Generalized Factorization in Hardy Spaces and the Commutant of Toeplitz Operators

Michael Stessin and Kehe Zhu

Abstract. Every classical inner function φ in the unit disk gives rise to a certain factorization of functions in Hardy spaces. This factorization, which we call the generalized Riesz factorization, coincides with the classical Riesz factorization when $\varphi(z)=z$. In this paper we prove several results about the generalized Riesz factorization, and we apply this factorization theory to obtain a new description of the commutant of analytic Toeplitz operators with inner symbols on a Hardy space. We also discuss several related issues in the context of the Bergman space.

1 Introduction

Let \mathbb{D}) be the open unit disk in the complex plane (C. For $0<p<\infty$ the Hardy space H^{p} consists of analytic functions f in \mathbb{D}) such that

$$
\|f\|_{p}^{p}=\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t<\infty
$$

It is well known that if

$$
\left.f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad z \in \mathbb{D}\right)
$$

then

$$
\|f\|_{2}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}
$$

and H^{2} is a Hilbert space whose inner product, \langle,$\rangle , is the polarization of the above$ norm. See [6] for the classical theory of H^{p} spaces.

Let H^{∞} be the space of all bounded analytic functions in $\left.\mathbb{D}\right)$. For each $\varphi \in H^{\infty}$ we define an operator T_{φ} on H^{2} as follows:

$$
T_{\varphi} f=\varphi f, \quad f \in H^{2}
$$

For historical reasons T_{φ} will be called the analytic Toeplitz operator with symbol φ; T_{φ} is simply the multiplication operator induced by φ.

The commutant of T_{φ}, denoted by $\left(T_{\varphi}\right)^{\prime}$, is the algebra of all bounded linear operators S on H^{2} with $S T_{\varphi}=T_{\varphi} S$. A closed subspace M of H^{2} is called a reducing subspace of T_{φ} if it is invariant under both T_{φ} and T_{φ}^{*}. It is well known that a closed

[^0]subspace of H^{2} is a reducing subspace of T_{φ} if and only if the orthogonal projection of H^{2} onto this subspace is in the commutant of T_{φ}.

In this paper we study T_{φ} when φ is an inner function. In this case the operator T_{φ} is an isometry, so that the Wold decomposition theorem (see [7]) determines a decomposition of H^{2} into the direct sum of singly generated subspaces invariant under T_{φ}. This decomposition leads to a certain factorization which generalizes the classical inner-outer factorization.

Throughout the paper we assume that φ is an inner function. For $0<p<\infty$ we say that a function $f \in H^{p}$ is $\varphi-p$ inner if $\|f\|_{p}=1$ and

$$
\int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{p} \varphi\left(e^{i t}\right)^{n} d t=0
$$

for all positive integers n. A function $f \in H^{p}$ is called φ - p outer if $f=F \circ \varphi$, where $F \in H^{p}$ is outer.

It was proved in [8] that every $f \in H^{p}$ admits a factorization $f=h F \circ \varphi$, where h is φ - p inner and $F \circ \varphi$ is φ - p outer. Moreover, the φ - p inner and outer factors are uniquely determined by f up to a unimodulus constant multiple.

We further investigate this factorization in Sections 2 and 3 and obtain several characterizations (and estimates) for φ - p inner and outer functions. We then apply these results in Section 4 to obtain a description of the commutant of T_{φ}.

To state our main results, Theorems A, B and C below, we introduce a class of measures $d \sigma_{\zeta}$ defined via Herglotz's theorem by

$$
\left.\operatorname{Re} \frac{\zeta+\varphi(z)}{\zeta-\varphi(z)}=\int_{\mathbb{T}} \operatorname{Re} \frac{w+z}{w-z} d \sigma_{\zeta}(w), \quad z \in \mathbb{D}\right), \zeta \in \mathbb{T}
$$

where \mathbb{T} is the unit circle.
Theorem A For $0<p<\infty$ we have
(a) A function $h \in H^{p}$ with $\|h\|_{p}=1$ is φ-p inner if and only if

$$
\int_{\mathbb{T}}|h(z)|^{p} d \sigma_{w}(z)=1
$$

for almost all $w \in \mathbb{T}$.
(b) If h is φ-p inner, then

$$
|h(z)|^{p} \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}
$$

for all $z \in \mathbb{D} \mathbb{D}$.
(c) If $f \in H^{p}$ and $f=h F \circ \varphi$ is the φ - p factorization of f, then

$$
F(z)=\exp \left\{\frac{1}{p} \int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \left(\int_{\mathbb{T}}|f(\tau)|^{p} d \sigma_{\zeta}(\tau)\right) d m(\zeta)\right\}
$$

for all $z \in \mathbb{D}$, where $d m$ is the normalized Lebesgue measure on \mathbb{T}.

For any analytic function we will use M_{f} to denote the operator of multiplication by f.

Theorem B There exists a sequence $\left\{S_{n}\right\}$ of operators on H^{2} (depending on φ) such that the following conditions are equivalent for a bounded linear operator S on H^{2} :
(a) S belongs to the commutant of T_{φ}.
(b) There exists a sequence $\left\{\varphi_{n}\right\}$ in H^{2} such that

$$
S=M_{\varphi_{1}} S_{1}+\cdots+M_{\varphi_{n}} S_{n}+\cdots
$$

where the series converges in the strong operator topology and the $\varphi-2$ outer part of each φ_{n} is bounded.

We will have explicit descriptions for the operators S_{n}. In general, a φ - p inner function is not necessarily bounded. However, in the special case when φ is a Blaschke product of N zeros with $N<\infty$, we will see that the φ - p inner part of each function in H^{p} is bounded, and the φ - p outer part of $f \in H^{p}$ is bounded if and only if f itself is bounded. In this particular case, our result realizes the commutant of T_{φ} as N copies of H^{∞}.

In the final section of the paper we will discuss several related problems in the context of Bergman spaces. In particular, we will obtain several results about the reducing subspaces and commutants of analytic Toeplitz operators on the Bergman space induced by finite Blaschke products. One of the results proved in this section is the following.

Theorem C Let B be a finite Blaschke product which vanishes at the origin,

$$
B(z)=z \prod_{k=1}^{n} \frac{z-a_{k}}{1-\overline{a_{k}} z}, \quad\left|a_{k}\right|<1, k=1,2, \ldots, n
$$

Then the subspace

$$
M=\operatorname{Span}\left\{B^{\prime} B^{m}, m=0,1, \ldots\right\}
$$

is reducing for the operator T_{B} on A^{2}, and its orthogonal complement is given by

$$
M^{\perp}=\operatorname{Span}\left\{\frac{B^{m}}{1-\bar{a}_{k} z}: 1 \leq k \leq n, m \geq 0\right\}
$$

Here Span denotes the closed linear span of a collection of vectors in A^{2}.

Remark The condition of vanishing at the origin is imposed just for convenience. It is not necessary for the first statement and without it the second one needs a small adjustment.

Acknowledgement The authors would like to thank the referee for a number of suggestions which considerably improved the presentation.

2 Generalized Riesz Factorizations

In this section we present some facts about the Wold decomposition of the Toeplitz isometry T_{φ}, show how this decomposition leads to a natural generalization of the classical inner-outer factorization in Hardy spaces, and obtain several characterizations (and estimates) for the corresponding inner and outer functions.

For each $0<p<\infty$ we set

$$
H^{p}[\varphi]=\left\{f \circ \varphi: f \in H^{p}\right\}
$$

Since φ is inner, the composition operator C_{φ} is bounded from above and below for all p; see [4]. In particular, the space $H^{p}[\varphi]$ is closed in H^{p}. The image of T_{φ} on H^{p}, denoted by φH^{p}, is also a closed subspace of H^{p}. When $p=2$, we will need the defect space

$$
D[\varphi]=H^{2} \ominus\left(\varphi H^{2}\right)
$$

which is just the kernel of T_{φ}^{*}. Defect spaces are also called model spaces in the literature and are sometimes denoted by K_{φ}. They have been extensively studied by those who work on Hardy spaces and operator theory; see [9].

Recall that the Wold decomposition theorem [7] states that every isometry T : $X \rightarrow X$ of a Hilbert space X determines the following decomposition of X :

$$
X=X_{0} \bigoplus_{n=0}^{\infty} T^{n} X_{1}
$$

where

$$
X_{1}=X \ominus T X
$$

is the wandering subspace, and

$$
X_{0}=\bigcap_{n=0}^{\infty} T^{n} X
$$

is the stable subspace.
In the special case when $M=X$ is a closed subspace of H^{2} invariant under $T=$ T_{φ}, the stable subspace is obviously trivial, so that

$$
M=\bigoplus_{n=0}^{\infty} T_{\varphi}^{n}(M \ominus \varphi M)
$$

In particular, if $M=H^{2}$ and $\left\{e_{1}, \ldots, e_{n}, \ldots\right\}$ is an orthonormal basis of the defect space of T_{φ}, the above decomposition implies that any function $f \in H^{2}$ is uniquely represented in the form

$$
f=\sum_{k=1}^{\infty}\left(f_{k} \circ \varphi\right) e_{k}
$$

where each $f_{k} \circ \varphi \in H^{2}[\varphi]$ and

$$
\|f\|^{2}=\sum_{k=1}^{\infty}\left\|f_{k}\right\|^{2}
$$

Conversely, every sequence $\left\{f_{1}, \ldots, f_{n}, \ldots\right\}$ of functions in H^{2} with

$$
\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{2}^{2}<\infty
$$

determines a function in H^{2} as follows:

$$
f=\sum_{n=1}^{\infty}\left(f_{n} \circ \varphi\right) e_{n}
$$

This follows from the simple fact (see [8], for example) that if

$$
f=\sum_{n=1}^{\infty}\left(f_{n} \circ \varphi\right) e_{n}, \quad g=\sum_{n=1}^{\infty}\left(g_{n} \circ \varphi\right) e_{n}
$$

then

$$
\begin{equation*}
\langle f, g\rangle=\sum_{n=1}^{\infty}\left\langle f_{n}, g_{n}\right\rangle \tag{1}
\end{equation*}
$$

As a consequence of equation (1) we obtain the following.
Lemma 1 Suppose $\left\{e_{k}\right\}$ is an orthonormal basis for $D[\varphi]$. For each k let $H_{k}[\varphi]$ be the H^{2}-closure of the set of vectors of the form $(p \circ \varphi) e_{k}$, where p is a polynomial. Then $H_{k}[\varphi] \perp H_{m}[\varphi]$ whenever $k \neq m$, and

$$
H^{2}=\bigoplus_{k} H_{k}[\varphi]
$$

We will call the decomposition of H^{2} in the above lemma the Wold decomposition of H^{2} with respect to φ.

As another consequence of equation (1) we obtain the following well-known fact representing the Toeplitz operator with symbol $\bar{\varphi}$:

$$
\begin{equation*}
\left(T_{\varphi}\right)^{*} f=T_{\bar{\varphi}} f=\sum_{n=0}^{\infty}\left[\left(S f_{n}\right) \circ \varphi\right] e_{n}, \tag{2}
\end{equation*}
$$

where the operator S defined by

$$
S f(z)=\frac{f(z)-f(0)}{z}
$$

is the backward shift.
As a consequence of the representation (2) we obtain the following result proved in [7] and [10].

Lemma 2 Suppose X is any subset of the defect space $D[\varphi]$. Let H_{X} be the closed linear span in H^{2} of the set of vectors of the form $(p \circ \varphi) f$, where $f \in X$ and p is a polynomial. Then H_{X} is a reducing subspace of T_{φ}.

In particular, it follows from the above lemma that the commutant of T_{φ} contains a lot of orthogonal projections. We will need the following result from [8].

Proposition 3 Suppose $\left\{e_{n}\right\}$ is an orthonormal basis of the defect space $D[\varphi]$ and $0<$ $p<\infty$. Then
(i) A function f in H^{p} is φ-p inner if and only if

$$
\|(h \circ \varphi) f\|_{p}=\|h\|_{p}
$$

for every $h \in H^{p}$.
(ii) A function

$$
f=\sum_{n=0}^{\infty}\left(f_{n} \circ \varphi\right) e_{n}
$$

is φ-2 inner if and only if

$$
\sum_{n=0}^{\infty}\left|f_{n}\left(e^{i \theta}\right)\right|^{2}=1
$$

for almost all θ.
(iii) Every function $f \in H^{p}$ admits a unique (up to a unimodular scalar factor) factorization $f=h F \circ \varphi$, where h is φ - p inner and $F \circ \varphi$ is φ - p outer.

It follows from the representation (2) that each e_{k} is a $\varphi-2$ inner function. Combining this observation with part (i) of Proposition 3 above, we conclude that $H_{k}[\varphi]=e_{k} H^{2}[\varphi]$ in Lemma 1, so that the Wold decomposition of H^{2} associated with φ can be written as

$$
H^{2}=\bigoplus_{k}\left(e_{k} H^{2}[\varphi]\right)
$$

If $\varphi(z)=z$, the factorization mentioned in part (iii) of Proposition 3 coincides with the classical inner-outer factorization.

If φ is a finite Blaschke product of order N, then every φ - p inner function is in H^{∞}. In fact, the defect space consists of rational functions in this case, so any element of the defect space is bounded in the unit disk. If

$$
h=\sum_{k=1}^{N} e_{k} h_{k} \circ \varphi
$$

is φ-2 inner, then by part (ii) of Proposition 3, each h_{k} is bounded, so h is bounded as well. If $0<p<\infty$ and $h=g F$ is $\varphi-p$ inner, where g is a classical inner function and F is outer, then $F^{p / 2}$ is $\varphi-2$ inner and hence bounded, which implies that $h \in H^{\infty}$.

If φ is not a finite Blaschke product, a φ - p inner function need not be bounded (see [8] and the example following Corollary 8 in the present paper). Still, we are able to obtain some growth estimates.

Theorem 4 Let $0<p<\infty$ and h be a φ - p inner function. Then

$$
|h(z)|^{p} \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}
$$

for all $z \in \mathbb{D}$.
Proof By Proposition 3, for every function $g \in H^{p}$ we have

$$
\|h g \circ \varphi\|_{p}=\|g\|_{p}
$$

In particular, this implies that

$$
|h(z)||g(\varphi(z))| \leq \frac{\|g\|_{p}}{\left(1-|z|^{2}\right)^{1 / p}}
$$

for every $z \in \mathbb{D}$). Choosing

$$
g(w)=\frac{1}{[1-w \overline{\varphi(z)}]^{2 / p}}
$$

leads to the desired estimate.
Corollary 5 Let $\varphi=B g$, where B is a Blaschke product and g is a singular inner function generated by a singular measure μ. If $w \in \mathbb{T}$ is neither a limit point of the zeros of B nor a point in the closure of the support of μ, then any φ - p inner function is bounded near w.

Proof It is well known that φ has an analytic extension to a neighborhood of w. In particular, φ has a finite angular derivative at w. The result then follows from Theorem 4.

We proceed to describe φ - p inner and outer functions in terms of singular measures introduced by Clark in [2]. More specifically, if $|w|=1$, then

$$
\operatorname{Re} \frac{w+\varphi(z)}{w-\varphi(z)}=\frac{1-|\varphi(z)|^{2}}{|w-\varphi(z)|^{2}}>0
$$

for all z in the unit disk. By Herglotz's theorem there is a nonnegative measure σ_{w} on the unit circle \mathbb{T} such that

$$
\operatorname{Re} \frac{w+\varphi(z)}{w-\varphi(z)}=\int_{\mathbb{T}} \operatorname{Re} \frac{\zeta+z}{\zeta-z} d \sigma_{w}(\zeta)
$$

for all $z \in \mathbb{D}$). Since φ is inner, σ_{w} is singular with respect to the normalized Lebesgue measure $d m$ on \mathbb{T}. If E_{w} is the set of points in \mathbb{T} where φ has w as a nontangential limit, then (see [1])

$$
\begin{equation*}
\sigma_{w}\left(\mathbb{T} \backslash E_{w}\right)=0 \tag{3}
\end{equation*}
$$

Furthermore, if $\varphi(0)=0$, then σ_{w} is a probability measure for all $w \in \mathbb{T}$.
These measures σ_{w} are related to the conditional expectation operator $E(\cdot \mid \varphi)$ associated with the σ-algebra generated by φ :

$$
E(f \mid \varphi)(w)=\int_{\mathbb{T}} f(\zeta) d \sigma_{w}(\zeta)
$$

where $f \in L^{1}(\mathbb{T})$ and $w \in \mathbb{T}$. This was proved by Alexandrov in [1], where he also proved that every $f \in L^{1}(\mathbb{T})$ belongs to $L^{1}\left(\mathbb{T}, \sigma_{w}\right)$ for almost all $w \in \mathbb{T}$ and

$$
\begin{equation*}
\int_{\mathbb{T}} f(\zeta) d m(\zeta)=\int_{\mathbb{T}}\left(\int_{\mathbb{T}} f(\zeta) d \sigma_{w}(\zeta)\right) d m(w) \tag{4}
\end{equation*}
$$

Theorem 6 Suppose $0<p<\infty$ and h is a unit vector in H^{p}. Then h is φ - p inner if and only if

$$
\int_{\mathbb{T}}|h(z)|^{p} d \sigma_{w}(z)=1
$$

for almost all $w \in \mathbb{T}$.
Proof It follows from equations (3) and (4) that

$$
\int_{\mathbb{T}}|h(z)|^{p} \varphi(z)^{k} d m(z)=\int_{\mathbb{T}} w^{k}\left(\int_{\mathbb{T}}|h(z)|^{p} d \sigma_{w}(z)\right) d m(w)
$$

for all positive integers k. Thus, the uniqueness theorem implies that h is φ - p inner if and only if

$$
\int_{\mathbb{T}}|h(z)|^{p} d \sigma_{w}(z)
$$

is a constant function of w. Since $\|h\|_{p}=1$, we conclude that h is φ - p inner if and only if

$$
\int_{\mathbb{T}}|h(z)|^{p} d \sigma_{w}(z)=1
$$

for almost all $w \in \mathbb{T}$.

Note that statement (i) of Proposition 3 is a straightforward corollary of Theorem 6 and equation (4). This offers a proof of part (i) of Proposition 3 that is different from the one in [8].

Theorem 7 Suppose $0<p<\infty, f \in H^{p}$, and $f=h F_{p} \circ \varphi$ is the φ - p factorization of f. Then

$$
\begin{equation*}
F_{p}(z)=\exp \left\{\frac{1}{p} \int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \left(\int_{\mathbb{T}}|f(\tau)|^{p} d \sigma_{\zeta}(\tau)\right) d m(\zeta)\right\} \tag{5}
\end{equation*}
$$

for all $z \in \mathbb{D}$.

Proof It follows directly from the classical Riesz formula and (4) that the function given by the integral on the right-hand side of (5) is outer and in H^{p} and the absolute value of its nontangential boundary limit at almost all $\zeta \in \mathbb{T}$ is

$$
\left(\int_{\mathbb{T}}|f(\tau)|^{p} d \sigma_{\zeta}(\tau)\right)^{1 / p}
$$

Indeed, if we denote the last function by $\hat{F}_{p}(\zeta)$, then by (4) it is in $L^{1}(d m)$, and, hence, $\log ^{+} \hat{F}_{p} \in L^{1}(d m)$. Since $f \in H^{p}, \log ^{-}|f| \in L^{1}(d m)$. Now, the concavity of the function \log and (4) show that $\log ^{-} \hat{F}_{p} \in L^{1}(d m)$.

Further, it follows from (4) and (5) that

$$
\begin{aligned}
\int_{\mathbb{T}}|f(\tau)|^{p}\left|\hat{F}_{p}(\varphi(\tau))\right|^{-p} \varphi(\tau)^{k} d m(\tau) & =\int_{\mathbb{T}}\left|\hat{F}_{p}(\zeta)\right|^{-p} \zeta^{k}\left(\int_{\mathbb{T}}|f(\tau)|^{p} d \sigma_{\zeta}(\tau)\right) d m(\zeta) \\
& =\int_{\mathbb{T}}\left|\hat{F}_{p}(\zeta)\right|^{-p}\left|\hat{F}_{p}(\zeta)\right|^{p} \zeta^{k} d m(\zeta) \\
& = \begin{cases}0 & \text { if } k \neq 0 \\
1 & \text { if } k=0\end{cases}
\end{aligned}
$$

This implies that $f\left(\hat{F}_{p} \circ \varphi\right)^{-1}$ is φ - p inner, so \hat{F}_{p} is the φ - p outer part of f.

Note that if $\varphi(z)=z$, then σ_{w} is a point mass at w of mass 1 and (5) converts to the classical Riesz formula.

Corollary 8 Suppose $f \in H^{p}, 0<r \leq p \leq+\infty$, and $f=h_{r} F_{r} \circ \varphi$ is the $\varphi-r$ factorization of f. Then $F_{r} \in H^{p}$.

Proof This follows directly from equation (4), the proof of Theorem 7, and Hölder's inequality.

In view of the last corollary it is natural to ask if for $0<r \leq p$ the φ - r inner part of an H^{p}-function f must be in H^{p}. For example, if f is bounded, Corollary 8 implies that its φ - p outer part is bounded (in fact, its H^{∞} norm does not exceed the H^{∞} norm of f) for all p. Must the φ - p inner part of f be bounded? The following example shows that in general the answer is negative.

Example Assume that φ has the property that the measures σ_{w} are continuous (that is, they have no point masses) for almost all $w \in \mathbb{T}$; see [1] for examples of such functions. Choose a set of circular $\operatorname{arcs} I_{n}, n=1,2, \ldots$, satisfying the following conditions:
(i) $I_{n} \cap I_{m}=\varnothing$ for $n \neq m$,
(ii) $\left|I_{n}\right|=3^{-n}$ for all n.

Write $V_{n}=\varphi^{-1}\left(I_{n}\right)$ and note that V_{n} are disjoint subsets of \mathbb{T} of positive Lebesgue measure. It follows from the definition of σ_{w} that

$$
\sigma_{w}(\mathbb{T})=\frac{1-|\varphi(0)|^{2}}{|1-\bar{w} \varphi(0)|^{2}}>0
$$

for all $w \in \mathbb{T}$. For each n we consider the points $w \in I_{n}$ for which the measure σ_{w} is continuous; for each such point w there exists an arc $J_{w}=\left(1, e^{i \theta(w)}\right)$ with $0<\theta(w)<\pi / 2$ and

$$
\sigma_{w}\left(J_{w}\right)=\frac{1}{n} \sigma_{w}(\mathbb{T})
$$

We then define

$$
\tilde{U}_{n}=\bigcup\left\{J_{w}: w \in I_{n}\right\}
$$

and

$$
U_{n}=\tilde{U}_{n} \cap V_{n}
$$

Since $\sigma_{w}\left(\mathbb{T} \backslash V_{n}\right)=0$ for all $w \in I_{n}$, we have $\sigma_{w}\left(U_{n}\right)=\frac{1}{n} \sigma_{w}(\mathbb{T})$. Thus equation (5) implies that U_{n} has positive Lebesgue measure for all n. Now define a function ρ on \mathbb{T} as follows:

$$
\rho(w)= \begin{cases}1 & \text { if } w \in\left(\mathbb{\Gamma} \backslash \bigcup_{n} V_{n}\right) \bigcup_{n} U_{n} \\ \frac{1}{n} & \text { if } w \in V_{n} \backslash U_{n}\end{cases}
$$

It is easily seen that ρ is a bounded positive function on \mathbb{T} and

$$
\int_{\mathbb{T}}|\log \rho(z)| d m(z) \leq C \sum_{n=1}^{\infty} \frac{\log n}{3^{n}}
$$

where C is a positive constant. So $\log \rho$ is in $L^{1}(\mathbb{T})$, which implies that there is a bounded analytic function f in \mathbb{D}) such that $|f|$ coincides with ρ almost everywhere on \mathbb{T}; here we denote the radial limits of f by the same letter f. Let $0<p<\infty$ and $f=h_{p} F_{p} \circ \varphi$ be the φ - p factorization of f. For each $w \in I_{n}$, an application of (4) and Theorem 7 gives

$$
\begin{aligned}
\left|F_{p}(w)\right| & =\left(\int_{E_{w}}|f(z)|^{p} d \sigma_{w}(z)\right)^{1 / p} \\
& =\left(\frac{1}{n^{p}} \frac{n-1}{n} \frac{1-|\varphi(0)|^{2}}{|1-\bar{w} \varphi(0)|^{2}}+\frac{1}{n} \frac{1-|\varphi(0)|^{2}}{|1-\bar{w} \varphi(0)|^{2}}\right)^{1 / p} \\
& \sim \begin{cases}n^{-1 / p} & \text { if } p \geq 1 \\
n^{-1} & \text { if } 0<p<1\end{cases}
\end{aligned}
$$

Since $\left|U_{n}\right|>0$, the set of points $\zeta_{n} \in U_{n}$ where the functions $\varphi, f, F_{p} \circ \varphi$, and h_{p} all have radial limits has positive measure. Since for all such ζ_{n} we have $w_{n}=\varphi\left(\zeta_{n}\right) \in I_{n}$, the last estimate shows that

$$
\left|h_{p}\left(w_{n}\right)\right|=\frac{\rho\left(w_{n}\right)}{\left|F_{p}\left(w_{n}\right)\right|} \sim \begin{cases}n^{1 / p} & \text { if } p \geq 1 \\ n & \mathrm{f} 0<p<1\end{cases}
$$

so that h_{p} is unbounded.

3φ-Multipliers

For $0<p \leq s \leq \infty$ we will denote by $H_{\varphi, p, s}$ the collection of all functions in H^{p} whose φ - p outer part is in H^{s}. For $0<r \leq p \leq \infty$ we say that an analytic function f in the unit disk is a φ-multiplier of type (p, r) if for every $h \in H^{p}[\varphi]$ the product $f h$ is in H^{r}.

Theorem 9 An analytic function f is a φ-multiplier of type (p, r) if and only if $f \in$ $H_{\varphi, r, t}$, where $t=p r /(p-r)$.

Proof Since constants are in $H^{p}[\varphi]$ for all p, any φ-multiplier of type (p, r) must be in H^{r}. Let $f \in H^{r}$ and $f=h_{r} F_{r} \circ \varphi$ be the $\varphi-r$ factorization of f. For every $g \in H^{p}$, part (i) of Proposition 3 gives

$$
\|f g \circ \varphi\|_{r}=\left\|F_{r} g\right\|_{r} \leq\left\|F_{r}\right\|_{\frac{p r}{p-r}}\|g\|_{p} \leq C\left\|F_{r}\right\|_{\frac{p r}{p-r}}\|g \circ \varphi\|_{p}
$$

Since g is arbitrary and the last inequality is sharp, the result follows.

Corollary 10 If $0<p \leq s \leq \infty$, then $H_{\varphi, p, s}$ is a subspace of H^{p}.

Proof This is because the set of multipliers is obviously a linear space.

As a special case of the theorem above we see that φ-multipliers of type (p, p) (or simply φ - p-multipliers) are those H^{p} functions whose φ - p outer part is bounded in the unit disk.

In the case when φ is a finite Blaschke product any φ - p inner function is bounded, so that the set of φ - p-multipliers coincides with H^{∞}.

Corollary 11 If f is a φ-multiplier of type (p, r), then there is a constant $C>0$ such that

$$
|f(z)| \leq C \frac{\left(1-|\varphi(z)|^{2}\right)^{1 / p}}{\left(1-|z|^{2}\right)^{1 / r}}
$$

for all $z \in \mathbb{D}$).

Proof Let $f=h_{r} F_{r} \circ \varphi$ be the $\varphi-r$ factorization of f. By Theorem 9 the function F_{r} belongs to $H^{\frac{p r}{p-r}}$, so that

$$
\left|F_{r}(\varphi(z))\right| \leq \frac{\left\|F_{r}\right\|_{\frac{p r}{p-r}}}{\left(1-|\varphi(z)|^{2}\right)^{\frac{p-r}{p r}}}
$$

This together with Theorem 4 yields the desired estimate.

4 The Commutant of T_{φ}

The Wold decomposition associated with φ in Section 2 depends on the choice of an orthonormal basis $\left\{e_{k}\right\}$ for the defect space $D[\varphi]$. In the rest of this section we fix an orthonormal basis $\left\{e_{k}\right\}$ of the defect space $D[\varphi]$. Let

$$
H^{2}=\bigoplus\left(e_{k} H^{2}[\varphi]\right)
$$

be the corresponding Wold decomposition of H^{2}. For each k we define an operator S_{k} on H^{2} by

$$
S_{k}(f)=\frac{P_{k}(f)}{e_{k}}, \quad f \in H^{2}
$$

where P_{k} is the orthogonal projection from H^{2} onto $H_{k}[\varphi]=e_{k} H^{2}[\varphi]$.

Lemma 12 With the above notation we have
(a) Each operator S_{k} is bounded on H^{2}.
(b) Each S_{k} commutes with T_{φ}.
(c) Each S_{k} maps H^{∞} into H^{∞}.

Proof The first assertion follows from part (i) of Proposition 3 and the fact that each e_{k} is φ-2 inner, the second follows from Lemma 2, and the third can be found in [11].

We now show how to combine the operators S_{k} with certain analytic multiplication operators to obtain all the operators in the commutant of T_{φ}. As a first step, fix any k and let h be a multiplier from $H^{2}[\varphi]$ into H^{2}. By the closed graph theorem there exists a positive constant C such that $\|h f \circ \varphi\| \leq C\|f \circ \varphi\|$ for all $f \in H^{2}$. This implies that the operator $T=M_{h} S_{k}$ is bounded on H^{2}, where M_{h} is the operator of multiplication by h. In fact, if $f \in H^{2}$, we can write

$$
f=\sum_{k} e_{k} f_{k} \circ \varphi
$$

The definition of S_{k} gives $S_{k}(f)=f_{k} \circ \varphi$, so by Proposition 3 we have

$$
\|T(f)\|=\left\|h f_{k} \circ \varphi\right\| \leq C\left\|f_{k} \circ \varphi\right\|=C\left\|S_{k}(f)\right\| \leq C\left\|S_{k}\right\|\|f\|
$$

Since S_{k} commutes with T_{φ}, and M_{h} commutes with T_{φ} (at least on the dense subspace H^{∞}; we then apply part (c) of Lemma 12), we conclude that T belongs to the commutant of T_{φ}.

The next result shows that this procedure will produce all the operators in the commutant of T_{φ}.

Theorem 13 A bounded linear operator S on H^{2} commutes with T_{φ} if and only if there exists a sequence $\left\{\varphi_{k}\right\}$ of multipliers from $H^{2}[\varphi]$ into H^{2} such that

$$
S=M_{\varphi_{1}} S_{1}+\cdots+M_{\varphi_{k}} S_{k}+\cdots
$$

where the series converges in the strong operator topology.
Proof Assume that T is an operator of the form

$$
T=\sum_{k} M_{\varphi_{k}} S_{k}
$$

where each φ_{k} is a multiplier from $H^{2}[\varphi]$ into H^{2} and the series converges in the strong operator topology. We already knew that each term $M_{\varphi_{k}} S_{k}$ is in the commutant of T_{φ}. Since the commutant is a linear space that is closed in the strong operator topology, T belongs to $\left(T_{\varphi}\right)^{\prime}$ as well.

Next assume that T is any operator in the commutant of T_{φ}. For each k let $\varphi_{k}=$ $T\left(e_{k}\right)$. We first show that each φ_{k} is a multiplier from $H^{2}[\varphi]$ into H^{2}. To this end we fix k and pick any $f \in H^{2}$. Write

$$
f=\sum_{n=1}^{\infty} e_{n} f_{n} \circ \varphi
$$

where each f_{n} belongs to H^{2}. Since T commutes with T_{φ}, it follows easily that

$$
T\left(e_{n} f_{n} \circ \varphi\right)=f_{n} \circ \varphi T\left(e_{n}\right)
$$

This implies that

$$
T(f)=\sum_{n=1}^{\infty} \varphi_{n} f_{n} \circ \varphi=\sum_{n=1}^{\infty} \varphi_{n} \frac{P_{n}(f)}{e_{n}}
$$

Fixing k and replacing f by $e_{k} g \circ \varphi$, where $g \in H^{2}$, we obtain

$$
T\left(e_{k} g \circ \varphi\right)=\varphi_{k} g \circ \varphi
$$

Thus

$$
\left\|\varphi_{k} g \circ \varphi\right\| \leq\|T\|\left\|e_{k} g \circ \varphi\right\|=\|T\|\|g \circ \varphi\| .
$$

This shows that each φ_{k} is a multiplier from $H^{2}[\varphi]$ into H^{2}. Our earlier calculation already gave

$$
T(f)=\sum_{k} \varphi_{k} \frac{P_{k}(f)}{e_{k}}=\sum_{k} M_{\varphi_{k}} S_{k}(f)
$$

for all $f \in H^{2}$. So we have

$$
T=\sum_{k} M_{\varphi_{k}} S_{k}
$$

with the series converging in the strong operator topology.

Corollary 14 If B is a finite Blaschke product with n zeros, then there exist operators S_{1}, \ldots, S_{n} such that the commutant of T_{B} on H^{2} consists of operators of the form

$$
S=M_{\varphi_{1}} S_{1}+\cdots+M_{\varphi_{n}} S_{n}
$$

where $\varphi_{1}, \ldots, \varphi_{n}$ are functions in H^{∞}.
The commutant of an analytic Toeplitz operator on the Hardy space induced by a finite Blaschke product has been studied extensively in the literature. We mention here the papers [3] [7] [5] [12]. In particular, Thomson [12] gives an explicit description of the commutant of T_{B} when B is a Blaschke product with two zeros; Cowen [3] describes the commutant of T_{B} for a finite Blaschke product in terms of the Riemann surface generated by φ.

Our result differs from the known ones in that it clearly relates the commutant of T_{φ} to multiplication operators. In particular, it realizes the commutant of T_{φ} as N copies of H^{∞} when φ is finite Blaschke product with N zeros. More precisely, the commutant of T_{φ} in this case is an H^{∞}-module generated by N elements.

We also mention that the commutant of a general isometry (such as T_{φ} in the paper) can be described in terms of block matrices; see [3] or [5].

5 Some Results for the Bergman space

It is very natural to ask how much of what we have done can be extended to the case of the Bergman space. Although most of our results do not have obvious generalizations, we show in this section that some ideas can still be pursued in the Bergman space setting. We will obtain several results about the reducing subspaces and commutants of analytic Toeplitz operators on the Bergman space whose symbols are finite Blaschke products.

Recall that for $0<p<\infty$ the Bergman space A^{p} consists of analytic functions f in \mathbb{D}) such that

$$
\|f\|_{p}=\left[\int_{\mathbb{D}}|f(z)|^{p} d A(z)\right]^{1 / p}<\infty
$$

where $d A$ is the normalized area measure on \mathbb{D}). We will only consider the Hilbert space A^{2}, whose inner product is given by

$$
\langle f, g\rangle=\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z)
$$

and the associated norm will be denoted by $\|\|$.
Given any $\varphi \in H^{\infty}$, we still use M_{φ} or T_{φ} to denote the operator of multiplication by φ on A^{2}. All operators in this section act on the Bergman space A^{2} unless otherwise specified.

It was shown in [13] that the operator of multiplication by a Blaschke product B of order 2 acting on the Bergman space has exactly two reducing subspaces, and the two reducing subspaces were described in [13] in terms of the geodesic midpoint of the two zeros of B. Here we will construct a non-trivial reducing subspace
(and its orthogonal complement) of M_{B} for any finite Blaschke product B (with more than one zero, of course). When B has only two zeros, this construction gives an alternative description of the reducing subspaces obtained in [13], and it produces a new matricial representation of the commutant of M_{B}.

If B is a finite Blaschke product with n zeros, then so is the function

$$
B_{1}=\frac{B-B(0)}{1-\overline{B(0)} B} .
$$

Since T_{B} and $T_{B_{1}}$ have the same commutant and the same lattice of reducing subspaces, we may assume, without loss of generality, that $B(0)=0$. This condition will be assumed throughout the rest of this section.

Theorem 15 Let B be a finite Blaschke product which vanishes at the origin,

$$
\begin{equation*}
B(z)=z \prod_{k=1}^{n} \frac{z-a_{k}}{1-\overline{a_{k}} z}, \quad\left|a_{k}\right|<1, k=1,2, \ldots, n \tag{6}
\end{equation*}
$$

Then the subspace

$$
M=\operatorname{Span}\left\{B^{\prime} B^{m}, m=0,1, \ldots\right\}
$$

is reducing for the operator T_{B} on A^{2}, and its orthogonal complement is given by

$$
M^{\perp}=\operatorname{Span}\left\{\frac{B^{m}(z)}{1-\bar{a}_{k} z}: 1 \leq k \leq n, m \geq 0\right\}
$$

Here Span denotes the closed linear span of a collection of vectors in A^{2}.
Proof Since M is clearly invariant under T_{B}, it suffices to show that M^{\perp} is also invariant under T_{B}.

We first prove that the functions in M^{\perp} that are analytic in the closed disk are dense in M^{\perp}. Let P and P_{1} be the orthogonal projections of A^{2} onto M and M^{\perp}, respectively. Then $P_{1}(\mathcal{P}[z])$ is dense in M^{\perp}, because the space $\mathcal{P}[z]$ of polynomials is dense in A^{2}. Since $B(0)=0$, the functions

$$
\frac{1}{\sqrt{n}} B^{\prime} B^{m}, \quad m=0,1,2, \ldots
$$

form an orthonormal basis of M. For a polynomial q we have

$$
P q=\frac{1}{n} \sum_{k=0}^{\infty}\left(\int_{\mathbb{D}} q(z) \overline{B^{\prime}(z) B^{k}(z)} d A(z)\right) B^{\prime} B^{k}
$$

If $k>\operatorname{deg}(q)$, then the integral on the right-hand side above vanishes. Thus,

$$
\begin{equation*}
P q=B^{\prime} \sum_{k=0}^{\operatorname{deg}(q)} \lambda_{k} B^{k}, \tag{7}
\end{equation*}
$$

where λ_{k} are constants. This shows that $P q$ is analytic in the closed disk, so that $P_{1} q=q-P q$ is analytic in $\left.\overline{\mathbb{D}}\right)$.

We next give an explicit description of M^{\perp}. Take $f \in M^{\perp}$ and assume that f is analytic in \mathbb{D}). By the Green-Stokes formula,

$$
\begin{aligned}
0 & =\int_{\mathbb{D}} f(z) \overline{B^{\prime}(z) B(z)^{k}} d A(z) \\
& =\frac{1}{2 \pi i(k+1)} \int_{\mathbb{T}} f(z) \overline{B(z)}^{k+1} d z \\
& =\frac{1}{k+1} \int_{\mathbb{T}} z f(z) \overline{B(z)}^{k+1} d m(z)
\end{aligned}
$$

where $d m$ is the normalized Lebesgue measure on Π. Thus, the function $z f(z)$ is orthogonal to B^{m} in H^{2} for every $m>0$, and clearly, this also holds for $m=0$. It is well known (see [8] for example) that the orthogonal complement in H^{2} of the set $\left\{B^{m}: m \geq 0\right\}$ is spanned (in the H^{2} topology) by the set

$$
\left\{\frac{z}{1-\overline{a_{k}} z} B^{m}(z): k=1,2, \ldots, n, m=0,1, \ldots\right\}
$$

Since multiplication by z is an isometry in H^{2}, and since H^{2} convergence implies A^{2} convergence, we conclude that f can be approximated in the A^{2}-norm by functions of the form

$$
\frac{B^{m}(z)}{1-\bar{a}_{k} z}, \quad 1 \leq k \leq n, m \geq 0
$$

It follows that

$$
\begin{equation*}
M^{\perp} \subset \operatorname{Span}\left\{\frac{B^{m}(z)}{1-\bar{a}_{k} z}: 1 \leq k \leq n, m \geq 0\right\} \tag{8}
\end{equation*}
$$

Here the span is taken in A^{2}.
Conversely, if

$$
f(z)=\frac{B^{m}(z)}{1-\bar{a}_{k} z}
$$

for some $1 \leq k \leq n$ and $m \geq 0$, then the arguments in the previous paragraph used in reverse order show that $f \in M^{\perp}$. This proves that the linear span in (8) is contained in M^{\perp}. Combining this with the conclusion of the previous paragraph, we obtain

$$
M^{\perp}=\operatorname{Span}\left\{\frac{B^{m}(z)}{1-\bar{a}_{k} z}: 1 \leq k \leq n, m \geq 0\right\}
$$

This description of M^{\perp} clearly shows that M^{\perp} is invariant under T_{B}.
Corollary 16 Let B be a finite Blaschke product in the form (6). Then

$$
A^{2}=\operatorname{Span}\left\{B^{\prime} B^{m}: m \geq 0\right\} \oplus \operatorname{Span}\left\{\frac{B^{m}(z)}{1-\bar{a}_{k} z}: 1 \leq k \leq n, m \geq 0\right\}
$$

In particular, if B is a Blaschke product of order 2,

$$
B(z)=z \frac{z-a}{1-\bar{a} z}
$$

then the spaces

$$
\operatorname{Span}\left\{B^{\prime} B^{m}: m \geq 0\right\}, \quad \operatorname{Span}\left\{\frac{B^{m}(z)}{1-\bar{a} z}: m \geq 0\right\}
$$

are reducing for T_{B}. By [13] these must be the only two reducing subspaces for T_{B}; and they must coincide with the descriptions given in [13].

We now proceed to give a matricial description of the commutant of T_{B} on A^{2} when B is a Blaschke product of order 2 whose zeros are 0 and a.

Denote by μ the pull-back measure on \mathbb{D}) induced by B. So for a Borel subset $C \in \mathbb{D})$ we have

$$
\mu(C)=\int_{B^{-1}(C)} d A(z)
$$

The measure μ is absolutely continuous with respect to area measure,

$$
d \mu(z)=\rho(z) d A(z)
$$

where

$$
\rho(z)=\sum_{B(\tau)=z} \frac{1}{\left|B^{\prime}(\tau)\right|^{2}},
$$

with

$$
B(\tau)=\tau \frac{a-\tau}{1-\bar{a} \tau}
$$

A calculation shows that

$$
\rho(z)=\sum_{B(\tau)=z} \frac{1}{\left|B^{\prime}(\tau)\right|^{2}}=\frac{\left(1-|a|^{2}\right)^{2}+|1-\bar{a} \tau|^{4}}{\left|\bar{a} \tau^{2}-2 \tau+a\right|^{2}}
$$

From this we derive the following lower estimate for the weight function ρ,

$$
\begin{equation*}
\rho(z) \geq \frac{(1-|a|)^{2}\left(1+|a|^{2}\right)}{(1+|a|)^{2}} \tag{9}
\end{equation*}
$$

Consider the function

$$
\begin{equation*}
g(z)=1-\frac{\overline{B^{\prime}(0)}}{2} B^{\prime}=\frac{1}{1-\bar{a} z}\left(\frac{2-|a|^{2}}{2}+\frac{\bar{a}^{2}}{2} B\right) . \tag{10}
\end{equation*}
$$

By Theorem 15, $g \in \operatorname{Span}\left\{B^{k}(z) /(1-\bar{a} z): k \geq 0\right\}$. Actually, it is easy to check that

$$
\operatorname{Span}\left\{g B^{k}: k \geq 0\right\}=\operatorname{Span}\left\{B^{k}(z) /(1-\bar{a} z): k \geq 0\right\}
$$

It is also easy to see that

$$
\begin{equation*}
1-|a| \leq|g(z)| \leq \frac{1}{1-|a|} \tag{11}
\end{equation*}
$$

for all $z \in \mathbb{D}$).

Lemma 17 Let

$$
\begin{equation*}
f=\frac{1}{\sqrt{2}} B^{\prime} f_{1} \circ B+g f_{2} \circ B \tag{12}
\end{equation*}
$$

where f_{1} and f_{2} are functions in H^{∞}. Then

$$
\begin{equation*}
\|f\|^{2}=\left\|f_{1}\right\|^{2}-\frac{|a|^{2}}{2}\left\|f_{2}\right\|^{2}+\left\|f_{2}\right\|_{\mu}^{2} \tag{13}
\end{equation*}
$$

where

$$
\left\|f_{2}\right\|_{\mu}^{2}=\int_{\mathbb{D}}\left|f_{2}\right|^{2} d \mu
$$

Proof By Theorem 15 and (10), we have

$$
\begin{aligned}
\|f\|^{2}= & \frac{1}{2}\left\|B^{\prime} f_{1} \circ B\right\|^{2}+\left\|g f_{2} \circ B\right\|^{2} \\
= & \left\|f_{1}\right\|^{2}+\int_{\mathbb{D}}\left|1-\frac{\overline{B^{\prime}(0)}}{2} B^{\prime}(z)\right|^{2}\left|f_{2}(B(z))\right|^{2} d A(z) \\
= & \left\|f_{1}\right\|^{2}+\left\|f_{2} \circ B\right\|^{2}+\frac{|a|^{2}}{2}\left\|f_{2}\right\|^{2} \\
& -2 \operatorname{Re}\left(\frac{B^{\prime}(0)}{2} \int_{\mathbb{D}}\left|f_{2}(B(z))\right|^{2} \overline{B^{\prime}(z)} d A(z)\right)
\end{aligned}
$$

Write

$$
f_{2}(z)=\sum_{k=0}^{\infty} c_{k} z^{k}
$$

and let

$$
h(z)=\sum_{k=0}^{\infty} \frac{c_{k}}{k+1} z^{k+1}
$$

be the antiderivative of f_{2}. We have by Green-Stokes formula

$$
\begin{aligned}
\int_{\mathbb{D}}\left|f_{2}(B(z))\right|^{2} \overline{B^{\prime}(z)} d A(z) & =\frac{1}{2 \pi i} \int_{\mathbb{T}} f_{2}(B(z)) \overline{h(B(z))} d z \\
& =\overline{B^{\prime}(0)} \sum_{k=0}^{\infty} \frac{\left|c_{k}\right|^{2}}{k+1}=\overline{B^{\prime}(0)}\left\|f_{2}\right\|^{2}
\end{aligned}
$$

The last two strings of equalities then imply that

$$
\begin{aligned}
\|f\|^{2} & =\left\|f_{1}\right\|^{2}-\frac{|a|^{2}}{2}\left\|f_{2}\right\|^{2}+\left\|f_{2} \circ B\right\|^{2} \\
& =\left\|f_{1}\right\|^{2}-\frac{|a|^{2}}{2}\left\|f_{2}\right\|^{2}+\left\|f_{2}\right\|_{\mu}^{2}
\end{aligned}
$$

As a direct consequence of Lemma 17 we obtain the following lower estimate for the composition operator with symbol B.

Corollary 18 Let B be a Blaschke product of order 2 vanishing at 0 and $a \in \mathbb{D}$). Then

$$
\|f\|_{\mu}=\|f \circ B\| \geq \gamma(a)\|f\|
$$

for every $f \in A^{2}$, where

$$
\gamma(a)=\sqrt{\frac{|a|^{2}}{2}+\frac{(1-|a|)^{4}\left(1+|a|^{2}\right)}{(1+|a|)^{2}}}
$$

Proof It suffices to prove the result for polynomials f. By Lemma 17 and the estimates in (9) and (11),

$$
\begin{aligned}
\|f \circ B\|^{2}-\frac{|a|^{2}}{2}\|f\|^{2} & =\|g f \circ B\|^{2} \\
& =\int_{\mathbb{D}}|g(z)|^{2}|f(B(z))|^{2} d A(z) \\
& \geq(1-|a|)^{2} \int_{\mathbb{D}}|f(B(z))|^{2} d A(z) \\
& =(1-|a|)^{2} \int_{\mathbb{D}}|f(z)|^{2} \rho(z) d A(z) \\
& \geq \frac{(1-|a|)^{4}\left(1+|a|^{2}\right)}{(1+|a|)^{2}}\|f\|^{2}
\end{aligned}
$$

and the desired result follows.
As another corollary we extend (13) to the whole space A^{2}.
Corollary 19 Every function $f \in A^{2}$ is uniquely represented in the form (12), where f_{1} and f_{2} are in A^{2} and the norms of f, f_{1}, and f_{2} satisfy (13).

Proof If f is a polynomial, (7) shows that f_{1} is a polynomial. Since

$$
\left\|\frac{1}{\sqrt{2}} B^{\prime} f_{1} \circ B\right\|=\left\|f_{1}\right\|
$$

we have $\left\|f_{1}\right\| \leq\|f\|$. Furthermore, if $z \in \mathbb{D}$), then $|g(z)| \geq 1-|a|$ by (11). Therefore,

$$
\left\|f_{2} \circ B\right\| \leq \frac{1}{1-|a|}\|f\|
$$

Since

$$
\left|B^{\prime}(z)\right| \leq 2 \frac{1+|a|}{(1-|a|)^{2}}
$$

for all $z \in \mathbb{D}$), we have

$$
\left\|f_{2}\right\| \leq 2 \frac{1+|a|}{(1-|a|)^{3}}\|f\|
$$

The desired result now follows from Corollary 16, Lemma 17, and the density of polynomials in A^{2}.

It follows from Corollary 19 that A^{2} is isometric to $A^{2} \times A^{2}$ equipped with the norm given by (13). We call this space $A_{2, B}^{2}$. The standard norm on $A^{2} \times A^{2}$ is given by

$$
\|(f, g)\|_{A^{2} \times A^{2}}=\left(\|f\|_{A^{2}}^{2}+\|g\|_{A^{2}}^{2}\right)^{1 / 2}
$$

The following simple estimate gives the relation between these two norms.
Proposition 20 Let γ be the constant defined in Corollary 18. Then

$$
\begin{equation*}
\gamma(a)(1-|a|)\left\|\left(f_{1}, f_{2}\right)\right\|_{A^{2} \times A^{2}} \leq\left\|\left(f_{1}, f_{2}\right)\right\|_{A_{2, B}^{2}} \leq \frac{\left\|\left(f_{1}, f_{2}\right)\right\|_{A^{2} \times A^{2}}}{1-|a|} \tag{14}
\end{equation*}
$$

for all functions f_{1} and f_{2} in A^{2}.

Proof Let

$$
f=\frac{1}{\sqrt{2}} B^{\prime} f_{1} \circ B+g f_{2} \circ B
$$

Since

$$
\left\|\left(f_{1}, f_{2}\right)\right\|_{A_{2, B}^{2}}^{2}=\|f\|^{2}=\left\|f_{1}\right\|^{2}+\int_{\mathbb{D}}|g(z)|^{2}\left|f_{2}(B(z))\right|^{2} d A(z)
$$

the estimate in (11), together with the fact that the operator of composition by B on A^{2} has norm 1 (see [4]), gives us

$$
\begin{aligned}
\int_{\mathbb{D}}|g(z)|^{2}\left|f_{2}(B(z))\right|^{2} d A(z) & \leq \frac{1}{(1-|a|)^{2}} \int_{\mathbb{D}}\left|f_{2}(B(z))\right|^{2} d A(z) \\
& \leq \frac{1}{(1-|a|)^{2}}\left\|f_{2}\right\|^{2}
\end{aligned}
$$

This establishes the upper bound in (14). To prove the lower bound we use the other part of (11) and Corollary 18.

$$
\begin{aligned}
\int_{\mathbb{D}}|g(z)|^{2}\left|f_{2}(B(z))\right|^{2} d A(z) & \geq(1-|a|)^{2} \int_{\mathbb{D}}\left|f_{2}(B(z))\right|^{2} d A(z) \\
& \geq(1-|a|)^{2} \gamma(a)^{2}\|f\|^{2}
\end{aligned}
$$

Let \mathbb{A}_{n} stand for the space of $n \times n$ matrices of bounded analytic functions in the unit disk. For

$$
A=A(z)=\left[a_{i, j}(z)\right]_{i, j=1,2}
$$

we define

$$
\left.\|A\|_{\mathbb{A}_{n}}=\sup \left\{\|A(z) \zeta\|_{\mathbb{C}^{n}}: z \in \mathbb{D}\right), \zeta \in \mathbb{C}^{n},\|\zeta\|_{\mathbb{C}^{n}}=1\right\}
$$

where vectors in \mathbb{C}^{n} are written as columns and

$$
\|\zeta\|_{\mathbb{C}^{n}}=\sqrt{\left|\zeta_{1}\right|^{2}+\cdots+\left|\zeta_{n}\right|^{2}}
$$

for $\zeta \in \mathbb{C}^{n}$.
Since A^{2} is isometric to $A_{2, B}^{2}$, it follows immediately that every operator S on A^{2} which commutes with T_{B} corresponds to a matrix $\left[a_{i j}(z)\right]_{i, j=1,2}$ of analytic functions in \mathbb{D}), where

$$
\begin{equation*}
S\left(\frac{B^{\prime}}{\sqrt{2}}\right)=\frac{B^{\prime}}{\sqrt{2}} a_{11} \circ B+g a_{12} \circ B, \quad S(g)=\frac{B^{\prime}}{\sqrt{2}} a_{21} \circ B+g a_{22} \circ B . \tag{15}
\end{equation*}
$$

We write this correspondence in the form

$$
\left[a_{i j}\right]=\mathbb{F}(S)
$$

By Lemma 17, the functions $a_{i j}$ above are bounded in \mathbb{D}). Thus \mathbb{F} maps $\left(T_{B}\right)^{\prime}$ into \mathbb{A}_{2}. The following theorem states that \mathbb{F} is an isomorphism from $\left(T_{B}\right)^{\prime}$ onto \mathbb{A}_{2} and gives a norm estimate.

Theorem 21 Let B be a Blaschke product of order 2 which vanishes at 0 and a. Then the commutant of T_{B} is isomorphic to the space \mathbb{A}_{2}. The isomorphism \mathbb{F} is given by (15) and satisfies the estimate

$$
(1-|a|)^{2} \gamma(a)\|\mathbb{F}(S)\|_{A^{2}} \leq\|S\| \leq \frac{1}{(1-|a|)^{2} \gamma(a)}\|\mathbb{F}(S)\|_{A^{2}}
$$

for all $S \in\left(T_{B}\right)^{\prime}$.
Proof Given $f \in A^{2}$, we can write

$$
f=\frac{1}{\sqrt{2}} B^{\prime} f_{1} \circ B+g f_{2} \circ B
$$

By (14), we have

$$
\begin{aligned}
\frac{\|S f\|}{\|f\|} & =\frac{\left\|\mathbb{F}(S)\left(f_{1}, f_{2}\right)\right\|_{A_{2, B}^{2}}}{\left\|\left(f_{1}, f_{2}\right)\right\|_{A_{2, B}^{2}}} \\
& \leq \frac{1}{(1-|a|)^{2} \gamma(a)} \frac{\left\|\mathbb{F}(S)\left(f_{1}, f_{2}\right)\right\|_{A^{2} \times A^{2}}}{\left\|\left(f_{1}, f_{2}\right)\right\|_{A^{2} \times A^{2}}} \\
& \leq \frac{1}{(1-|a|)^{2} \gamma(a)}\|\mathbb{F}(C)\|_{A^{2}} .
\end{aligned}
$$

The lower estimate can be established in a similar way using the other part of (14).

Once again, we remark that other representations of the commutant $\left(T_{B}\right)^{\prime}$ are possible.

References

[1] A. B. Alexandrov, Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Armyan. SSR Ser. Mat. (5) 22(1987), 490-503, (Russian).
[2] D. N. Clark, One dimensional perturbations of restricted shifts. J. Analyse Math. 25(1972), 169-191.
[3] C. Cowen, The commutant of an analytic Toeplitz operator. Trans. Amer. Math. Soc. 239(1978), 1-31.
[4] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995.
[5] J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators. Trans. Amer. Math. Soc. 184(1973), 261-273.
[6] P. Duren, Theory of H^{p} Spaces. Academic Press, New York, 1970.
[7] P. Halmos, Shifts on Hilbert spaces. J. Reine Angew. Math. 208(1961), 102-112.
[8] T. Lance and M. Stessin, Multiplication invariant subspaces of Hardy spaces. Canad. J. Math. 49(1997), 100-118.
[9] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, 1970.
[10] E. Nordgren, Reducing subspaces of analytic Toeplitz operators. Duke Math. J. 34(1967), 175-181.
[11] M. Stessin, Wold decomposition of the Hardy space and Blaschke products similar to a contraction. Colloq. Math. (2) 81(1999), 271-284.
[12] J. Thomson, The commutant of certain analytic Toeplitz operators. Proc. Amer. Math. Soc. 54(1976), 165-169.
[13] K. Zhu, Reducing subspaces for a class of multiplication operators. J. London Math. Soc. (2) 62(2000), 553-568.

Department of Mathematics

SUNY

Albany, New York 12222
USA
e-mail: stessin@math.albany.edu
e-mail: kzhu@math.albany.edu

[^0]: Received by the editors February 6, 2002; revised December 4, 2002.
 AMS subject classification: 47B35, 30D55, 47A15.
 (C)Canadian Mathematical Society 2003.

