma

holds.

Let V
♯ := {X ∈ V | ∇1(X) · · · ∇n(X) 6= 0} ⊂ O

(n)
1

(recall that O
(n)
1

is the open

dense L-orbit in V). For the zeta distributions Z and Z, we shall use the subscript ℓ
to indicate the rank. Further, observe that the integers d and e for a Jordan algebra

V
(ℓ) ⊂ V of rank ℓ ≤ n are the same as for V, unless ℓ = 1 where d = 0 for V

(1).

Proposition 3.5 Let h ∈ D(O ∩ V
♯). If s = (s1; s̃) where s̃ := (s2, . . . , sn), then

(i) Zn−1(Th(X, · ), s̃) is a smooth function with compact support in the X-variable.

(ii) As meromorphic functions of s

Z(h, s) = Z1(∇l,1( · )2d(n−1)Zn−1(Th, s̃), s1).

Proof (i) Notice that if exp(u)(X + X ′) ∈ O ∩ V
♯, then

∇r,s̃(X ′) := ∇r,1(X ′)s2∇r,2(X ′)s3−s2 · · ·∇r,n−1(X ′)sn−sn−1 6= 0.

Thus

Zn−1(Th(X, · ), s̃) =

∫

V
(n−1)
r

Th(X,X ′)∇r,s̃(X ′) dX ′

for all X ∈ V
(1)
l and s̃ ∈ C

n−1. By differentiating inside the integral, we can see that

Zn−1(Th(X, · ), s̃) is smooth and, by the previous lemma, has compact support.

(ii) Start with s such that ∇s is absolutely convergent. Using the fact that

∇1(X + X ′) = ∇l,1(X)∇r,1(X ′)

∇ℓ(X + X ′) = ∇r,ℓ−1(X ′), 2 ≤ ℓ ≤ n,
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for X ∈ V
(1)
l and X ′ ∈ V

(n−1)
r , and the integral formula (3), we obtain

Z(h, s) =

∫

V

h(X)∇s(X) dX

=

∫

V
(1)

l

∫

V
(n−1)
r

Th(X,X ′)∇s(X + X ′)∇l,1(X)2d(n−1) dX ′dX

=

∫

V
(1)

l

∫

V
(n−1)
r

Th(X,X ′)∇r,s̃(X ′)∇l,1(X)s1∇l,1(X)2d(n−1) dX ′dX

=

∫

V
(1)

l

Zn−1

(
Th(X, · ), s̃

)
∇l,1(X)2d(n−1)∇l,1(X)s1 dX

= Z1(∇l,1( · )2d(n−1)Zn−1(Th, s̃), s1).

Now, by meromorphic continuation, the statement holds for general s.

Notice that if mℓ denotes the dimension of a smaller Jordan algebra of rank ℓ ≤ n,

then m
n

=
mℓ

ℓ + d(n − ℓ). The dimension of a Jordan algebra of rank 1 is (e + 1).

Theorem 3.6 Let s ∈ C
n and f ∈ S(V). As meromorphic functions

Z( f , s) = π−m
2 π−|s|

n∏

j=1

Γ

(
s j +(e+1)+d(n− j)

2

)

Γ

(
−s j−d(n− j)

2

) Z(F( f ), t(s))

where

t(s) =

(

−sn −
m

n
,−sn−1 −

m

n
, . . . ,−s1 −

m

n

)

,

and |s| = s1 + · · · + sn. Here Γ denotes the Euler gamma function.

Proof We shall proceed by induction on the rank n of V. For n = 1, the Jordan

algebra V ≡ V ≡ R
m. Let s ∈ C be such that −m < Re(s) < 0. For s in this range,

both |x|s and |x|−s−m are locally L
1-functions on R

m. Since f and e−πt| · |2

for t > 0

are absolutely convergent, then

∫

Rm

f (x)t−
m
2 e−

π|x|2

t dx =

∫

Rm

F( f )(y)e−πt|y|2

dy.

Multiplying both sides by t
m+s

2
−1 and integrating over t > 0, we get

(5)

∫ ∞

0

∫

Rm

t
s
2
−1 f (x)e−

π|x|2

t dxdt =

∫ ∞

0

∫

Rm

t
m+s

2
−1

F( f )(y)e−πt|y|2

dydt.
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To evaluate the right-hand side of (5), we switch the order of integration, and us-

ing the substitution v = πt|y|2 instead of t , we obtain the right-hand side of the

functional equation. For the left-hand side of (5), we again use the Fubini–Tonelli

theorem to switch the order of integration and use the change of variable u =
π|x|2

t

instead of t . Then we obtain the left-hand side of the functional equation.

Next, we assume that the statement holds for every non-Euclidean Jordan algebra

of rank less than n.

By [7], there exists a constant c(t(s)) such that Z(F( f ), t(s)) = c(t(s))Z( f , s),

for f ∈ S(V). To explicitly compute the constant c(t(s)), it is enough to consider a

subclass of functions f in S(V). Assume that Re(s1) ≪ Re(s2) ≪ · · · ≪ Re(sn) ≪ 0,

so the integrals stated below converge. For Y ∈ V
(1)

l and Y ′ ∈ V
(n−1)

r , we have

∇ℓ(Y + Y ′) = ∇l,1(Y )∇r,ℓ(Y
′), for 1 ≤ ℓ ≤ n − 1,

∇n(Y + Y ′) = ∇l,1(Y ).

Using the integral formula (4), Lemma 3.3, and Lemma 3.4, we obtain

Z(F( f ), t(s)) =

∫

V

F( f )(X)∇t(s)(X) dX

=

∫

V
(1)

l

∫

V
(n−1)

r

∫

g(1,−1;1)

F( f )(exp(u)(X + X ′))

∇t(s)(X + X ′)∇r,1(X ′)2d dudX ′dX

=

∫

V
(1)

l

∫

V
(n−1)

r

TF( f )(X,X ′)∇r,1(X ′)d∇l,1(X)−s1−
m
n

∇r,1(X ′)−sn−
m
n

+d∇r,2(X ′)sn−sn−1 · · ·∇r,n(X ′)s3−s2 dX ′dX

=

∫

V
(1)

l

∫

V
(n−1)

r

TF( f )(X,X ′)∇r,1(X ′)d∇l,1(X)−s1−
m
n ∇r,t(s̃)(X ′) dX ′dX

where

t(s̃) =

(

−sn −
mn−1

n − 1
,−sn−1 −

mn−1

n − 1
, . . . ,−s2 −

mn−1

n − 1

)

.

Using Proposition 3.5 and the following fact (cf. [13])

TF( f )(X,X ′)∇r,1(X ′)d
= F1

(
∇l,1( · )d(n−1)

Fn−1(T f )
)

(X,X ′),

where F1 (resp., Fn−1) is the Fourier transform on V
(1)

l (resp., V
(n−1)

r ), we conclude
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that

Z(F( f ), t(s)) =

∫

V
(1)

l

∫

V
(n−1)

r

F1

(
∇l,1( · )d(n−1)

Fn−1(T f )
)

× (X,X ′)∇l,1(X)−s1−
m
n ∇r,t(s̃)(X ′) dX ′dX

=

∫

V
(1)

l

F1

(
∇l,1( · )d(n−1)Zn−1(Fn−1(T f ), t(s̃))

)
∇l,1(X)−s1−

m
n dX

= Z1

(
F1

(
∇l,1( · )d(n−1)Zn−1(Fn−1(T f ), t(s̃))

)
,−s1 − d(n − 1) − (e + 1)

)

= π− (e+1)(n−1)
2

− d(n−1)(n−2)
2 π−|t(s̃)|π− (e+1)

2 πs1+d(n−1)+(e+1) Γ
(
−s1−d(n−1)

2

)

Γ
(

s1+d(n−1)+(e+1)
2

)

×
n−1∏

j=1

Γ
( −s j+1−d(n−1− j)

2

)

Γ
( s j+1+d(n−1− j)+(e+1)

2

) Z1

(
∇l,1( · )d(n−1)Zn−1(T f , s̃), s1 + d(n − 1)

)

= π−m
2 π−|t(s)|

n∏

j=1

Γ
( −s j−d(n− j)

2

)

Γ
( s j +d(n− j)+(e+1)

2

) Z1

(
Zn−1(T f , s̃), s1 + 2d(n − 1)

)

= π−m
2 π−|t(s)|

n∏

j=1

Γ
( −s j−d(n− j)

2

)

Γ
( s j +d(n− j)+(e+1)

2

) Z( f , s).

Now the theorem follows by meromorphic continuation. Notice that t(t(s)) = s.

Remark 3.7 In [6], the authors consider the case of complex Jordan algebras where

they also prove the functional equation. Our definitions of ∇ℓ and ∇ℓ on V and V,

correspond to their definitions of |∆ℓ|1/2 and |∇∗
ℓ |1/2 on V and V, respectively. The

fact that these definitions are reversed explains the shift between the constants in [6]

and our constants.

4 Bernstein Identities for ∇s

Recall that Pℓ(X) := ∇ℓ(X)2 and Pℓ(Y ) := ∇ℓ(Y )2 are two homogeneous polynomi-

als of degree 2(n−ℓ+1). Then, define the constant coefficient operators characterized

by

Pℓ(∂X)eτ (X,Y )
= Pℓ(Y )eτ (X,Y ) and Pℓ(∂Y )eτ (X,Y )

= Pℓ(X)eτ (X,Y ).

Theorem 4.1 There exists a polynomial bℓ(s) on s so that

Pℓ(∂Y )∇s(Y ) = bℓ(s)∇s(ℓ) (Y ),

where

s
(ℓ)

= (s1 − 2, s2 − 2, . . . , sn−ℓ+1 − 2, sn−ℓ+2, . . . , sn)
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and

bℓ(s) =

n∏

κ=ℓ

(sn−κ+1 + d(κ− 1))(sn−κ+1 + (e − 1) + d(κ− 1)).

The polynomials bℓ are the so-called Bernstein polynomials of ∇s.

Proof Denote by

c(s) = π−m
2 π−|s|

n∏

κ=1

Γ
(

sκ+(e+1)+d(n−κ)
2

)

Γ
(
−sκ−d(n−κ)

2

) .

By Theorem 3.6 we have

∫

V

f (Y )∇s(Y ) dY = c(s)

∫

V

F( f )(X)∇t(s)(X) dX.

Changing f by Pℓ(∂Y ) f in the above equation, and using the fact that

F(Pℓ(∂Y ) f )(X) = (−1)n−ℓ+1(2π)2(n−ℓ+1)Pℓ(X)F( f )(X),

we obtain

(6)

∫

V

Pℓ(∂Y ) f (Y )∇s(Y ) dY = (−1)n−ℓ+1(2π)2(n−ℓ+1)c(s)

∫

V

F( f )(X)Pℓ(X)∇t(s)(X) dX.

On the other hand, if 2
(n−ℓ+1) denotes the vector

(0, . . . , 0, 2, . . . , 2
︸ ︷︷ ︸

n−ℓ+1

),

we can rewrite Pℓ(X)∇t(s)(X) as ∇t(s)+2(n−ℓ+1) (X), where

∇t(s)+2(n−ℓ+1) = ∇t(s(ℓ)).

Here s
(ℓ) is the parameter introduced in the statement of the theorem. Using integra-

tion by parts on the left-hand side of (6), we get

∫

V

f (Y )Pℓ(∂Y )∇s(Y ) dY = (−1)n−ℓ+1(2π)2(n−ℓ+1)c(s)

∫

V

F( f )(X)∇t(s(ℓ))(X) dX

= (−1)n−ℓ+1(2π)2(n−ℓ+1) c(s)

c(s(ℓ))

∫

V

f (Y )∇s(ℓ) (Y ) dY.

Hence

Pℓ(∂Y )∇s(Y ) = (−1)n−ℓ+1(2π)2(n−ℓ+1) c(s)

c(s(ℓ))
∇s(ℓ) (Y ).
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An easy computation shows that

c(s)

c(s(ℓ))
=

1

π2(n−ℓ+1)

n−ℓ+1∏

κ=1

Γ
(

sκ+(e+1)+d(n−κ)
2

)

Γ
(
−sκ−d(n−κ)

2

)

n−ℓ+1∏

κ=1

Γ
(
−sκ−d(n−κ)

2
+ 1

)

Γ
(

sκ+(e+1)+d(n−κ)
2

− 1
) .

Using the fact that Γ(z + 1) = zΓ(z), we can see that

c(s)

c(s(ℓ))
=

1

π2(n−ℓ+1)

n−ℓ+1∏

κ=1

( sκ + (e + 1) + d(n − κ)

2
− 1

)( −sκ − d(n − κ)

2

)

=
(−1)n−ℓ+1

(2π)2(n−ℓ+1)

n−ℓ+1∏

κ=1

(sκ + d(n − κ))(sκ + (e − 1) + d(n − κ)).

For t ∈ N
n such that tn ≥ tn−1 ≥ · · · ≥ t1, we set

Pt(∂Y ) := P1(∂Y )t1 P2(∂Y )t2−t1 · · · Pn(∂Y )tn−tn−1 .

Theorem 4.2 For t ∈ N
n such that tn ≥ tn−1 ≥ · · · ≥ t1, the following holds

Pt(∂Y )∇s(Y ) = bt(s)∇s−2t∗(Y ),

where

bt(s) =

n∏

κ=1

(sκ +
m

n
− d(κ− 1) − 2tκ)tκ,even(sκ + d(n − κ))tκ,even,

and t
∗

= (tn, . . . , t1). Here (a)t,even := a(a + 2)(a + 4) · · · (a + 2t).

Proof Let |t| = t1 + · · · + tn. Since F(Pt(∂Y ) f )(X) = (−1)|t|(2π)2|t|Pt(X)F( f )(X),

we can employ the same argument used in the proof of Theorem 4.1 with 2|t| inte-

grations by parts to obtain

Pt(∂Y )∇s(Y ) = (−1)|t|(2π)2|t| c(s)

c(s − 2t∗)
∇s−2t∗(Y ).

Next we shall use
(
−m

n

)
to denote

(
−m

n
, . . . ,−m

n

)
.

Corollary 4.3 For any f ∈ S(V)

Z( f , s)
∏n

j=1 Γ
( s j +(m/n)−d( j−1)

2

)

∣
∣
∣

s=(− m
n

)
=

πm/2

∏n
j=1 Γ

( m/n−d( j−1)
2

) f (0).
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Proof By the functional equation, we have

Z( f , s)
∏n

j=1 Γ
( s j +(e+1)+d(n− j)

2

) =
π−m/2π−|s|Z(F( f ), t(s))

∏n
j=1 Γ

( −s j−d(n− j)

2

) .

Since
n∏

j=1

Γ
( s j + (e + 1) + d(n − j)

2

)
=

n∏

j=1

Γ
( s j + m

n
− d( j − 1)

2

)
,

the corollary follows by Fourier inversion.

The next corollary is a consequence of Corollary 4.3 and the fact that

Z(Pt(∂Y ) f , s) = bt(s)Z( f , s − 2t
∗).

Corollary 4.4

(

π−m
2 bt(s)

n∏

j=1

Γ
( −s j−d(n− j)

2

)

Γ
( s j +(m/n)−d( j−1)

2

) Z( f , s − 2t
∗)

) ∣
∣
∣

s=(− m
n

)
= Pt(∂Y )δ

where δ denotes the Dirac function at 0.

Remark 4.5 This remark is an extension of [2, Théorème III.10], which can be

derived by an almost straightforward modification of the proof in [2]. To simplify

the presentation of our statement, we shall slightly change the definition of ∇s. For

α = (α1, α2, . . . , αn) ∈ C
n, set ∇α := ∇α1

1 ∇α2

2 · · · ∇αn
n . The relation between ∇α

and ∇s is that ∇α
= ∇s if and only if α1 = s1 and αi = si − si−1 for 2 ≤ i ≤ n.

For α ∈ C
n, such that Re(αi) ≫ 0 for all 1 ≤ i ≤ n, the function ∇α is absolutely

convergent. We claim that if f ∈ S(V), then the function

α 7→ Rα( f ),

where

Rα( f ) :=

∫

V
f (X)∇α(X) dX

∏

1≤i≤ j≤n

Γ(αi + · · · + α j + d(n − j) + 1)Γ(αi + · · · + α j + d(n − j) + e)
,

extends holomorphically to all of C
n. We shall only present the main steps of the

argument. In this setting, Rα deserves the name of Riesz distribution associated to

the non-Euclidean Jordan algebra V. From Theorem 4.1, one can see that if we apply

the polynomial differential operator Pℓ(∂X) to ∇α, then the shift is only negative in

the power of the first factor in ∇α, for every ℓ. In order to shift the power of the

other factors in ∇α we will use different differential operators.
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For X ∈ V
♯
= {X ∈ V | ∇1(X) · · · ∇n(X) 6= 0} and for 1 ≤ ℓ ≤ n, set

Dℓ(α, ∂X) = ∇1(X)2+α1 · · ·∇ℓ−1(X)2+αℓ−1 ◦ Pℓ(∂X) ◦ ∇1(X)−α1 · · ·∇ℓ−1(X)−αℓ−1 .

Using Theorem 4.1, we obtain

Dℓ(α, ∂X)∇(X)α

=

n−ℓ+1∏

κ=1

(
αℓ + · · · + αn−κ+1 + d(κ− 1)

)

(
αℓ + · · · + αn−κ+1 + d(κ− 1) + (e − 1)

)
∇(X)α−2ℓ+21+···+2ℓ−1 ,

where 2 j = (0, . . . , 0, 2, 0, . . . , 0) and

α − 2ℓ + 21 + · · · + 2ℓ−1 = (α1 + 2, . . . , αℓ−1 + 2, αℓ − 2, αℓ+1, . . . , αn).

Now we shall construct new differential operators which will allow us to shift

down the power of any factor in ∇α.

For 1 ≤ ℓ ≤ n and 1 ≤ j ≤ ℓ− 1, let

E j,ℓ(α, ∂X) =

2ℓ−1− j

∏

i=1

D j(a(α, ℓ, i, j), ∂X)

where

a(α, ℓ, i, j) = α− 2ℓ +
(

2ℓ−1− j − (i − 1)
)

2 j +
{

(i − 1) + 2ℓ−1− j
}(

21 + · · ·+ 2 j−1

)
.

The operator Pℓ(α, ∂X) := E1,ℓ(α, ∂X) ◦ · · · ◦ Eℓ−1,ℓ(α, ∂X) ◦ Dℓ(α, ∂X) satisfies

(7) Pℓ(α, ∂X)∇(X)α

=

n−ℓ+1∏

κ=1

Nℓ,κ(α)

ℓ−1∏

j=1

2ℓ−1− j

∏

i=1

{ n−ℓ+1∏

κ=1

N j,κ(α + 2ℓ−1− j − 2i)

n− j+1
∏

κ=n−ℓ+2

N j,κ(α + 2ℓ−1− j − 2(i − 1))
}

∇(X)α−2ℓ ,

where

N j,κ(α) := (α j + · · · + αn−κ+1 + d(κ− 1))(α j + · · · + αn−κ+1 + d(κ− 1) + (e − 1)).

Now, we consider a second family of operators defined by

F j,ℓ(α, ∂X) =

2ℓ−1− j

∏

i=1

D j(b(α, ℓ, i, j), ∂X)
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where b(α, ℓ, i, j) = α− (i−1)2 j +{i−1−2ℓ− j}(21 + · · ·+2 j−1) for 1 ≤ j ≤ ℓ−1.

The operator

P
′
ℓ(α, ∂X) := Dℓ

(
α− (21 + · · · + 2ℓ−1), ∂X

)
◦ Fℓ−1,ℓ(α, ∂X) ◦ · · · ◦ F1,ℓ(α, ∂X)

satisfies

(8) P
′
ℓ(α, ∂X)∇(X)α

=

n−ℓ+1∏

κ=1

Nℓ,κ(α)

ℓ−1∏

j=1

2ℓ−1− j

∏

i=1

n− j+1
∏

κ=1

N j,κ(α−2(i−1))∇(X)α−2ℓ .

The purpose of Pℓ and P
′
ℓ is to obtain, as nearly as we can, the set of possible poles

of ∇α. Indeed, by [2, Théorème III.10], only the common zeros of the Bernstein

polynomials in (7) and (8) can give a potential pole. Further, for every fixed ℓ ≤ n,

one can check that the common factors in (7) and (8) are

(9)
∏

1≤ j≤ℓ≤i≤n

(
α j + · · · + αi + d(n − i)

)(
α j + · · · + αi + d(n − i) + (e − 1)

)
.

Now we come to the last step in the proof of the claim above. For α ∈ C
n such

that Reαi ≫ 0, for 1 ≤ i ≤ n, the function ∇α is absolutely convergent. By [2,

Théorème III.10], the factor (9) is the greatest common divisor of each Bernstein-

type polynomial b(α) that satisfies Dℓ(α, ∂X)∇α
= b(α)∇α−2ℓ , for all 1 ≤ ℓ ≤ n

and for all polynomial differential operators Dℓ(α, ∂X). Hence, the set of potential

poles of Z( f ,α) is included in the set of those of
∏

1≤ j≤i≤n

Γ
(
α j + · · · + αi + d(n − i) + 1

)
Γ
(
α j + · · · + αi + d(n − i) + (e − 1) + 1

)
.

Remark 4.6 The distributions Rα are related to the theory of classical Riesz dis-

tributions and generalizations. For instance, when V is a simple Euclidean Jordan

algebra with symmetric cone Ω, then families of Riesz distributions are associated to

Ω. We refer to Faraut–Korányi’s book [10] for a thorough study on Riesz distribu-

tions for symmetric cones; see also [12]. In [10], the authors investigate the set of

multi-parameters α for which Rα is of positive type, i.e., Rα is a positive measure.

For example, on the real line, and in Faraut–Korányi’s setting, Rα coincides with the

Riemann–Liouville distribution 1
Γ(α)

xα−1
+ , which is positive if and only if α ≥ 0. In

the framework of non-Euclidean Jordan algebras, it is a natural question to ask for

conditions on α such that Rα is of positive type. In the case where α1 6= 0 and

α2 = α3 = · · · = αn = 0, this problem has a solution in [3], but the general case

remains open.

Appendix

For the convenience of the reader, we briefly give some details on the notations that

we used in this paper for the case g = sp(n,C). Assume that g is the Lie algebra

sp(n,C) which is given by

sp(n,C) =

{[
U V

W −U t

] ∣
∣
∣ V,W ∈ Sym(n,C),U ∈ M(n,C)

}

,
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where Sym(n,C) denotes the subspace of symmetric matrices in M(n,C). The Lie

algebra g can be written as g = V ⊕ l ⊕ V where

V =

{[
0 V

0 0

] ∣
∣
∣ V ∈ Sym(n,C)

}

,

V =

{[
0 0

W 0

] ∣
∣
∣ W ∈ Sym(n,C)

}

,

l =

{[
U 0

0 −U t

] ∣
∣
∣ U ∈ M(n,C)

}

.

In this example, mR = n(n + 1), e = 1, and d = 1. On V, the involution ν is given by

ν
[

0 V
0 0

]
=

[
0 0
V 0

]
. The action of the structure group L on V is given by

[
u 0

0 {ut}−1

]

·
[

0 V

0 0

]

=

[
0 uVut

0 0

]

.

For g1, g2 ∈ g, the pairing 〈〈g1, g2〉〉g = Re(Tr(g1g2)). We choose the Lebesgue

measures dX on V and dY on V to be

dX = (
√

2)n(n−1)
∏

i≤ j

dvi, j , X =

[
0 (vi, j )i, j

0 0

]

∈ V,

dY = (
√

2)n(n−1)
∏

i≤ j

dwi, j, Y =

[
0 0

(wi, j)i, j 0

]

∈ V.

For 1 ≤ ℓ ≤ n, we have the following subalgebras

V
(ℓ)
l =

{[
0 A

0 0

] ∣
∣
∣ A =

[
a 0

0 0

]

, a ∈ Sym(ℓ,C)

}

⊂ V,

V
(n−ℓ)
r =

{[
0 C

0 0

] ∣
∣
∣ C =

[
0 0

0 c

]

, c ∈ Sym(n − ℓ,C)

}

⊂ V,

g(1,−1; ℓ) =

{[
B 0

0 −Bt

] ∣
∣
∣ B =

[
0 0

b 0

]

, b ∈ M(n − ℓ, ℓ; C)

}

⊂ l.

The change of coordinates

([
0 A

0 0

]

;

[
B 0

0 −Bt

]

;

[
0 C

0 0

])

7−→




0

[
a abt

ba babt + c

]

0 0



 ,

is a diffeomerphism from O
(ℓ)
l × g(1,−1; ℓ) × V

(n−ℓ)
r → O(ℓ). Here O

(ℓ)
l is the set of

elements in V
(ℓ)
l such that the matrix a is invertible, and O(ℓ) is the set of elements

[
0 V
0 0

]
in V where the principal minor detℓ(V ) 6= 0. We have a similar change of

coordinates for V.
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Finally, we shall write the integral formula (3), where we identify V with

Sym(n,C), V
(1)
l with C, V

(n−1)
r with Sym(n − 1,C), and g(1,−1; 1) with C

n−1. Thus,

for f ∈ L
1(Sym(n,C), dX), we have

∫

Sym(n,C)

f (X)dX =

∫

Sym(n−1,C)

∫

Cn−1

∫

C

f

([
a abt

ba babt + c

])

|a|2(n−1) dadbdc.

A similar formula for V holds.

References

[1] M. F. Atiyah, Resolution of singularities and division of distributions. Comm. Pure Appl. Math.
23(1970), 145–150.

[2] Y. Angeli, Analyse harmonique sur les cones satellites. Thèse, Université de Nancy, 2001.
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