RINGS WITH AUTOMORPHISMS LEAVING NO NONTRIVIAL PROPER IDEALS INVARIANT

вү AHMAD SHAMSUDDIN

ABSTRACT. If an automorphism σ on a ring R (with 1) leaves no non-trivial proper ideals of R invariant then we say that R is σ -simple. We construct examples of σ -simple rings and prove that finitely generated σ -simple algebras over fields are regular. A geometric interpretation of these concepts is also discussed.

Let R be a commutative ring, always with 1, and let σ be a ring endomorphism on R. We say that a subset S of R is invariant under σ if $\sigma S \subseteq S$. Denote by Aut(R) the group of all automorphisms on R. If G is a subgroup of Aut(R) then S is said to be G-invariant in case $\sigma S \subseteq S$ for all $\sigma \in G$. We say that R is G-simple in case R has no G-invariant non-trivial proper ideals of R, and when $G = \langle \sigma \rangle$ we say R is σ -simple if it is G-simple. When R is a finitely generated algebra over an algebraically closed field k and G is a group of k-automorphisms on R then R is the coordinate ring of some affine closed subset X of the affine space $A^n(k)$ and each $\sigma \in G$ induces a homeomorphism on X; the set of all such homeomorphisms forms a group \overline{G} . If R is G-simple then no non-empty proper affine closed subset of X is \overline{G} -invariant.

In the first section of this paper we study the general properties of these rings and prove that if R is a finitely generated algebra over a field such that R is a *G*-simple domain then $R_{\mathbf{p}}$ is regular for every prime ideal \mathbf{p} of R. The second section contains examples of σ -simple rings.

1. General properties of G-simple rings. Throughout this section, G is a subgroup of Aut(R).

1.1. If R is G-simple then $R^G = \{a \in R : \sigma a = a \text{ for all } \sigma \in G\}$ is a subfield of R.

1.2. If R is a domain and R is G-simple then R is also H-simple for every subgroup H of G of finite index.

Idea of proof. Suppose that I is an H-invariant non-zero proper ideal of R. If

$$G = H \cup \sigma_1 H \cup \cdots \cup \sigma_r H$$

478

Received by the editors October 28, 1980 and, in revised form, March 31, 1981. (1980) AMS subject classification index: 13B10

is a coset decomposition of H in G then

$$J = I \cap \sigma_1 I \cap \cdots \cap \sigma_r I$$

is a non-zero proper G-invariant ideal of R.

1.3. Let R be a noetherian ring. If no subgroup of G of finite index leaves any non-zero *prime* ideal of R invariant then R is G-simple. To see this, note first that an ideal I of R is G-invariant if and only if $\sigma I = I$ for all $\sigma \in G$. Suppose that I is a G-invariant ideal and let **p** be a prime ideal of R minimal over I so that σ **p** is also minimal over I for every $\sigma \in G$. But because R is noetherian, there are only finitely many primes minimal over I, thus

$$\{\sigma \mathbf{p} : \sigma \in G\} = \{\mathbf{p}, \sigma_1 \mathbf{p}, \ldots, \sigma_r \mathbf{p}\}$$

where $\mathbf{p}, \sigma_1 \mathbf{p}, \ldots, \sigma_r \mathbf{p}$ are all distinct. If $H = \{\tau \in G : \tau \mathbf{p} = \mathbf{p}\}$ then H is a subgroup of G and

$$G = H \cup \sigma_1 H \cup \cdots \cup \sigma_r H$$

is a coset decomposition of H in G.

1.4. If R is G-simple then it has zero Jacobson radical; in particular, R does not have non-zero nilpotent elements.

1.5. If some maximal ideal m of a G-simple ring R has finite orbits under G then R is a finite product of fields. For, let $\mathbf{m}, \sigma_1 \mathbf{m}, \ldots, \sigma_r \mathbf{m}$ denote the distinct members of the set $\{\sigma \mathbf{m} : \sigma \in G\}$. Then $\mathbf{m} \cap \sigma_1 \mathbf{m} \cap \cdots \cap \sigma_r \mathbf{m} = 0$ and we have an injective ring homomorphism

$$f: \mathbf{R} \to \mathbf{R}/\mathbf{m} \times \mathbf{R}/\sigma_1 \mathbf{m} \times \cdots \times \mathbf{R}/\sigma_r \mathbf{m}$$

given by

$$f(a) = (a + \mathbf{m}, a + \sigma_1 \mathbf{m}, \dots, a + \sigma_r \mathbf{m}).$$

It follows from the Chinese Remainder Theorem that f is also onto. Hence f is an isomorphism.

The above shows that if G is finite then R is a finite direct product of fields.

1.6. Let B a commutative integral domain and let A be a subring of B such that B is integral over A. Let G be a subgroup of Aut(B) such that A is G-invariant. Then A is G-simple if and only if B is G-simple.

Proof. Let I be a non-trivial proper G-invariant ideal of B. Then because B is integral over A, $I \cap A$ is non-trivial and clearly it is a G-invariant ideal of A. Conversely, if I is non-zero proper G-invariant ideal of A then it follows from the Going-Up theorem that BI is a non-trivial proper G-invariant ideal of B.

1.7. If F is any field then any F-automorphism on F[x, y] leaves a non-trivial proper ideal invariant.

Proof. Let k denote the algebraic closure of F. Lane in [3] proved that

[December

every k-automorphism leaves a non-trivial proper ideal of k[x, y] invariant. Now k[x, y] is integral over F[x, y], so the result follows from 1.6.

In particular, $\mathbb{R}[x, y]$ is never G-simple for any cyclic subgroup G of Aut(R[x, y]).

I am grateful to the referee for pointing out the following additional property of G-simple rings.

1.8. Let R be a finitely generated algebra over a finite field k and suppose that R is an integral domain. If R is G-simple for some G then it is a finite field.

Proof. Let **m** be a maximal ideal of R then $K = R/\mathbf{m}$ is a finitely generated k-algebra which is a field. Hence K is algebraic over k and since k is finite, K is itself finite. Thus there exist finitely many maximal ideals \mathbf{m}' of R such that $R/\mathbf{m}' \cong K$ as fields. Since $R/\mathbf{m} \cong R/\sigma_{\mathbf{m}}$ (as fields) for each $\sigma \in G$, there are $\sigma_1, \ldots, \sigma_r \in G$ such that $\mathbf{m}, \sigma_1 \mathbf{m}, \ldots, \sigma_r \mathbf{m}$ are the distinct members of $\{\sigma \mathbf{m} : \sigma \in G\}$. It follows that $\mathbf{m} = 0$ and so R = K is a finite field.

The examples of σ -simple algebras constructed in §2 are all regular at each of their prime ideals. This leads one to conjecture that a noetherian G-simple domain is always regular. We shall now show that this is indeed the case for finitely generated algebras over fields.

Let $X = \operatorname{Spec} R$ and recall that X is a topological space in which the closed sets are of the form $V(I) = \{\mathbf{p} \in X : I \subset \mathbf{p}\}$, where I is an ideal of R. Note that each $\sigma \in G$ induces a homeomorphism on X, denoted by $\overline{\sigma}$. Suppose that $\overline{\sigma}(V(I)) = V(I)$ for all $\sigma \in G$ then $V(\sigma I) = V(I)$ and hence $\sqrt{\sigma I} = \sigma \sqrt{I} = \sqrt{I}$ for all $\sigma \in G$. Thus I = 0 or I = R which shows that either V(I) = X or $V(I) = \emptyset$. It follows that $\overline{G} = \{\overline{\sigma} : \sigma \in G\}$ leaves no non-empty closed subset of X invariant.

Suppose now that R is noetherian and

Reg $X = \{\mathbf{p} \in X : R_{\mathbf{p}} \text{ is a regular local ring}\}$

Sing
$$X = X - \operatorname{Reg} X$$
.

If $\mathbf{p} \in X$ then for every $\sigma \in G$ we have a ring isomorphism $R_{\mathbf{p}} \cong R_{\sigma \mathbf{p}}$ defined in the obvious way. Hence \overline{G} leaves Reg X and Sing X invariant.

Following Matsumura [1], p. 246, we say that the ring R is a J-1 ring if Sing X is closed in X.

THEOREM 1.9. If R is a J-1 G-simple domain then R is regular at every prime **p**.

Proof. Since Sing X is \overline{G} -invariant, either Sing $X = \emptyset$ or Sing X = X. But clearly $(0) \notin \text{Sing } X$, so Sing $X = \emptyset$ and the result is now clear.

COROLLARY 1.10. If R is a G-simple finitely generated algebra over a field then R is regular at every prime ideal p.

Proof. A f.g. algebra over a field is a J-1 ring, by Matsumura [1], p. 246.

480

We now mention briefly the geometric significance of the last Corollary. Let k be an algebraically closed field, let R be a finitely generated k-algebra which is a domain, let G be a group of k-automorphisms on R, and let $X = V(\mathbf{p})$ be the irreducible algebraic variety determined by R. If $a = (a_1, \ldots, a_n) \in X$, let $T_{X,a}$ denote the tangent space to X at a. Recall that $T_{X,a}$ is the linear subspace of A^n defined as the set of zeros of the polynomials

$$\sum_{i=1}^{n} \frac{\partial f}{\partial t_i}(a)(t_i - a_i), \quad f \in \mathbf{p}.$$

Then $T_{X,a}$ is a k-vector space, with origin at a. If m is an integer then the set

$$\{a \in X : \dim_k T_{X,a} \ge m\}$$

is closed in X (see Mumford [2], p. 3). We say that a point $a \in X$ is singular or regular according as $\dim_k T_{X,a} > \dim X = Krull$ dimension of R or $\dim T_{X,a} = \dim X$. It follows that the singular locus, namely the set

$$V = \{a \in X : \dim_k T_{X,a} > \dim X\}$$

is closed in X. If $a \in V$ then the maximal ideal **m** determined by a is a singular maximal ideal (that is R_m is not regular) and conversely, if **m** is a maximal ideal of R then the corresponding point of X determined by **m** is singular (see Shafarevich [4], pp. 81–84). The above Corollary then says that if R is G-simple then X has no singular points. In other words, X must be a smooth algebraic variety.

2. Examples of σ -simple rings. We begin this section with the following

THEOREM 2.1. Let A be a commutative domain and let σ be an injective ring endomorphism on R = A[x], the ring of polynomials in the indeterminate x over A, such that $\sigma A \subset A$, and assume that A is σ -simple. Suppose that

$$\sigma x = ax + b, a, b \in A, a$$
 invertible in A.

If char A = 0 then R is σ -simple if and only if the equation

$$\sigma\xi = a\xi + b$$

has no solution $\xi \in A$.

If char A = p > 0 and the equations

$$\sigma u = a^i u \quad (i = 1, 2, \ldots)$$

have no solutions $u \in A$, then R is σ -simple if and only if the equations

$$\sigma\xi = a^{p'}\xi + b^{p'} \quad (i = 0, 1, 2, \ldots)$$

have no solutions in A.

Proof. Let I be a non-zero proper ideal of R invariant under σ and let C

A. SHAMSUDDIN

December

denote the ideal of A consisting of all leading coefficients of all polynomials in I with minimum degree n together with 0. Because a is invertible in A, C is a (non-zero) ideal of A invariant under σ . Since A is σ -simple, C = A. Hence there is

$$f = \sum_{i=0}^{n} a_i x^i \in I, \quad a_i \in A, \quad a_n = 1.$$

Note that $g = \sigma f - a^n f \in I$, yet if $g \neq 0$ then deg g < n, a contradiction. Hence $\sigma f = a^n f$ and so

$$\sigma f = \sum_{i=0}^{n} (\sigma a_i)(ax+b)^i = \sum_{i=0}^{n} \sigma a_i \sum_{j=0}^{i} {i \choose j} a^j b^{i-j} x^j$$
$$= \sum_{j=0}^{n} \left[\sum_{i=j}^{n} a^j (\sigma a_i) {i \choose j} b^{i-j} \right] x^j = \sum_{j=0}^{n} a^n a_j x^j$$

from which we deduce that

(1)
$$\sum_{i=j}^{n} (\sigma a_i) {i \choose j} b^{i-j} = a^{n-j} a_j, \quad 0 \le j \le n.$$

If $1/n \in A$ (which is certainly the case if char A = 0 in view of 1.1) then the substitution j = n - 1 in (1) gives

$$\sigma\xi = a\xi + b$$
 where $\xi = -\frac{1}{n}a_{n-1}$

Conversely, if $\sigma\xi = a\xi + b$ for some $\xi \in A$ then $R(x - \xi)$ is invariant under σ .

If n is not invertible in A then write $n = p^r m$, $p \nmid m$. Note that

$$\binom{n}{j} \equiv 0 \pmod{p} \quad \text{if} \quad 0 \le j < p'$$
$$\binom{n}{p'} \equiv m \pmod{p}$$

so by substituting $j = n-1, n-2, ..., n-p^r$ successively in (1) and using the fact that the equations $\sigma u = a^i u$ (i > 1) have no solutions in A we find that

$$a_{n-i} = 0$$
 if $1 \le j < p^r$

and

$$\sigma\xi = a^{p'}\xi + b^{p'}$$
 where $\xi = -\frac{1}{m}a_{n-pr}$.

Conversely, if $\sigma \xi = a^{p'}\xi + b^{p'}$ for some $\xi \in A$ then $x^{p'} - \xi$ is invariant under σ . The proof is complete.

Suppose now that a = 1 and let's try to find a criterion for σ -simplicity of R in the characteristic p > 0 case. Put

$$A^{(\sigma)} = \{a \in A : \sigma a = a\}$$

1982]

and

$$A' = \{\sigma a - a : a \in A\}$$

so that A' is an $A^{(\sigma)}$ -module. We prove that R is σ -simple if and only if the sum

$$A' + A^{(\sigma)}b + A^{(\sigma)}b^p + A^{(\sigma)}b^{p^2} + \cdots$$

is direct.

Assume first that the above sum is direct; we show that the system of equations (1) has no solution. Indeed, write $n = p^r m$ with $p \nmid m$. As above, we note that $\binom{n}{j} \equiv 0 \pmod{p}$ if $1 \leq j < p^r$ and $\binom{n}{p^r} \equiv m \pmod{p}$. Then by substituting $j = n - 1, n - 2, \ldots, n - p^r$ successively in (1) and using the assumption that the above sum is direct, we find that $a_{n-j} = 0$ if $1 \leq j < p^r$ and $a_{n-p}r = \sigma a_{n-p}r + mb^{p^r}$ which contradicts our assumption.

Conversely, if $(\sigma a - a) + \sum_{i=0}^{r} a_i b^{p^i} = 0$ where $a_i \in A^{(\sigma)}$ then the polynomial $a + \sum_{i=0}^{r} a_i x^{p^i}$ is invariant under σ .

THEOREM 2.2. Let k be a field of characteristic 0 and let σ be the k-automorphism on k[x] given by

$$\sigma x = x + b, \quad b \neq 0 \in k.$$

Then k[x] is σ -simple.

Proof. If there is $c \in k$ with $b + \sigma c = c$ then b = 0, a contradiction. k is clearly σ -simple, so the above theorem yields the result.

THEOREM 2.3. Let k be a field of characteristic zero and let k[t, x, y] denote the ring of polynomials in the indeterminates t, x, and y over k. Define a k-monomorphism σ on k[t, x, y] by putting

$$\sigma t = t + 1$$
, $\sigma x = tx + 1$, $\sigma y = ty + x$.

Then σ extends uniquely to an automorphism on k(t)[x, y] = R, also denoted by σ , such that R is σ -simple.

Proof. We first show that there is no $p(t) \in k(t)$ such that

(1)
$$p(t+1) = tp(t) + 1$$

and this will prove that k(t)[x] is σ -simple, by Theorem 2.1. Thus suppose that p(t) = f(t)/g(t) where f(t), $g(t) \in k[t]$ are relatively prime and g(t) is a monic polynomial. Then p(t) satisfies (1) if and only if

(2)
$$g(t)[f(t+1) - g(t+1)] = tf(t)g(t+1).$$

Hence $g(t) \mid tg(t+1)$. If $t \nmid g(t)$ then $g(t) \mid g(t+1)$ and so $g(t) \in k$. If $g(t) = tg_1(t)$

A. SHAMSUDDIN

then $g_1(t) | (t+1)g_1(t+1)$, hence if $(t+1) \not = g_1(t)$ then $g_1(t)$ is a constant. Continue in this fashion to conclude that

$$g(t) = t(t+1) \cdots (t+n).$$

It follows from (2) that (t+n+1) | f(t+1) or (t+n) | f(t) which contradicts the assumption that f(t) and g(t) are coprime. This shows that k(t)[x] is σ -simple.

Next suppose that there is a polynomial $f(t, x) \in k(t)[x]$ that satisfies the equation

(3)
$$\sigma f(t, x) = t f(t, x) + x;$$

write

$$f(t, x) = \sum_{i=0}^{n} a_i(t) x^i, \quad a_i(t) \in k(t)$$

where $a_n(t) \neq 0$. If n > 1 then by comparing the leading coefficients of the polynomials in (3) we get

$$a_n(t+1)t^n = ta_n(t)$$

which is impossible in k(t). Since $n \neq 0$ we must have n = 1, in which case

(4)
$$ta_1(t+1) = ta_1(t) + 1$$

and an argument similar to that used in the first paragraph shows that equation (4) is impossible. It follows now from Theorem 2.1 that k(t)[x, y] is σ -simple.

The above example must probably be contrasted with a result in [3], referred to previously, stating that if k is algebraically closed then every k-automorphism on k[x, y] leaves a proper non-trivial ideal of k[x, y] invariant.

THEOREM 2.4. Let k be a field and let $R = k[x_1, x_1^{-1}, ..., x_n, x_n^{-1}]$ where $x_1, ..., x_n$ are indeterminates over k. Let $a_1, ..., a_n$ be elements of k such that

$$a_1^{m_1}\cdots a_n^{m_n}=1(m_1,\ldots,m_n\in\mathbb{Z})\Rightarrow m_1=\cdots=m_n=0.$$

Define a k-automorphism σ on R by

 $\sigma x_i = a_i x_i$.

Then R is σ -simple.

Proof. We show this by induction on *n*, the case n = 0 being trivial. Assume that $n \ge 1$ and that $A = k[x_1, x_1^{-1}, \ldots, x_{n-1}, x_{n-1}^{-1}]$ is σ -simple. Let *I* be a non-zero proper ideal of $R = A[x_n, x_n^{-1}]$ invariant under σ . Then by the proof of Theorem 2.1, $I \cap R[x_n]$ contains a monic polynomial of degree *m* such that $\sigma f = a_n^m f$. Write $f = \sum_{i=0}^m g_i x_n^i$, $g_i \in A$ and $g_m = 1$. Then $\sigma g_i = a_n^{m-i} g_i$ for each *i*, so either $g_i = 0$ or g_i is invertible in *A*. In the second case, g_i must have the form $bx_1^{t_1} \cdots x_{n-1}^{t_{n-1}}$ where $t_1, \ldots, t_{n-1} \in \mathbb{Z}$ and $b \in k, b \neq 0$. Thus

$$a_1^{t_1} \cdots a_{n-1}^{t_{n-1}} a_n^{i-m} = 1$$

and this gives $i - m = t_1 = \cdots = t_{n-1} = 0$. Thus I = R, a contradiction. The proof is complete by induction.

THEOREM 2.5. Let $A = \mathbb{R}[x_1, x_2, \dots, x_{2n}]$ be the \mathbb{R} -algebra generated by the indeterminates x_1, \dots, x_{2n} subject to the conditions

$$x_1^2 + x_2^2 = x_3^2 + x_4^2 = \cdots = x_{2n-1}^2 + x_{2n}^2 = 1.$$

Let $\alpha_1, \ldots, \alpha_n$ be real numbers such that $1, \alpha_1, \ldots, \alpha_n$ are linearly independent in \mathbb{R} over \mathbb{Z} . Define the \mathbb{R} -automorphism σ on A by

$$\sigma x_1 = x_1 \cos 2\pi \alpha_1 - x_2 \sin 2\pi \alpha_1, \quad \sigma x_2 = x_1 \sin 2\pi \alpha_1 + x_2 \cos 2\pi \alpha_1$$

 $\sigma x_{2n-1} = x_{2n-1} \cos 2\pi \alpha_n - x_{2n} \sin 2\pi \alpha_n, \quad \sigma x_{2n} = x_{2n-1} \sin 2\pi \alpha_n + x_{2n} \pi \alpha_n.$

Then A is σ -simple.

Proof. Note that $(\sigma x_1)^2 + (\sigma x_2)^2 = \sigma(x_1^2 + x_2^2) = 1$, etc. so σ is indeed an automorphism on A. Extend σ to a \mathbb{C} -automorphism on $B = \mathbb{C}[x_1, x_2, \ldots, x_{2n-1}, x_{2n}]$ in the obvious way. It is sufficient to show that B is σ -simple.

Note that

$$(x_1 + ix_2)(x_1 - ix_2) = \cdots = (x_{2n-1} + ix_{2n})(x_{2n-1} - ix_{2n}) = 1$$

so with $y_1 = x_1 + ix_2, \ldots, y_n = x_{2n-1} + ix_{2n}$ it is easy to see that

$$B = \mathbb{C}[y_1, y_1^{-1}, \ldots, y_n, y_n^{-1}].$$

Note that

$$\sigma \mathbf{y}_1 = \mathbf{e}^{2\pi i \alpha_1} \mathbf{y}_1, \ldots, \sigma \mathbf{y}_n = \mathbf{e}^{2\pi i \alpha_n} \mathbf{y}_n.$$

Put $a_1 = e^{2\pi i \alpha_1}, \ldots, a_n = e^{2\pi i \alpha_n}$. The condition that 1, $\alpha_1, \ldots, \alpha_n$ are \mathbb{Z} -linearly independent is equivalent to the condition that

$$a_1^{m_1}\cdots a_n^{m_n}=1(m_1,\ldots,m_n\in\mathbb{Z})\Rightarrow m_1=\cdots=m_n=0.$$

Theorem 2.4 now finishes the proof.

ACKNOWLEDGEMENT. I wish to thank Mr. R. Hart for his help during the preparation of this paper. I also wish to thank the referee for making many remarks that helped considerably in sharpening the results; in particular, the characteristic p case in Theorem 2.1 is due to him.

REFERENCES

1. H. Matsumura, Commutative Algebra, Benjamin, New-York.

2. D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Springer-Verlag, Berlin, Heidelberg, New York.

A. SHAMSUDDIN

D. R. Lane, Fixed points of affine Cremona transformations of the plane over an algebraically closed field, Amer. J. Math., Vol. 97, No. 3, pp. 707-732.
I. R. Shafarevich, *Basic Algebraic Geometry*, Springer-Verlag.

MATHEMATICS DEPARTMENT American University of Beirut BEIRUT, LEBANON

486