Hyperbolic geometry and reflection groups

T.H. Marshall

The n-dimensional pseudospheres are the surfaces in \mathbf{R}^{n+1} given by the equations $x_{1}^{2}+x_{2}^{2}+\ldots+x_{k}^{2}-x_{k+1}^{2}-\ldots-x_{n+1}^{2}=1(1 \leqslant k \leqslant n+1)$. The cases $k=1, n+1$ give, respectively a pair of hyperboloids, and the ordinary n-sphere.

In the first chapter we consider the pseudospheres as sufaces in $E_{n+1, k}$, where $E_{m, k}=\mathbf{R}^{k} \times(i \mathbf{R})^{m-k}$, and investigate their geometry in terms of the linear algebra of these spaces.

The main objects of investigation are finite sequences of hyperplanes in a pseudosphere. To each such sequence we associate a square symmetric matrix, the Gram matrix, which gives information about angle and incidence properties of the hyperplanes. We find when a given matrix is the Gram matrix of some sequence of hyperplanes, and when a sequence is determined up to isometry by its Gram matrix.

We also consider subspaces of pseudospheres and projections onto them. This leads to an n-dimensional cosine rule for spherical and hyperbolic simplices.

In the second chapter we derive integral formulae for the volume of an n dimensional spherical or hyperbolic simplex, both in terms of its dihedral angles and its edge lengths. For the regular simplex with common edge length γ we then derive power series for the volume, both in $u=\sin (\gamma / 2)$, and in γ itself, and discuss some of the properties of the coefficients. In obtaining these series we encounter an interesting family of entire functions, $R_{n}(p)(n$ a nonegative integer and $p \in \mathbf{C})$. We derive a functional equation relating $R_{n}(p)$ and $R_{n-1}(p)$.

Finally we classify, up to isometry, all tetrahedra with one or more vertices truncated, for which the dihedral angles along the edges formed by the truncations are all $\pi / 2$, and the remaining dihedral angles are all submultiples of π. We show how to find the volumes of these polyhedra, and find presentations and small generating sets for the orientation-preserving subgroups of their reflection groups.

For particular families of these groups, we find low index torsion free subgroups, and construct associated manifolds and manifolds with boundary. In particular, we

[^0]find a sequence of manifolds with totally geodesic boundary of genus $g \geqslant 2$, which we conjecture to be of least volume among such manifolds.

School of Mathematics and Information Sciences
The University of Auckland
Auckland
New Zealand

[^0]: Received 23rd August, 1995
 Thesis submitted to The University of Auckland November 1994. Degree approved March 1995. Supervisor: Professor G.J. Martin.

