RINGS WITH AUTOMORPHISMS LEAVING NO NONTRIVIAL PROPER IDEALS INVARIANT

BY
AHMAD SHAMSUDDIN

Abstract

If an automorphism σ on a ring R (with 1) leaves no non-trivial proper ideals of R invariant then we say that R is σ-simple. We construct examples of σ-simple rings and prove that finitely generated σ-simple algebras over fields are regular. A geometric interpretation of these concepts is also discussed.

Let R be a commutative ring, always with 1 , and let σ be a ring endomorphism on R. We say that a subset S of R is invariant under σ if $\sigma S \subseteq S$. Denote by $\operatorname{Aut}(R)$ the group of all automorphisms on R. If G is a subgroup of $\operatorname{Aut}(R)$ then S is said to be G-invariant in case $\sigma S \subseteq S$ for all $\sigma \in G$. We say that R is G-simple in case R has no G-invariant non-trivial proper ideals of R, and when $G=\langle\sigma\rangle$ we say R is σ-simple if it is G-simple. When R is a finitely generated algebra over an algebraically closed field k and G is a group of k-automorphisms on R then R is the coordinate ring of some affine closed subset X of the affine space $A^{n}(k)$ and each $\sigma \in G$ induces a homeomorphism on X; the set of all such homeomorphisms forms a group \bar{G}. If R is G-simple then no non-empty proper affine closed subset of X is \bar{G}-invariant.

In the first section of this paper we study the general properties of these rings and prove that if R is a finitely generated algebra over a field such that R is a G-simple domain then $R_{\mathbf{p}}$ is regular for every prime ideal \mathbf{p} of R. The second section contains examples of σ-simple rings.

1. General properties of G-simple rings. Throughout this section, G is a subgroup of $\operatorname{Aut}(R)$.
1.1. If R is G-simple then $R^{G}=\{a \in R: \sigma a=a$ for all $\sigma \in G\}$ is a subfield of R.
1.2. If R is a domain and R is G-simple then R is also H-simple for every subgroup H of G of finite index.

Idea of proof. Suppose that I is an H-invariant non-zero proper ideal of R. If

$$
G=H \cup \sigma_{1} H \cup \cdots \cup \sigma_{r} H
$$

Received by the editors October 28, 1980 and, in revised form, March 31, 1981.
(1980) AMS subject classification index: 13B10
is a coset decomposition of H in G then

$$
J=I \cap \sigma_{1} I \cap \cdots \cap \sigma_{r} I
$$

is a non-zero proper G-invariant ideal of R.
1.3. Let R be a noetherian ring. If no subgroup of G of finite index leaves any non-zero prime ideal of R invariant then R is G-simple. To see this, note first that an ideal I of R is G-invariant if and only if $\sigma I=I$ for all $\sigma \in G$. Suppose that I is a G-invariant ideal and let \mathbf{p} be a prime ideal of R minimal over I so that $\sigma \mathbf{p}$ is also minimal over I for every $\sigma \in G$. But because R is noetherian, there are only finitely many primes minimal over I, thus

$$
\{\sigma \mathbf{p}: \sigma \in G\}=\left\{\mathbf{p}, \sigma_{1} \mathbf{p}, \ldots, \sigma_{r} \mathbf{p}\right\}
$$

where $\mathbf{p}, \sigma_{1} \mathbf{p}, \ldots, \sigma_{r} \mathbf{p}$ are all distinct. If $H=\{\tau \in G: \tau \mathbf{p}=\mathbf{p}\}$ then H is a subgroup of G and

$$
G=H \cup \sigma_{1} H \cup \cdots \cup \sigma_{r} H
$$

is a coset decomposition of H in G.
1.4. If R is G-simple then it has zero Jacobson radical; in particular, R does not have non-zero nilpotent elements.
1.5. If some maximal ideal m of a G-simple ring R has finite orbits under G then R is a finite product of fields. For, let $\mathbf{m}, \sigma_{1} \mathbf{m}, \ldots, \sigma_{r} \mathbf{m}$ denote the distinct members of the set $\{\sigma \mathbf{m}: \sigma \in G\}$. Then $\mathbf{m} \cap \sigma_{1} \mathbf{m} \cap \cdots \cap \sigma_{r} \mathbf{m}=0$ and we have an injective ring homomorphism

$$
f: R \rightarrow R / \mathbf{m} \times R / \sigma_{1} \mathbf{m} \times \cdots \times R / \sigma_{r} \mathbf{m}
$$

given by

$$
f(a)=\left(a+\mathbf{m}, a+\sigma_{1} \mathbf{m}, \ldots, a+\sigma_{r} \mathbf{m}\right)
$$

It follows from the Chinese Remainder Theorem that f is also onto. Hence f is an isomorphism.

The above shows that if G is finite then R is a finite direct product of fields.
1.6. Let B a commutative integral domain and let A be a subring of B such that B is integral over A. Let G be a subgroup of $\operatorname{Aut}(B)$ such that A is G-invariant. Then A is G-simple if and only if B is G-simple.

Proof. Let I be a non-trivial proper G-invariant ideal of B. Then because B is integral over $A, I \cap A$ is non-trivial and clearly it is a G-invariant ideal of A. Conversely, if I is non-zero proper G-invariant ideal of A then it follows from the Going-Up theorem that $B I$ is a non-trivial proper G-invariant ideal of B.
1.7. If F is any field then any F-automorphism on $F[x, y]$ leaves a nontrivial proper ideal invariant.

Proof. Let k denote the algebraic closure of F. Lane in [3] proved that
every k-automorphism leaves a non-trivial proper ideal of $k[x, y]$ invariant. Now $k[x, y]$ is integral over $F[x, y]$, so the result follows from 1.6.

In particular, $\mathbb{R}[x, y]$ is never G-simple for any cyclic subgroup G of $\operatorname{Aut}(R[x, y])$.

I am grateful to the referee for pointing out the following additional property of G-simple rings.
1.8. Let R be a finitely generated algebra over a finite field k and suppose that R is an integral domain. If R is G-simple for some G then it is a finite field.

Proof. Let \mathbf{m} be a maximal ideal of R then $K=R / \mathbf{m}$ is a finitely generated k-algebra which is a field. Hence K is algebraic over k and since k is finite, K is itself finite. Thus there exist finitely many maximal ideals \mathbf{m}^{\prime} of R such that $R / \mathbf{m}^{\prime} \cong K$ as fields. Since $R / \mathbf{m} \cong R / \sigma_{\mathbf{m}}$ (as fields) for each $\sigma \in G$, there are $\sigma_{1}, \ldots, \sigma_{r} \in G$ such that $\mathbf{m}, \sigma_{1} \mathbf{m}, \ldots, \sigma_{r} \mathbf{m}$ are the distinct members of $\{\sigma \mathbf{m}: \sigma \in G\}$. It follows that $\mathbf{m}=0$ and so $R=K$ is a finite field.

The examples of σ-simple algebras constructed in $\S 2$ are all regular at each of their prime ideals. This leads one to conjecture that a noetherian G-simple domain is always regular. We shall now show that this is indeed the case for finitely generated algebras over fields.

Let $X=\operatorname{Spec} R$ and recall that X is a topological space in which the closed sets are of the form $V(I)=\{\mathbf{p} \in X: I \subset \mathbf{p}\}$, where I is an ideal of R. Note that each $\sigma \in G$ induces a homeomorphism on X, denoted by $\bar{\sigma}$. Suppose that $\bar{\sigma}(V(I))=V(I)$ for all $\sigma \in G$ then $V(\sigma I)=V(I)$ and hence $\sqrt{ } \sigma I=\sigma \sqrt{ } I=\sqrt{ } I$ for all $\sigma \in G$. Thus $I=0$ or $I=R$ which shows that either $V(I)=X$ or $V(I)=\emptyset$. It follows that $\bar{G}=\{\bar{\sigma}: \sigma \in G\}$ leaves no non-empty closed subset of X invariant.

Suppose now that R is noetherian and
$\operatorname{Reg} X=\left\{\mathbf{p} \in X: R_{\mathbf{p}}\right.$ is a regular local ring $\}$
Sing $X=X-\operatorname{Reg} X$.
If $\mathbf{p} \in X$ then for every $\sigma \in G$ we have a ring isomorphism $R_{\mathbf{p}} \cong R_{\sigma \mathbf{p}}$ defined in the obvious way. Hence \bar{G} leaves $\operatorname{Reg} X$ and Sing X invariant.

Following Matsumura [1], p.246, we say that the ring R is a $\mathrm{J}-1$ ring if Sing X is closed in X.

Theorem 1.9. If R is a $J-1 G$-simple domain then R is regular at every prime p.

Proof. Since Sing X is \bar{G}-invariant, either Sing $X=\varnothing$ or $\operatorname{Sing} X=X$. But clearly $(0) \notin \operatorname{Sing} X$, so $\operatorname{Sing} X=\varnothing$ and the result is now clear.

Corollary 1.10. If R is a G-simple finitely generated algebra over a field then R is regular at every prime ideal \mathbf{p}.

Proof. A f.g. algebra over a field is a J-1 ring, by Matsumura [1], p. 246.

We now mention briefly the geometric significance of the last Corollary. Let k be an algebraically closed field, let R be a finitely generated k-algebra which is a domain, let G be a group of k-automorphisms on R, and let $X=V(\mathbf{p})$ be the irreducible algebraic variety determined by R. If $a=\left(a_{1}, \ldots, a_{n}\right) \in X$, let $T_{X, a}$ denote the tangent space to X at a. Recall that $T_{X, a}$ is the linear subspace of A^{n} defined as the set of zeros of the polynomials

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial t_{i}}(a)\left(t_{i}-a_{i}\right), \quad f \in \mathbf{p} .
$$

Then $T_{X, a}$ is a k-vector space, with origin at a. If m is an integer then the set

$$
\left\{a \in X: \operatorname{dim}_{k} T_{X, a} \geq m\right\}
$$

is closed in X (see Mumford [2], p. 3). We say that a point $a \in X$ is singular or regular according as $\operatorname{dim}_{k} T_{X, a}>\operatorname{dim} X=$ Krull dimension of R or $\operatorname{dim} T_{X, a}=$ $\operatorname{dim} X$. It follows that the singular locus, namely the set

$$
V=\left\{a \in X: \operatorname{dim}_{k} T_{X, a}>\operatorname{dim} X\right\}
$$

is closed in X. If $a \in V$ then the maximal ideal \mathbf{m} determined by a is a singular maximal ideal (that is $R_{\mathbf{m}}$ is not regular) and conversely, if \mathbf{m} is a maximal ideal of R then the corresponding point of X determined by \mathbf{m} is singular (see Shafarevich [4], pp.81-84). The above Corollary then says that if R is G-simple then X has no singular points. In other words, X must be a smooth algebraic variety.
2. Examples of $\boldsymbol{\sigma}$-simple rings. We begin this section with the following

Theorem 2.1. Let A be a commutative domain and let σ be an injective ring endomorphism on $R=A[x]$, the ring of polynomials in the indeterminate x over A, such that $\sigma A \subset A$, and assume that A is σ-simple. Suppose that

$$
\sigma x=a x+b, a, b \in A, a \text { invertible in } A .
$$

If char $A=0$ then R is σ-simple if and only if the equation

$$
\sigma \xi=a \xi+b
$$

has no solution $\xi \in A$.
If char $A=p>0$ and the equations

$$
\sigma u=a^{i} u \quad(i=1,2, \ldots)
$$

have no solutions $u \in A$, then R is σ-simple if and only if the equations

$$
\sigma \xi=a^{p^{i}} \xi+b^{p^{i}} \quad(i=0,1,2, \ldots)
$$

have no solutions in A.
Proof. Let I be a non-zero proper ideal of R invariant under σ and let C
denote the ideal of A consisting of all leading coefficients of all polynomials in I with minimum degree n together with 0 . Because a is invertible in A, C is a (non-zero) ideal of A invariant under σ. Since A is σ-simple, $C=A$. Hence there is

$$
f=\sum_{i=0}^{n} a_{i} x^{i} \in I, \quad a_{i} \in A, \quad a_{n}=1 .
$$

Note that $g=\sigma f-a^{n} f \in I$, yet if $g \neq 0$ then $\operatorname{deg} g<n$, a contradiction. Hence $\sigma f=a^{n} f$ and so

$$
\begin{aligned}
\sigma f & =\sum_{i=0}^{n}\left(\sigma a_{i}\right)(a x+b)^{i}=\sum_{i=0}^{n} \sigma a_{i} \sum_{j=0}^{i}\binom{i}{j} a^{i} b^{i-j} x^{j} \\
& =\sum_{j=0}^{n}\left[\sum_{i=j}^{n} a^{j}\left(\sigma a_{i}\right)\binom{i}{j} b^{i-j}\right] x^{j}=\sum_{j=0}^{n} a^{n} a_{j} x^{j}
\end{aligned}
$$

from which we deduce that

$$
\begin{equation*}
\sum_{i=j}^{n}\left(\sigma a_{i}\right)\binom{i}{j} b^{i-j}=a^{n-j} a_{j}, \quad 0 \leq j \leq n . \tag{1}
\end{equation*}
$$

If $1 / n \in A$ (which is certainly the case if char $A=0$ in view of 1.1) then the substitution $j=n-1$ in (1) gives

$$
\sigma \xi=a \xi+b \quad \text { where } \quad \xi=-\frac{1}{n} a_{n-1}
$$

Conversely, if $\sigma \xi=a \xi+b$ for some $\xi \in A$ then $R(x-\xi)$ is invariant under σ. If n is not invertible in A then write $n=p^{r} m, p \nmid m$. Note that

$$
\begin{aligned}
\binom{n}{j} & \equiv 0 \quad(\bmod p) \quad \text { if } \quad 0 \leq j<p^{r} \\
\binom{n}{p^{r}} & \equiv m \quad(\bmod p)
\end{aligned}
$$

so by substituting $j=n-1, n-2, \ldots, n-p^{r}$ successively in (1) and using the fact that the equations $\sigma u=a^{i} u(i>1)$ have no solutions in A we find that

$$
a_{n-j}=0 \quad \text { if } \quad 1 \leq j<p^{r}
$$

and

$$
\sigma \xi=a^{p^{r}} \xi+b^{p^{r}} \quad \text { where } \quad \xi=-\frac{1}{m} a_{n-p r}
$$

Conversely, if $\sigma \xi=a^{p^{r}} \xi+b^{p^{r}}$ for some $\xi \in A$ then $x^{p^{r}}-\xi$ is invariant under σ. The proof is complete.

Suppose now that $a=1$ and let's try to find a criterion for σ-simplicity of R in the characteristic $p>0$ case. Put

$$
A^{(\sigma)}=\{a \in A: \sigma a=a\}
$$

and

$$
A^{\prime}=\{\sigma a-a: a \in A\}
$$

so that A^{\prime} is an $A^{(\sigma)}$-module. We prove that R is σ-simple if and only if the sum

$$
A^{\prime}+A^{(\sigma)} b+A^{(\sigma)} b^{p}+A^{(\sigma)} b^{p^{2}}+\cdots
$$

is direct.
Assume first that the above sum is direct; we show that the system of equations (1) has no solution. Indeed, write $n=p^{r} m$ with $p \nmid m$. As above, we note that $\binom{n}{j} \equiv 0(\bmod p)$ if $1 \leq j<p^{r}$ and $\binom{n}{p^{r}} \equiv m(\bmod p)$. Then by substituting $j=n-1, n-2, \ldots, n-p^{r}$ successively in (1) and using the assumption that the above sum is direct, we find that $a_{n-j}=0$ if $1 \leq j<p^{r}$ and $a_{n-p} r=\sigma a_{n-p} r+m b^{p^{r}}$ which contradicts our assumption.

Conversely, if $(\sigma a-a)+\sum_{i=0}^{r} a_{i} b^{p^{i}}=0$ where $a_{i} \in A^{(\sigma)}$ then the polynomial $a+\sum_{i=0}^{r} a_{i} x^{p^{i}}$ is invariant under σ.

Theorem 2.2. Let k be a field of characteristic 0 and let σ be the k automorphism on $k[x]$ given by

$$
\sigma x=x+b, \quad b \neq 0 \in k .
$$

Then $k[x]$ is σ-simple.
Proof. If there is $c \in k$ with $b+\sigma c=c$ then $b=0$, a contradiction. k is clearly σ-simple, so the above theorem yields the result.

Theorem 2.3. Let k be a field of characteristic zero and let $k[t, x, y]$ denote the ring of polynomials in the indeterminates t, x, and y over k. Define a k monomorphism σ on $k[t, x, y]$ by putting

$$
\sigma t=t+1, \quad \sigma x=t x+1, \quad \sigma y=t y+x
$$

Then σ extends uniquely to an automorphism on $k(t)[x, y]=R$, also denoted by σ, such that R is σ-simple.

Proof. We first show that there is no $p(t) \in k(t)$ such that

$$
\begin{equation*}
p(t+1)=t p(t)+1 \tag{1}
\end{equation*}
$$

and this will prove that $k(t)[x]$ is σ-simple, by Theorem 2.1. Thus suppose that $p(t)=f(t) / g(t)$ where $f(t), g(t) \in k[t]$ are relatively prime and $g(t)$ is a monic polynomial. Then $p(t)$ satisfies (1) if and only if

$$
\begin{equation*}
g(t)[f(t+1)-g(t+1)]=t f(t) g(t+1) \tag{2}
\end{equation*}
$$

Hence $g(t) \mid \operatorname{tg}(t+1)$. If $t \nmid g(t)$ then $g(t) \mid g(t+1)$ and so $g(t) \in k$. If $g(t)=\operatorname{tg}_{1}(t)$
then $g_{1}(t) \mid(t+1) g_{1}(t+1)$, hence if $(t+1) \nsucc g_{1}(t)$ then $g_{1}(t)$ is a constant. Continue in this fashion to conclude that

$$
g(t)=t(t+1) \cdots(t+n) .
$$

It follows from (2) that $(t+n+1) \mid f(t+1)$ or $(t+n) \mid f(t)$ which contradicts the assumption that $f(t)$ and $g(t)$ are coprime. This shows that $k(t)[x]$ is σ-simple.

Next suppose that there is a polynomial $f(t, x) \in k(t)[x]$ that satisfies the equation

$$
\begin{equation*}
\sigma f(t, x)=t f(t, x)+x ; \tag{3}
\end{equation*}
$$

write

$$
f(t, x)=\sum_{i=0}^{n} a_{i}(t) x^{i}, \quad a_{i}(t) \in k(t)
$$

where $a_{n}(t) \neq 0$. If $n>1$ then by comparing the leading coefficients of the polynomials in (3) we get

$$
a_{n}(t+1) t^{n}=t a_{n}(t)
$$

which is impossible in $k(t)$. Since $n \neq 0$ we must have $n=1$, in which case

$$
\begin{equation*}
t a_{1}(t+1)=t a_{1}(t)+1 \tag{4}
\end{equation*}
$$

and an argument similar to that used in the first paragraph shows that equation (4) is impossible. It follows now from Theorem 2.1 that $k(t)[x, y]$ is σ-simple.

The above example must probably be contrasted with a result in [3], referred to previously, stating that if k is algebraically closed then every k automorphism on $k[x, y]$ leaves a proper non-trivial ideal of $k[x, y]$ invariant.

Theorem 2.4. Let k be a field and let $R=k\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$ where x_{1}, \ldots, x_{n} are indeterminates over k. Let a_{1}, \ldots, a_{n} be elements of k such that

$$
a_{1}^{m_{1}} \cdots a_{n}^{m_{n}}=1\left(m_{1}, \ldots, m_{n} \in \mathbb{Z}\right) \Rightarrow m_{1}=\cdots=m_{n}=0 .
$$

Define a k-automorphism σ on R by

$$
\sigma x_{i}=a_{i} x_{i} .
$$

Then R is σ-simple.
Proof. We show this by induction on n, the case $n=0$ being trivial. Assume that $n \geq 1$ and that $A=k\left[x_{1}, x_{1}^{-1}, \ldots, x_{n-1}, x_{n-1}^{-1}\right]$ is σ-simple. Let I be a non-zero proper ideal of $R=A\left[x_{n}, x_{n}^{-1}\right]$ invariant under σ. Then by the proof of Theorem 2.1, $I \cap R\left[x_{n}\right]$ contains a monic polynomial of degree m such that $\sigma f=a_{n}^{m} f$. Write $f=\sum_{i=0}^{m} g_{i} x_{n}^{i}, g_{i} \in A$ and $g_{m}=1$. Then $\sigma g_{i}=a_{n}^{m-i} g_{i}$ for each i, so either $g_{i}=0$ or g_{i} is invertible in A. In the second case, g_{i} must have the form $b x_{1}^{t_{1}} \cdots x_{n=1}^{t_{n-1}}$ where $t_{1}, \ldots, t_{n-1} \in \mathbb{Z}$ and $b \in k, b \neq 0$. Thus

$$
a_{1}^{t_{1}} \cdots a_{n-1}^{t_{n-1}} a_{n}^{i-m}=1
$$

and this gives $i-m=t_{1}=\cdots=t_{n-1}=0$. Thus $I=R$, a contradiction. The proof is complete by induction.

Theorem 2.5. Let $A=\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{2 n}\right]$ be the \mathbb{R}-algebra generated by the indeterminates $x_{1}, \ldots, x_{2 n}$ subject to the conditions

$$
x_{1}^{2}+x_{2}^{2}=x_{3}^{2}+x_{4}^{2}=\cdots=x_{2 n-1}^{2}+x_{2 n}^{2}=1 .
$$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers such that $1, \alpha_{1}, \ldots, \alpha_{n}$ are linearly independent in \mathbb{R} over \mathbb{Z}. Define the \mathbb{R}-automorphism σ on A by

$$
\begin{gathered}
\sigma x_{1}=x_{1} \cos 2 \pi \alpha_{1}-x_{2} \sin 2 \pi \alpha_{1}, \quad \sigma x_{2}=x_{1} \sin 2 \pi \alpha_{1}+x_{2} \cos 2 \pi \alpha_{1} \\
\sigma x_{2 n-1}=x_{2 n-1} \cos 2 \pi \alpha_{n}-x_{2 n} \sin 2 \pi \alpha_{n}, \quad \sigma x_{2 n}=x_{2 n-1} \sin 2 \pi \alpha_{n}+x_{2 n} \pi \alpha_{n} .
\end{gathered}
$$

Then A is σ-simple.
Proof. Note that $\left(\sigma x_{1}\right)^{2}+\left(\sigma x_{2}\right)^{2}=\sigma\left(x_{1}^{2}+x_{2}^{2}\right)=1$, etc. so σ is indeed an automorphism on A. Extend σ to a \mathbb{C}-automorphism on $B=$ $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right]$ in the obvious way. It is sufficient to show that B is σ-simple.

Note that

$$
\left(x_{1}+i x_{2}\right)\left(x_{1}-i x_{2}\right)=\cdots=\left(x_{2 n-1}+i x_{2 n}\right)\left(x_{2 n-1}-i x_{2 n}\right)=1
$$

so with $y_{1}=x_{1}+i x_{2}, \ldots, y_{n}=x_{2 n-1}+i x_{2 n}$ it is easy to see that

$$
B=\mathbb{C}\left[y_{1}, y_{1}^{-1}, \ldots, y_{n}, y_{n}^{-1}\right] .
$$

Note that

$$
\sigma y_{1}=\mathrm{e}^{2 \pi i \alpha_{1}} y_{1}, \ldots, \sigma y_{n}=\mathrm{e}^{2 \pi i \alpha_{n}} y_{n} .
$$

Put $a_{1}=\mathrm{e}^{2 \pi i \alpha_{1}}, \ldots, a_{n}=\mathrm{e}^{2 \pi i \alpha_{n}}$. The condition that $1, \alpha_{1}, \ldots, \alpha_{n}$ are \mathbb{Z}-linearly independent is equivalent to the condition that

$$
a_{1}^{m_{1}} \cdots a_{n}^{m_{n}}=1\left(m_{1}, \ldots, m_{n} \in \mathbb{Z}\right) \Rightarrow m_{1}=\cdots=m_{n}=0 .
$$

Theorem 2.4 now finishes the proof.

Acknowledgement. I wish to thank Mr. R. Hart for his help during the preparation of this paper. I also wish to thank the referee for making many remarks that helped considerably in sharpening the results; in particular, the characteristic p case in Theorem 2.1 is due to him.

References

1. H. Matsumura, Commutative Algebra, Benjamin, New-York.
2. D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Springer-Verlag, Berlin, Heidelberg, New York.
3. D. R. Lane, Fixed points of affine Cremona transformations of the plane over an algebraically closed field, Amer. J. Math., Vol. 97, No. 3, pp. 707-732.
4. I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag.

Mathematics Department
American University of Beirut
Beirut, Lebanon

