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Auslander’s theorem for dihedral actions
on preprojective algebras of type A

Jacob Barahona Kamsvaag and Jason Gaddis

Abstract. Given an algebra R and G a finite group of automorphisms of R, there is a natural map
ηR ,G ∶ R#G → EndRG R, called the Auslander map. A theorem of Auslander shows that ηR ,G is an
isomorphism when R = C[V] and G is a finite group acting linearly and without reflections on the
finite-dimensional vector space V. The work of Mori–Ueyama and Bao–He–Zhang has encouraged
the study of this theorem in the context of Artin–Schelter regular algebras. We initiate a study
of Auslander’s result in the setting of nonconnected graded Calabi–Yau algebras. When R is a
preprojective algebra of type A and G is a finite subgroup of Dn acting on R by automorphism, our
main result shows that ηR ,G is an isomorphism if and only if G does not contain all of the reflections
through a vertex.

1 Introduction

In [18], Qin, Wang, and Zhang initiated a study of the McKay correspondence for
nonconnected N-graded algebras in (global) dimension 2. An important component
to this study is Auslander’s theorem. This project is an attempt to study this result in
the context of preprojective algebras of type A.

Let V be a finite-dimensional vector space, and let G be a finite group acting linearly
on R = C[V]. The Auslander map γR ,G ∶ R#G → EndRG R is defined as

a#g ↦ (R → R
b ↦ ag(b)) .(1)

Auslander’s theorem, then, states that ηR ,G is an isomorphism if and only if G acts
without reflections. That is, G is a small group [1].

The Auslander map may be defined for any algebra R, commutative or noncom-
mutative, and any subgroup G of Aut R. However, in general, the map need not
be injective or surjective. Bao, He, and Zhang introduced the pertinency invariant
as a tool to study Auslander’s theorem in the noncommutative setting [3, 4]. If δ
is any dimension function on an algebra R, G is a finite group acting on R, and
fG = ∑g∈G 1#g ∈ R#G, the pertinency of the G-action is defined as

p(R, G) = δ(R) − δ(R#G/( fG)).
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Auslander’s theorem for dihedral actions on preprojective algebras 325

Throughout this work, we take δ to be the Gelfand–Kirillov dimension. Under suitable
hypotheses, the Auslander map is an isomorphism for the pair (R, G) if p(R, G) ≥ 2.

Kirkman, Moore, Won, and the second author proved that the Auslander map is an
isomorphism for (C−1[x1 , . . . , xn], G), where G is any subgroup of Sn acting linearly
as permutations of the generators (i.e., σ(x i) = xσ(i)) [11]. Chan, Young, and Zhang
computed the explicit pertinency value for many cyclic subgroups of Sn in search of
noncommutative cyclic isolated singularities [8]. Crawford proved that the Auslander
map is an isomorphism for any pair (R, G) where R is a two-dimensional Artin–
Schelter regular algebra and G is a small group, in which “smallness” is generalized to
the noncommutative setting using the homological determinant [10]. Further study
of Auslander’s theorem and applications of the pertinency invariant can be found in
[7, 9, 12, 14, 17].

A natural generalization of the above is then to study the Auslander map in the
context of nonconnected algebras. That is, to replace the condition of Artin–Schelter
regularity with the twisted Calabi–Yau condition (see [13]). By a result of Bocklandt, if
R is Calabi–Yau of dimension 2, then R is the preprojective algebra of a non-Dynkin
quiver [6, Theorem 3.2]. More generally, Reyes and Rogalski have classified graded
twisted Calabi–Yau algebras of global dimension 2 that are generated in degree 1 [19].

We review the definition of preprojective algebras, as well as relevant ring-theoretic
and homological definitions necessary to our study, in Section 2. Our main focus,
however, will be the preprojective algebra ΠÃn−1

, where Ãn−1 is the extended Dynkin
diagram of type A. In Theorem 2.6, we establish some cases where the Auslander map
is an isomorphism for cyclic subgroups of scalar automorphisms on ΠÃn−1

.
In Section 3, we study dihedral group actions on R = ΠÃn−1

. Each graph automor-
phism of the underlying graph �n of Ãn−1 extends to a graded algebra automorphism
of R. From this, we obtain a subgroup of Autgr(R) which is isomorphic to the graph
automorphism group of �n , namely the dihedral group on n vertices Dn . We identify
this group with Dn itself. Our main result classifies the subgroups G of Dn for which
ηR ,G is an isomorphism.

Theorem 1.1 Let R = ΠÃn−1
and G a subgroup of Dn . The Auslander map ηR ,G is an

isomorphism if and only if there exists a reflection τ ∈ Dn that fixes a vertex and τ ∉ G.

Proof Sufficiency is proved in Theorem 3.2. Necessity follows from Theorems 3.7
and 3.13. ∎

A natural next question would be to study actions on preprojective algebras
associated with other extended Dynkin types. However, as these exhibit significantly
fewer symmetries, we do not consider them here.

2 Preprojective algebras

Throughout, we assume that k is an algebraically closed field of characteristic zero.
All algebras are assumed to be k-algebras unless otherwise noted.
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326 J. Barahona Kamsvaag and J. Gaddis

An algebra R is called (N-)graded if there exists a collection of k-vector subspaces
{Rn}∞n=0 of R such that R = ⊕n∈N Rn and R i R j ⊆ R i+ j for all i , j ∈ N. We say that R is
locally finite if dimk(Rn) < ∞ for all n ∈ N. If R0 = k, we say that R is connected. A k-
algebra automorphism ϕ of R is called graded if ϕ(Rn) = Rn for all n ∈ N. We denote
the group of N-graded automorphisms of R by Autgr(R).

Let R be an algebra, and let G be a finite subgroup of Aut(R). Let R#G denote the
set of formal sums

R#G = {∑ ag#g ∶ ag ∈ R, g ∈ G} .

Define a multiplication on R#G by

(r1#g1)(r2#g2) = r1 g1(r2)#g1 g2 , r i #g i ∈ R#G ,

extended linearly. We call R#G the skew group ring R#G. Note that, under this
definition, the group ring kG is k#G with trivial G action.

A quiver Q is a tuple (Q0 , Q1 , s, t) consisting of a set of vertices Q0 = {e0 , . . . , en},
a set of arrows Q1, and source and target functions s, t ∶ Q1 → Q0. For any arrow α, we
call the vertex s(α) the source of α and the vertex t(α) the target of α. We say Q is
finite if Q0 and Q1 are finite, and Schurian if, given any two vertices i and j, there is at
most one arrow with source i and target j. The adjacency matrix of a quiver Q is the
matrix MQ in which (MQ)i j denotes the number of arrows i → j.

A path of length � with source e i and target e j is a word of the form α1α2⋯α� where
αk ∈ Q1 for each k = 1, . . . , �, and s(α1) = e i , t(α�) = e j , and t(αk) = s(αk+1) for each
k = 1, . . . , � − 1. If p = α1⋯α�, we extend the source and target functions to the set of all
paths by the rule s(p) = s(α1) and t(p) = t(α�). We denote the set of paths of length
� by Q�, and treat the vertices e i as trivial paths of length 0 with s(e i) = t(e i) = e i .

Let Q be a quiver. The path algebra of a quiver Q over the field k, denoted kQ,
is the algebra with k-basis the set of paths ⋃∞�=0 Q� and multiplication defined by
concatenation. That is, given paths p = α1⋯α� and q = β1⋯βk , pq = α1⋯α�β1⋯βk if
t(p) = s(q) and pq = 0 otherwise. For any e ∈ Q0 and any path p, we also have the
following:

ep =
⎧⎪⎪⎨⎪⎪⎩

p, s(p) = e ,
0, s(p) ≠ e ,

pe =
⎧⎪⎪⎨⎪⎪⎩

p, t(p) = e ,
0, t(p) ≠ e .

Note that a path algebra kQ on a finite quiver is graded by {(kQ)�}∞�=0 where (kQ)� =
Spank(Q�), and there are only finitely many paths of any given length, sokQ is locally
finite.

The double of a quiver Q, denoted Q, is defined by setting Q0 = Q0, and for every
arrow α ∈ Q1 with s(α) = e i and t(α) = e j , we add an arrow α∗ with s(α∗) = e j and
t(α∗) = e i . We call Q1 the set of nonstar arrows and Q∗1 ∶= Q1 ∖ Q1 the set of star
arrows.

Definition 2.1 Let Q be a finite quiver, and set Ω = ∑α∈Q1 αα∗ − α∗α ∈ Q. The
preprojective algebra associated with Q, denoted ΠQ , is the quotient kQ/(Ω). We call
Ω the preprojective relation.
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The type A extended Dynkin quivers Ãn−1, n ≥ 3, are given by

e0

e1 e2 ⋯ en−2 en−1

α0

α1 α2 αn−3 αn−2

αn−1

We focus on preprojective algebras corresponding to this type. If Q = Ãn−1, then
Q can be characterized as follows. The vertex set Q0 of Q is {e0 , . . . , en−1}, and there
is exactly one nonstar arrow, α i , from e i to e i+1 and one star arrow, α∗i , from e i+1 to
e i for each i = 0, . . . , n − 1 where the index is taken mod n. That is, Q is Schurian. For
example, the double of Ã2 is presented below:

e0

e1 e2

α0

α∗2

α1

α∗0

α2

α∗1

We note that Ã1 is also defined. However, as its double is not Schurian, it does not
fit into the theory we have developed.

The preprojective algebra ΠÃn−1
has nice ring-theoretic properties, as discussed

in the next proposition. Before this, we review some of the definitions. For others,
such as graded injectively smooth and the generalized Gorenstein condition, we refer
to [20, 22], respectively.

Let R = ⊕n∈N Rn be a locally finite graded algebra. The Gelfand–Kirillov (GK)
dimension of R is defined as

GKdim(R) = lim
n→∞

logn (∑
i≤n

dimk(R i)) .

Now, let δ be a dimension function on R. For example, we may have δ = GKdim or
δ = Kdim, the Krull dimension. The ring R is δ-Cohen–Macaulay (δ-CM) if δ(R) is
finite, and for every nontrivial finitely generated right R-module M, j(M) + δ(M) =
δ(R), where j(M) = min{i ∶ Exti

R(M , R) ≠ 0} denotes the grade of M.
The (total) Hilbert series of R is the formal power series

H tot
R =

∞

∑
k=0

dimk(Rk)tk .

If R0 = k
n with primitive idempotents {e0 , . . . , en−1}, then the matrix-valued Hilbert

series is the matrix with entries

(HR)i j =
∞

∑
k=0

dimk(e i+1Rk e j+1)tk .

Proposition 2.1 Let R = ΠÃn−1
. Then R is a locally finite graded Noetherian algebra of

global and GK dimension 2. Moreover, R is GKdim-CM and HR = (1 − MQ t)−2.
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Proof That R is locally finite graded follows because Q (and hence Q) is finite. By
[2, Theorem 6.5], R is a Noetherian polynomial identity ring. Furthermore, R satisfies
the generalized Gorenstein condition [21, Proposition 2.11], which implies that R is
right graded injectively smooth. Then, by [20, Theorem 1.3], R is Kdim-CM, which
implies that R is GKdim-CM by [20, Lemma 4.3]. The statement on the Hilbert series
follows from [6]. ∎

The next lemma gives a canonical form for paths in the preprojective algebra ΠÃn−1
.

Lemma 2.2 (Structure Lemma) Let Q = Ãn−1, and let R = ΠQ . Let p be a (non-
constant) monomial in R. Then there exist nonstar arrows β1 , . . . , β� and star arrows
γ1 , . . . , γm such that p = β1⋯β�γ1⋯γm .

Proof Given any idempotent e i ∈ Q0, e i Ωe i ∈ (Ω) and so the following relations
hold in ΠÃn−1

:

0 = e i Ωe i = α i α∗i − α∗i−1α i−1 ,(2)

where the indices are taken mod n.
Given any star arrow α∗i , the only nonstar arrow β such that α∗i β ≠ 0 is α i .

Consequently, whenever a star arrow is followed by a nonstar arrow, we can use (2)
to obtain a nonstar arrow followed by a star arrow instead. By repeated use of (2), we
have

α∗j α jα j+1⋯α j+k = α j+1α∗j+1α j+1α j+2⋯α j+k

= α j+1α j+2α∗j+2α j+2α j+3⋯α j+k

⋮
= α j+1⋯α j+k α∗j+k α j+k

= α j+1⋯α j+k+1α∗j+k+1 .

By induction on the number of star arrows, it follows that we can push all star arrows
to the right. ∎

The invariant theory of preprojective algebras was studied by Weispfenning,
with particular interest toward a version of the Shephard–Todd–Chevalley theorem
[21, 22]. Our interest is in a version of Auslander’s theorem for group actions on the
projective algebra R = ΠÃn−1

. Particularly relevant to the present investigation is the
following theorem due to Bao, He, and Zhang.

Theorem 2.3 [4, Theorem 3.5] Let R be a Noetherian locally finite graded algebra, and
let G be a finite subgroup of Autgr(R). Assume further that R is GKdim-CM of global
dimension 2 with GKdim R ≥ 2. Then ηR ,G is a graded algebra isomorphism if and only
if p(R, G) ≥ 2.

Let R′ be the image of R in the composition

R ↪ R#G → (R#G)/( fG).
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We call R′ the identity component of (R#G)/( fG), which we can associate with R. By
[4, Lemma 5.2], GKdim(R′) = GKdim((R#G)/( fG)).

Theorem 2.4 Let n ≥ 3, let R = ΠÃn−1
, let G be a finite subgroup of Autgr(R), and

let R′ be the identity component of (R#G)/( fG). Then ηR ,G is a graded algebra
isomorphism if and only if dimk(R′) < ∞.

Proof By Proposition 2.1, R satisfies the conditions of Theorem 2.3. That is, ηR ,G
is an isomorphism if and only if p(R, G) ≥ 2. Since GKdim(R) = 2, then p(R, G) ≥ 2
if and only if GKdim((R#G)/( fG)) = 0, which is equivalent to (R#G)/( fG) being a
finite-dimensional k-vector space. ∎

Since R is locally finite, k ∪⋃�<m R� is finite-dimensional for all m ∈ N. Conse-
quently, if there exists m ∈ N such that every path of length at least m is in ( fG), then
R′ has a complete set of coset representatives in k ∪⋃�<m Rm . That is, dimk(R′) < ∞.

We conclude this section with a discussion of graded automorphisms of ΠÃn−1
.

Let Q be a quiver. A quiver automorphism σ = (σ0 , σ1) of Q is a pair of bijections
σ0 ∶ Q0 → Q0 and σ1 ∶ Q1 → Q1 such that for all α ∈ Q1, s(σ1(α)) = σ0(s(α)) and
t(σ1(α)) = σ0(t(α)). Every quiver automorphism extends to a graded automorphism
of kQ which, by an abuse of notation, we again denote by σ (see [16]).

Conversely, if σ is a graded automorphism of ΠÃn−1
, then σ0 permutes the set Q0.

Since Q is Schurian, then for any α ∈ Q1, σ(α) is necessarily a nonzero scalar
multiple of the unique arrow from σ0(s(α)) to σ0(t(α)). First, we will consider
automorphisms which fix the vertices of Ãn−1. In Section 3, we study automorphisms
corresponding to dihedral automorphisms on Ãn−1.

For the remainder of this section, let Q = Ãn−1 and R = ΠÃn−1
. Let

F = {σ ∈ Autgr(R) ∶ ∣σ ∣ < ∞ and σ(e i) = e i for all i = 0, . . . , n − 1}.

Fixed subrings of R under automorphisms in F were studied by Weispfenning [21, 22].
Let σ ∈ F. By the above discussion, σ(α) ∈ Spank{α} for each α ∈ Q1. Thus, there

exists ξ i , ξ∗i ∈ k× such that σ(α i) = ξ i α i and σ(α∗i ) = ξ∗i α∗i for each i = 0, . . . , n − 1.
Since σ is of finite order, each ξ i , ξ∗i must be a root of unity. On the other hand, σ(Ω) ∈
Spank(Ω) and so σ(Ω) = ωΩ for some ω ∈ k×. It is not difficult to show using the
preprojective relation that ξ i ξ∗i = ω for all i. The value ω in this case is the homological
determinant of the σ-action on R [15, 22]. We will consider cases in which ω = 1.

Our primary tool for studying the Auslander map for cyclic subgroups of F is the
following result of He and Zhang, which we have rephrased for our purpose.

Lemma 2.5 [14, Lemma 3.4] Let σ ∈ F, let G = ⟨σ⟩, and let ∣σ ∣ = m. Assume that there
are elements a0 , . . . , am−1 ∈ R such that σ(a i) = ζa i for i = 0, . . . , m − 1, where ζ is an
mth primitive root of unity. Then a0a1⋯am−1#1 ∈ ( fG).

We now apply Lemma 2.5 to establish an isomorphism of the Auslander map for
certain scalar automorphisms.
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Theorem 2.6 Let σ ∈ F with m = ∣σ ∣, 1 < m < ∞, and let G = ⟨σ⟩. As above, write
σ(α i) = ξ i α i and σ(α∗i ) = ξ∗i α∗i , i = 0, . . . , n − 1, with ξ1 ξ∗1 = 1. In each of the following
cases, ηR ,G is an isomorphism.
(1) There is some primitive mth root of unity ζ such that ξ i = ζ for i = 0, . . . , n − 1.
(2) There is some primitive mth root of unity ζ such that ξ0 ξ1⋯ξn−1 = ζ.
(3) For all i , j = 0, . . . , n − 1 with i ≠ j, we have gcd(∣ξ i ∣, ∣ξ j ∣) = 1.

Proof First, suppose that there exists a pure nonstar path q of length � such that
q#1 ∈ ( fG). Then let p be a path containing at least 2� nonstar arrows. Pushing all
nonstar arrows to the left using the Structure Lemma (Lemma 2.2), it follows that
p contains q, so p#1 ∈ ( fG). The same argument applies if q, p are pure star paths.
Hence, if ( fG) contains both a pure nonstar path and a pure star path of length �,
then dimk(R′) < ∞ and ηR ,G is an isomorphism by Theorem 2.4. Thus, in each case,
we will attempt to produce such paths.

(1) Assuming ξ i = ζ as in the hypothesis, take a i = α i and apply Lemma 2.5. Taking
indices mod n, it follows that a0⋯am−1 ∈ ( fG) is a pure nonstar path. One similarly
obtains a pure star path. Hence, ηR ,G is an isomorphism by the above argument.

(2) Let p be any pure nonstar path of length n, and let q be any pure star path of
length n. Since p contains each nonstar arrow exactly once, σ(p) = ζ p. No power of
p is zero and so we apply Lemma 2.5 with a i = p to obtain pm#1 ∈ ( fG). Similarly, we
obtain qm#1 ∈ ( fG). Hence, ηR ,G is an isomorphism.

(3) The order of σ is determined by its image on R1, which in turn is determined
by its image on α0 , . . . , αn−1. That is, ∣σ ∣ = k, where k is the least positive integer such
that σ k(α i) = α i for all i = 0, . . . , n − 1. Since the orders of the scalars ξ i are relatively
prime, then we have ∣ζ ∣ = ∣ξ0∣ ⋅ ∣ξ1∣⋯∣ξn−1∣ = ∣σ ∣. The result now follows from (2). ∎

3 Dihedral actions on ΠÃn−1

In this section, we establish our main theorem regarding the Auslander map for
dihedral actions on ΠÃn−1

.
Let σ be a quiver automorphism of a Schurian quiver Q. As discussed above, if

α ∈ Q1, then σ(α) is a scalar multiple of the unique arrow from σ0(s(α)) to σ0(t(α)).
Throughout this section, we assume that scalar is 1.

Proposition 3.1 Let Q be a quiver such that Q is Schurian, let R = ΠQ , and let σ ∈
Autgr(kQ) be induced from a quiver automorphism of Q as above. If one of the following
holds, then σ ∈ Autgr(R):
(1) σ is star-preserving: σ(Q1) = Q1 and σ(Q∗1 ) = Q∗1 ;
(2) σ is star-inverting: σ(Q1) = Q∗1 and σ(Q∗1 ) = Q1.

Proof Given a nonstar arrow α with source e i and target e j , α∗ is the unique arrow
with source e j and target e i . In particular, this holds for σ(α), so in case 1, we must
have σ(α∗) = σ(α)∗. Then σ(αα∗) = σ(α)σ(α)∗ and σ(α∗α) = σ(α)∗σ(α), so σ
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permutes the summands of both ∑α∈Q1 αα∗ and ∑α∈Q1 α∗α. That is,

σ (Ω) = σ
⎛
⎝ ∑α∈Q1

αα∗
⎞
⎠
− σ

⎛
⎝ ∑α∈Q1

α∗α
⎞
⎠
=∑ αα∗ −∑ α∗α = Ω.

The argument is similar in case 2 except we obtain σ(Ω) = −Ω, so again it preserves
the ideal (Ω). ∎

For the remainder of this section, let Q = Ãn−1 and R = ΠÃn−1
. We will show that

there is a group of quiver automorphisms of Q that is isomorphic to the dihedral
group on n vertices. We first identify two quiver automorphisms of Q which extend
to automorphisms of R.
(1) Define ρ ∶ Q → Q by ρ(e i) = e i+1, where the index is taken mod n. Then ρ(α i)

is the unique arrow with source ρ(s(α i)) = e i+1 and target ρ(t(α i)) = e i+2,
which is α i+1. Consequently, ρ(α∗i ) = ρ(α i)∗ = α∗i+1. Thus, ρ is a star-preserving
automorphism of Q, and has order n.

(2) Define r ∶ Q → Q by r(e i) = en−i . Since r(s(α i)) = en−i and r(t(α i)) = en−i−1,
we must have r(α i) = α∗n−i−1 and r(α∗i ) = αn−i−1. Thus, r is a star-inverting
automorphism of Q order 2.

By Proposition 3.1, G = ⟨ρ, r⟩ extends to a subgroup of Autgr(R) where R = ΠQ . It
is clear that G ≅ Dn , and so we identify Dn with the group G acting on R by graded
automorphisms.

Theorem 3.2 Let G be a subgroup of Dn . If there exists a reflection τ ∈ Dn that fixes a
vertex and τ ∉ G, then dimk(R′) < ∞.

Proof Let τ be the reflection that fixes e i and suppose τ ∉ G. Since τ is the
only nontrivial element of Dn that fixes e i , we have e i g(e i) = 0 for all g ∈ G ∖ {1}.
Consequently, e i( fG)e i = e i #1. Let p be a path of length at least 2n + 1, so p contains
at least n + 1 nonstar arrows or at least n + 1 star arrows. Without loss of generality,
suppose p has at least n + 1 nonstar arrows. By the Structure Lemma (Lemma 2.2), we
may push all star arrows to the right, so that

p = α jα j+1⋯α j+n−1α j+n p′

for some path p′ and some j = 0, . . . , n − 1 where the indices are taken mod n. Then,
for some 0 ≤ k ≤ n − 1, i = j + k + 1 mod n, so

p = (α j⋯α j+k)e i(α j+k+1⋯α j p′).

Hence, p#1 ∈ ( fG) and so q#1 ∈ ( fG) for all paths q of length at least 2m + 1. Thus,
dimk(R′) < ∞. ∎

Theorem 3.2 shows that the Auslander map is an isomorphism for the pair (R, G)
so long as G is missing a reflection which fixes some vertex. In case n is odd, this
includes all proper subgroups of Dn . However, in the case that n is even, there is one
additional subgroup, Wn . It remains to show that the Auslander map fails to be an
isomorphism in the case of Wn and the full dihedral group Dn .
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3.1 The Dn case

For x ∈ R, we denote by the O(x) the orbit of x under Dn . We begin by describing the
orbits of R under the Dn action so as to find a k-basis of RDn .

Recall that for k ≥ 0, we let Qk (resp. Q∗k ) denote the set of paths of length k
containing only nonstar (resp. star) arrows, and Q0 = Q∗0 is the set of trivial paths.
Furthermore, let Q�Q∗k denote the set of paths containing exactly � nonstar arrows
followed by k star arrows. Then, in the double quiver, we have

Q� = ⋃
i+ j=�
i , j≥0

Q i Q∗j .

Clearly, Q� is a generating set for the graded piece R� of R. Finally, for � ≥ k ≥ 0, set
B�,k = Q�Q∗k ∪ Qk Q∗� .

Lemma 3.3 For any p ∈ B�,k , O(p) = B�,k .

Proof By Structure Lemma (Lemma 2.2), a path p is uniquely determined by its
source along with the number of nonstar and star arrows it contains. Consequently,
each p ∈ Q�Q∗k is uniquely determined by its source, as is each q ∈ Qk Q∗� . Thus, for
each i = 0, . . . , n − 1, let p i (resp. q i ) denote the unique path in Q�Q∗k (resp. Qk Q∗� )
with source e i . Then B�,k = {p0 , . . . , pn−1 , q0 , . . . , qn−1}.

Let x ∈ B�,k and y ∈ O(x), so y = g(x) for some g ∈ Dn . If g is a rotation, then g
bijectively maps Q1 to Q1 and Q∗1 to Q∗1 . Consequently, g(x) has the same number
of nonstar arrows as x, and the same number of star arrows as x. That is, if x ∈ Q�Q∗k ,
then y ∈ Q�Q∗k . Thus, y ∈ B�,k . If g is a reflection, then g bijectively maps Q1 to Q∗1 and
Q∗1 to Q1. Hence, g(x) has the same number of nonstar arrows as x has star arrows,
and the same number of star arrows as x has nonstar arrows. That is, if x ∈ Q�Q∗k , then
y ∈ Qk Q∗� . Once again, y ∈ B�,k , so O(x) ⊆ B�,k .

We have ∣O(x)∣ = ∣Dn ∣/∣ stab(x)∣, and g ∈ stab(x) only if g fixes the source of x.
Hence, g is the identity or the unique reflection r fixing s(x). Now, if � ≠ k, then
Q�Q∗k ≠ Qk Q∗� so ∣B�,k ∣ = 2n, and r inverts the number of star and nonstar arrows,
so r(x) ≠ x. Consequently, stab(x) = {1}, so ∣O(x)∣ = ∣G∣ = 2n. Thus, O(x) = B�,k . If,
on the other hand, � = k, then B�,k = B�,� = Q�Q∗� , and r(x) = x, so stab(x) = {1, r}.
In this case, we have ∣B�,k ∣ = n = ∣Dn ∣/∣ stab(x)∣ = ∣O(x)∣, so O(x) = B�,k . ∎

Set

O(�, k) = ∑
p∈B�,k

p.

By Lemma 3.3, these are exactly the orbit sums of homogeneous elements in R, and
hence form a k-basis for RDn . This shows that RDn has Hilbert series

HRDn (t) = 1 + t + 2t2 + 2t3 + 3t4 + 3t5 +⋯

= (1 + t)
∞

∑
k=0
(k + 1)(t2)k = 1

(1 − t)(1 − t2) .

https://doi.org/10.4153/S0008439522000364 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000364


Auslander’s theorem for dihedral actions on preprojective algebras 333

Lemma 3.4 The orbit sums O(�, k) satisfy the following relations:

O(1, 0)O(�, k) =
⎧⎪⎪⎨⎪⎪⎩

O(� + 1, k) +O(�, k + 1), if � > k,
O(� + 1, k), if � = k,

(3)

O(1, 1)m = O(m, m).(4)

Proof To prove (3), we suppose that � > k and then

O(1, 0)O(�, k)

= (
n−1
∑
i=0

α i + α∗i )(
n−1
∑
i=0

α i⋯α i+�−1a∗i+�−1⋯α∗i+�−k + α i⋯α i+k−1α∗i+k−1⋯α∗i+k−�)

=
n−1
∑
i=0

α i⋯α i+�a∗i+�⋯α∗i+�−k+1 + α i⋯α i+k α∗i+k⋯α∗i+k−(�−1)

+ α∗i α i⋯α i+�−1a∗i+�−1⋯α∗i+�−k + α∗i α i⋯α i+k−1α∗i+k−1⋯α∗i+k−�

=
n−1
∑
i=0

α i⋯α i+�a∗i+�⋯α∗i+(�+1)−k + α i⋯α i+k α∗i+k⋯α∗i+(k+1)−�

+ α i⋯α i+�−1a∗i+�−1⋯α∗i+(�+1)−k + α i⋯α i+k−1α∗i+k−1⋯α∗i+(k+1)−�

= O(� + 1, k) +O(�, k + 1).

On the other hand, if � = k, then

O(1, 0)O(�, �) = (
n−1
∑
i=0

α i + α∗i )(
n−1
∑
i=0

α i⋯α i+�−1a∗i+�−1⋯α∗i )

=
n−1
∑
i=0

α i⋯α i+�a∗i+�⋯α∗i+1 + α∗i α i⋯α i+�−1a∗i+�−1⋯α∗i

=
n−1
∑
i=0

α i⋯α i+�a∗i+�⋯α∗i+1 + α i+1⋯α i+�α∗i+�⋯α∗i

= O(� + 1, �).

For (4), the result is obvious if m = 1. Suppose that it holds for some m, then

O(1, 1)m+1 = O(1, 1)O(m, m)

= (
n−1
∑
i=0

α i α∗i )(
n−1
∑
i=0

α i⋯α i+m−1α∗i+m−1α∗i+m−2⋯α∗i )

=
n−1
∑
i=0

α i α∗i α i⋯α i+m−1α∗i+m−1⋯α∗i

=
n−1
∑
i=0

α i⋯α i+m α∗i+m⋯α∗i

= O(m + 1, m + 1).

The result now follows by induction. ∎
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Set s0 = O(0, 0) = 1, s1 = O(1, 0), and s2 = O(2, 0). We claim that RDn = k[s1 , s2].

Lemma 3.5 The orbit sums s1 and s2 commute.

Proof We recall first that, for every arrow α, there is exactly one nonstar arrow β
and one star arrow γ such that αβ ≠ 0 and αγ ≠ 0. Using this fact and the preprojective
relation, we have

s1s2 = (
n−1
∑
i=0

α i + α∗i )(
n−1
∑
i=0

α i α i+1 + α∗i α∗i−1)

=
n−1
∑
i=0

α i α i+1α i+2 + α i α∗i α∗i−1 + α∗i α i α i+1 + α∗i α∗i−1α∗i−2

=
n−1
∑
i=0

α i α i+1α i+2 + α∗i−1α i−1α∗i−1 + α i+1α∗i+1α i+1 + α∗i α∗i−1α∗i−2

=
n−1
∑
i=0

α i α i+1α i+2 + α∗i−1α∗i−2α i−2 + α i+1α i+2α∗i+2 + α∗i α∗i−1α∗i−2

= (
n−1
∑
i=0

α i α i+1 + α∗i α∗i−1)(
n−1
∑
i=0

α i + α∗i ) = s2s1 . ∎

Lemma 3.6 For all � ≥ k ≥ 0, O(�, k) ∈ k[s1 , s2].

Proof We already have O(0, 0),O(1, 0),O(2, 0) ∈ k[s1 , s2]. Then

s2
1 = (

n−1
∑
i=0

α i + α∗i )(
n−1
∑
i=0

α i + α∗i )

= (
n−1
∑
i=0

α i α i+1 + α∗i α∗i−1) + (
n−1
∑
i=0

α i α∗i + α∗i α i)

= s2 + 2O(1, 1).

Hence, O(1, 1) ∈ k[s1 , s2]. Suppose inductively that O(�, k) ∈ k[s1 , s2] for all �, k with
� ≥ k ≥ 0 and � + k ≤ d for some d ≥ 2. First, assume that d is even, so that O( d

2 , d
2 ) ∈

k[s1 , s2]. Then, by (3), O( d
2 + 1, d

2 ) = O(1, 0)O( d
2 , d

2 ) ∈ k[s1 , s2]. Furthermore, since
O( d

2 + 1, d
2 − 1) ∈ k[s1 , s2], then

O(d
2
+ 2, d

2
− 1) = O(1, 0)O(d

2
+ 1, d

2
− 1) −O(d

2
+ 1, d

2
) .

By another induction, we have O(�, k) ∈ k[s1 , s2] with � + k = d + 1.
Now, assume that d is odd. Then d + 1 is even, and since O(1, 1) ∈ k[s1 , s2], then,

by (4), O(1, 1)(d+1)/2 = O( d+1
2 , d+1

2 ). Now, the argument proceeds as in the even
case. ∎

We now proceed to our main result for this section.

Theorem 3.7 The Auslander map is not an isomorphism for the pair (R, Dn).
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Proof Combining the previous two lemmas, there is a surjective map k[s1 , s2] →
RDn . Since both algebras have the same Hilbert series, then it follows that this map is
an isomorphism. It now suffices to show that the set

S = {e0 , . . . , en−1 , α0 , . . . , αn−1}

is a basis for R over RDn . That is, R is a rank 2n free module over RDn . Then we have

R ≅
n−1
⊕
i=0

(e i RDn ⊕ α i RDn)

as RDn -modules. Since αn−1RDn ≅ e0RDn(−1), then EndRDn R contains a map of
negative degree and so the Auslander map is not an isomorphism for (R, Dn).

First, we show that the set S generates R as an RDn -module. Clearly, R0 ⊂ SpanRDn S.
Moreover, for all i = 0, . . . , n − 1, α∗i−1 = e i(s1) − α i(1). Hence, R1 ⊂ SpanRDn S.

Note that there are exactly three paths of degree 2 for each vertex. Consider the
degree 2 paths based at vertex 0. We have

e0O(1, 1) = α0α∗0 , e0O(2, 0) = α0α1 + α∗n−1α∗n−2 , α0O(1, 0) = α0α1 + α0α∗0 .

Hence, {α0α∗0 , α0α1 , α∗n−1α∗n−2} ⊂ SpanRDn S. A similar argument for the remaining
vertices shows that R2 ⊂ SpanRDn S.

In particular, the above argument shows that R2 = S1RDn
1 + S0RDn

2 , which implies
that R2 = R1RDn

1 + R0RDn
2 . Multiplying by R1 on the left gives R3 = R2RDn

1 + R1RDn
2 ,

and by induction, Rm+1 = Rm RDn
1 + Rm−1RDn

2 for all m. Thus, R is generated as a right
RDn -module by R0 and R1. It follows that R ⊂ SpanRDn S. That is, S is a generating set
for R as an RDn -module.

For independence, we note that, for every element of S, there is exactly one other
element in S with the same source. Hence, it suffices to prove that e i RDn ∩ α i RDn =
{0}. We do this computation for i = 0, and the other vertices follow similarly.

Suppose that a ∈ e i RDn ∩ α i RDn . We may assume without loss of generality that
a is homogeneous of degree d. Suppose first that d is even. Then there exist scalars
k i , k′i ∈ k such that

a = e0 (k0O(d , 0) + k1O(d − 1, 1) +⋯ + kd/2(d/2, d/2)) ,
a = α0 (k′0O(d − 1, 0) + k′1O(d − 2, 1) +⋯ + k′d/2−1(d/2, d/2 − 1)) .

From the second expression, we note that every path summand of a must contain
at least one nonstarred arrow. Hence, k0 = 0. But then, from the first expression, we
note that every path summand of a must contain at least one starred arrow, so k′0 = 0.
Continuing in this way, we see that a = 0. ∎

3.2 The Wn case

In case n is odd, ηR ,G is an isomorphism if and only if G is a proper subgroup of Dn . In
case n is even, there is one additional instance when ηR ,G fails to be an isomorphism,
namely for the subgroup Wn defined as

Wn = ⟨τ ∈ Dn ∶ τ(e i) = e i for some i = 0, . . . , n − 1⟩.
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That is, Wn is generated by the reflections in Dn that pass through a vertex. If n is odd,
then every reflection fixes a vertex, so Wn contains every reflection and Wn = Dn . If
n is even, only half of the reflections fix a vertex, so Wn is a proper subgroup of Dn .
Since Wn is of index 2 in Dn , Wn is a maximal subgroup of Dn .

Throughout this section, we assume that n is even. Our strategy will be similar
to the previous section. The key difference is that the invariant ring is no longer
connected graded. In particular, there are exactly twice as many orbits in each graded
piece as in the Dn case.

As in the previous section, for � ≥ k ≥ 0, set B�,k = Q�Q∗k ∪ Qk Q∗� . Then define

Beven
�,k = e i B�,k for i even and Bodd

�,k = e i B�,k for i odd.

Lemma 3.8 For any p ∈ Beven
�,k (resp. p ∈ Bodd

�,k ), O(p) = Beven
�,k (resp. O(p) = Bodd

�,k ).

Proof This is similar to the proof of Lemma 3.3. In particular, the B�,k partition
the paths of Q. However, since g ∈ Wn preserves the parity of the idempotents e i , it
follows that g(Beven

�,k ) ⊂ Beven
�,k . Because g is bijective, then, in fact, we have equality.

It remains to show that we have an equivalence with the orbits. If p ∈ Beven
�,k , then

clearly O(p) ⊂ Beven
�,k . Since ∣Beven

�,k ∣ = 1
2 ∣B�,k ∣ and ∣Wn ∣ = 1

2 ∣Dn ∣, then it follows from
the argument in Lemma 3.3 that ∣Beven

�,k ∣ = ∣O(p)∣. A similar argument applies to
∣Bodd

�,k ∣. ∎

Set

O(�, k)even = ∑
p∈Beven

�,k

p and O(�, k)odd = ∑
p∈Bodd

�,k

p.

These form a k-basis for RWn . Thus, RWn has total Hilbert series

H tot
RWn (t) = 2

(1 − t)(1 − t2) .

However, since (RWn)0 = k
2, then we can also record the matrix-valued Hilbert series.

Let M be the 2 × 2 matrix defined by

M0,0 = #{p ∈ Beven
�,k with target e i , i even},

M0,1 = #{p ∈ Beven
�,k with target e i , i odd},

M1,0 = #{p ∈ Bodd
�,k with target e i , i even},

M1,1 = #{p ∈ Bodd
�,k with target e i , i odd}.

Note that for p ∈ B�,k , the parity of the target depends on the source and the parity of
� + k. Hence, it follows that the matrix-valued Hilbert series of RWn is

HRWn = (1 0
0 1) + (

0 1
1 0) t + (2 0

0 2) t2 + (0 2
2 0) t3 +⋯

= (I − (0 1
1 0) t)

−1

(I − (1 0
0 1) t2)

−1

.
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Proofs of the relations in the next lemma are similar to the corresponding proofs
in Lemma 3.4.

Lemma 3.9 Let ●, † denote opposite parities. The orbit sums O(�, k) satisfy the
following relations:

O(1, 0)●O(�, k)† =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O(� + 1, k)† +O(�, k + 1)† , if � + k is even and � > k,
O(� + 1, k)† , if � + k is even and � = k,
O(� + 1, k)● +O(�, k + 1)●, if � + k is odd and � > k,
O(� + 1, k)● , if � + k is odd and � = k,

(5)

(O(1, 1)●)m = O(m, m)●.(6)

We set s0 = O(0, 0)even, s1 = O(1, 0)even, and s2 = O(2, 0)even. Similarly, we set s′0 =
O(0, 0)odd, s′1 = O(1, 0)odd, and s′2 = O(2, 0)odd. Let C denote the subalgebra of RWn

generated by these elements. Let Q be the following quiver:

1●v1 ��

u1
�� ●2

u2

�� v2
��

and let kQ denote its path algebra. We assign degree 1 to the arrows u1 , u2 and degree
2 to v1 , v2. We will show that C = RWn and that RWn ≅ kQ/(v1u1 − u1v2 , v2u2 − u2v1).

Remark 3.10 The algebra kQ/(v1u1 − u1v2 , v2u2 − u2v1) is a quotient-derivation
algebra appearing in the classification of graded twisted Calabi–Yau algebras of global
dimension 2 [19]. In particular, the matrix corresponding to the Nakayama automor-
phism μ is ( 0 1

1 0 ), and the μ-twisted superpotential is v1u1 − u2v1 + v2u2 − u1v2.

Lemma 3.11 The relations s2s1 = s1s′2 and s′2s′1 = s′1s2 hold in C.

Proof We prove the first relation. The second is similar.

s2s1 =
⎛
⎝

n−2
2

∑
i=0
(α2i α2i+1 + α∗2i+1α∗2i)

⎞
⎠
⎛
⎝

n−2
2

∑
i=0
(α2i + α∗2i+1)

⎞
⎠

=
n−2

2

∑
i=0
(α2i α2i+1α2i+2 + α2i α2i+1α∗2i+1 + α2i+2α∗2i+2α∗2i+1 + α∗2i+1α∗2i α∗2i−1)

=
n−2

2

∑
i=0
(α2i α2i+1α2i+2 + α2i α∗2i α∗2i−1 + α2i+2α2i+3α∗2i+3 + α∗2i+1α∗2i α∗2i−1)

=
n−2

2

∑
i=0
(α2i α2i+1α2i+2 + α2i α∗2i α∗2i−1 + α∗2i+1α2i+1α2i+2 + α∗2i+1α∗2i α∗2i−1)

=
⎛
⎝

n−2
2

∑
i=0
(α2i + α∗2i+1)

⎞
⎠
⎛
⎝

n−2
2

∑
i=0
(α2i+1α2i+2 + α∗2i+2α∗2i+1)

⎞
⎠
= s1s′2 . ∎
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Lemma 3.12 We have C = RWn .

Proof Clearly, C ⊂ RWn . We claim RWn ⊂ C. By definition, (RWn)0 ⊂ C and
(RWn)1 ⊂ C. Now,

s1s′1 =
⎛
⎝

n−2
2

∑
i=0
(α2i + α∗2i+1)

⎞
⎠
⎛
⎝

n−2
2

∑
i=0
(α2i+1 + α∗2i)

⎞
⎠

=
n−2

2

∑
i=0
(α2i α2i+1 + α2i α∗2i + α∗2i+1α2i+1 + α∗2i+1α∗2i)

=
n−2

2

∑
i=0
(α2i α2i+1 + α∗2i+1α∗2i + 2α2i α∗2i)

= s2 + 2O(1, 1)even .

Thus, O(1, 1)even ∈ C. A similar proof with s′1s1 shows that O(1, 1)odd ∈ C so that
(RWn)2 ⊂ C. The remainder of the proof follows similarly to Lemma 3.6 with proper
respect shown toward parity. In particular, we use (5) and (6). ∎

Theorem 3.13 The Auslander map is not an isomorphism for the pair (R, Wn).

Proof Denote the trivial paths of Q by f0 , f1. There is a map ϕ ∶ kQ → RWn defined
by setting

f0 ↦ s0 , f1 ↦ s′0 , u1 ↦ s1 , u2 ↦ s′1 , v1 ↦ s2 , v2 ↦ s′2 .

It is easy to verify that this determines a well-defined surjective map kQ → RWn and

K = (v1u1 − u1v2 , v2u2 − u2v1)

belongs to ker ϕ. By comparing the matrix-valued Hilbert series, it is clear that
kQ/K ≅ RWn .

The remainder of the proof follows analogously to Theorem 3.7. In particular, R is
a free RWn -module with basis S = {e0 , . . . , en−1 , α0 , . . . , αn−1}, and this gives rise to a
map in EndRWn R of negative degree. ∎

Theorems 3.7 and 3.13 give instances of fixed rings of preprojective algebras
which are graded Calabi–Yau. These examples are novel from those presented by
Weispfenning in that they do not fix pointwise the degree zero part of ΠÃn−1

.

Corollary 3.14 Let G = Dn or G = Wn . Then p(R, G) = 1.

Proof Let p = α0α1⋯αn−1 and q = α∗n−1α∗n−2⋯α∗0 . Set

f1 = e0#1 + e0#r0 = e0( fG)e0 ∈ ( fG).

Then (p − q)#1 = p f1 − f1q ∈ ( fG). Consequently, p(R, Wn) ≥ 1. By Theorems 2.3, 3.7,
and 3.13, p(R, G) < 2. Thus, p(R, G) = 1 by Bergman’s Gap Theorem [5]. ∎
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