
1 Differentiable manifolds

We recall some basic concepts of differentiable manifolds, calculus, and classical
geometry. This is not intended as an introduction, but to collect some important facts and to
establish the notation. Chapter 2 will provide a lightning review of some basic concepts of
Lie groups, including (co)adjoint orbits, which will play an important role later. However,
most of this book is accessible without sophisticated mathematics, and readers familiar
with the basic concepts can skip this section.

Let M be an n-dimensional differentiable manifold defined in terms of local coordinate
charts and their transition functions. Vector fields V on M are best viewed as derivations
acting on the algebra of smooth functions C(M), i.e.

V [fg] = fV [g]+ gV [ f ], f , g ∈ C(M). (1.0.1)

In terms of local coordinates xµ, they can be written as V = Vµ ∂
∂xµ ≡ Vµ∂µ. Vector fields

can also be viewed as sections of the tangent bundle TM, which is dual to the cotangent
bundle T∗M, whose sections are one-forms α = αµdxµ ∈ �1(M).

Differential forms

The vector space of differential forms or k-forms �k(M) on M consists of elements of
the form

ω =
1

k!
ωµ1...µk dxµ1 ∧ . . . ∧ dxµk ∈ �k(M). (1.0.2)

Here ωµ1...µk (x) is totally antisymmetric, and ∧ denotes the antisymmetric wedge product

dxµ ∧ dxν = −dxν ∧ dxµ, (1.0.3)

which is sometimes suppressed. The Einstein sum convention will be used throughout. This
wedge product defines an algebra structure on the space of all differential forms, denoted
by �∗(M). The exterior derivative

d : �n(M)→ �n+1(M) (1.0.4)

is defined by

df = (∂µ f ) dxµ, (1.0.5)

and the graded Leibniz rule,

d(α ∧ β) = (dα) ∧ β + (−1) pα ∧ dβ, (1.0.6)
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4 Differentiable manifolds

where α is a p-form and β is an arbitrary differential form, and imposing that dd f = 0 for
f ∈ C(M). Then d satisfies more generally

d ◦ d = 0. (1.0.7)

In local coordinates,

dω =
1

k!
dωµ1...µk ∧ dxµ1 ∧ . . . ∧ dxµk (1.0.8)

for ω ∈ �k(M) as in (1.0.2).
The interior product or contraction of a vector field V = Vµ∂µ with a one-form α =

αµdxµ is defined through the dual evaluation

iVα = 〈V ,α〉 = Vµαµ ∈ C(M), (1.0.9)

which is extended to k-forms through

iV (α ∧ β) = (iVα) ∧ β + (−1) pα ∧ iVβ. (1.0.10)

Here α is a p-form and β is an arbitrary differential form. In local coordinates, this takes
the form

iV
( 1

k!
αµ1...µk dxµ1 ∧ . . . ∧ dxµk

)
=

1

(k − 1)!
Vµαµ...µk dxµ2 ∧ . . . ∧ dxµk . (1.0.11)

Push-forward and pullback maps

Any smooth map

φ : M→ N (1.0.12)

between two manifolds M and N defines by differentiation a tangential map or push-
forward

dφ : TxM→ Tφ(x)N , (dφ)(V )[ f ] = V [φ∗f ], (1.0.13)

where (φ∗f )(y) = f (φ(y)) is the pullback of the function f from N to M. Note that this
map is a priori defined only point-wise. If φ : M→ N is a diffeomorphism, i.e. a bijective
smooth map whose inverse is also smooth, then the push-forward defines a map from vector
fields on M to vector fields on N . If φ is not injective, then the push-forward of a vector
field is not defined, since vectors on different points in M can be mapped to the same point
in N . This observation will play an important role in the higher-spin theories discussed in
Section 5.

By duality, this push-forward map defines a pullback map for one-forms

φ∗ : T∗φ(x)N → T∗x M, (1.0.14)

through 〈V ,φ∗α〉 = 〈(dφ)(V ),α〉, which extends to a map

φ∗ : �∗(N )→ �∗(M). (1.0.15)
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5 Differentiable manifolds

In local coordinates xµ on N and yν on M, these maps reduce to the familiar covariant
transformation laws for vectors and covectors. For example,

φ∗(dxµ) =
∂xµ

∂yν
dyν ,

(dφ)
( ∂
∂yµ

)
=
∂xν

∂yµ
∂

∂xν
, (1.0.16)

where xµ(y) = φ∗xµ = xµ(φ(y)) is understood.

Lie derivative

The Lie derivative LV along a vector field V on M generalizes the action of V on functions
f ∈ �0(M) to an action on any forms ω ∈ �∗(M). This is again a derivation, which
satisfies

LV f = V [ f ] = iV d f

LV (α ∧ β) = (LVα) ∧ β + α ∧ LVβ

LV (dω) = d(LVω), ω ∈ �∗(M). (1.0.17)

Cartan’s magic formula then states that

LVω = (diV + iV d)ω. (1.0.18)

This formalism is particularly useful in the context of symplectic manifolds, which will
play a central role in this book.

The Lie derivative LV can be extended to act also on vector fields and general tensor
fields, but this requires a different perspective. The idea is that any vector field V on M
defines a flow

φ : R×M→M
(t, x) 7→ φt(x) (1.0.19)

through

d

dt
φt(x) = V (x) ∈ TxM. (1.0.20)

In other words, φt is the diffeomorphism that realizes the integral flow along the vector
field V . This can be used to drag any tensorial fields along the flow via the differential map

dφt : TxM→ Tφt(x)M (1.0.21)

and similar for T∗M; note that flows are always invertible. Then the Lie derivative is
simply the derivative of any tensor fields along this flow, where vectors at different points
are subtracted after transporting them to the same point along the flow. This leads to the
following explicit formulas:

LV W = [V , W ],

LV (X ⊗ Y ) = LV X ⊗ Y + X ⊗ LV Y , (1.0.22)
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6 Differentiable manifolds

where [V , W ] is the Lie bracket or commutator of the vector fields V , W on M, and X , Y
are any tensor fields. In local coordinates xµ on M, this takes the form

(LV W )µ = Vρ∂ρWµ
−Wρ∂ρVµ. (1.0.23)

It is important to keep in mind the difference between the Lie derivative LV and a
connection ∇V . By definition, a connection (such as the Levi–Civita connection defined
in terms of a metric) satisfies ∇fV = f∇V for any f ∈ C(M), and therefore defines a tensor.
In contrast, Lie derivations are not tensorial, since LfV 6= f LV in general.

Bundles

In physics, a manifold M typically carries some extra structure, such as matter fields that
live in some vector space over each point of M or gauge fields that allow to consistently
differentiate these. Such structures are typically described by the notion of a bundle over
M. The general definition is as follows.

Definition 1.1 A fiber bundle is defined in terms of a base manifold M, a total (or bundle)
space B which is also a manifold, and a map 5 : B →M such that the local structure of
B is that of a product manifold,

B
loc
∼= M× F . (1.0.24)

Here F is called the fiber. All maps are understood to be smooth.

A section of a bundle is a map

σ : M→ B such that 5 ◦ σ = idM. (1.0.25)

For example, vector fields on M can be viewed as sections of the tangent bundle TM, and
the space of such sections is denoted as 0(M).

A fiber bundle is called a vector bundle if F is a vector space, and it is called a principal
bundle if F is a Lie group (cf. Section 2). Basic examples of vector bundles are the tangent
bundle TM and the cotangent bundle T∗M. In field theory, matter fields are typically
described by sections of some vector bundle. Simple examples of principal bundles are
U(1) bundles, where the fiber is given by S1 ∼= U(1). We will also encounter other types
of bundles such as sphere bundles, where the fiber is a two-sphere F ∼= S2.

1.1 Symplectic manifolds and Poisson structures

To motivate the notion of a symplectic manifold, consider a classical system whose
configuration space is an n-dimensional manifold N with coordinates qi, i = 1, . . . , n,
which in the simplest case is Rn. In Hamiltonian mechanics, it is useful to consider the
phase space

M = T∗N (1.1.1)
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7 1.1 Symplectic manifolds and Poisson structures

associated with N . This is by definition the cotangent bundle over N , which consists of all
one-forms

α =
∑

i

αi(q)dqi (1.1.2)

on N . The cotangent bundle T∗N captures not only the kinematical information as
explained in Section 1.2, but it contains an extra structure, which does not exist on the
tangent bundle TN . To see this, we recall the canonical isomorphism (V ?)? ∼= V , where V
is any vector space and V ? is its dual. Applying this isomorphism to the case of V = TqN
at some given point q ∈ N , we obtain canonical maps

pi : M→ R, pi(dq j) = δ j
i . (1.1.3)

Thus, pi recovers the coefficient functions of a one-form α (1.1.2) expanded in the basis dqi.
In this sense, the pi are dual to the one-forms dqi, and they are called canonical momenta.
Together, the (qi, pj) form the so-called canonical coordinates on M = T∗N . This means
that the pi are canonically associated with qi, i.e. there is no need for any extra structure
such as a metric.

In particular, there is a canonical one-form on M = T∗N

θ =
∑

i

pidqi
=

∑
i

p̃idq̃i, (1.1.4)

which1 has the same form in any coordinates q̃i on N . The exterior derivative of θ defines
a canonical two-form ω on M, which is automatically closed,

ω = dθ = dpi ∧ dqi
∈ �2(M), dω = 0. (1.1.5)

Recall that the Einstein sum convention is understood, so that dpi ∧ dqi
≡
∑

i dpi ∧ dqi.
Clearly, ω is also nondegenerate, so that ω is a symplectic form on M, i.e. a closed
nondegenerate two-form. The general definition is as follows.

Definition 1.2 A symplectic manifold is a manifold M equipped with a closed
nondegenerate two-form ω.

Note that all symplectic manifolds have even dimension. For example, M = T∗N is
naturally a symplectic manifold, which is always noncompact; its relation with Hamiltonian
mechanics will be recalled in Section 1.2. In this book, we will also encounter other types
of symplectic manifolds, including compact symplectic manifolds.

The magic feature of symplectic forms is that they naturally define a Poisson bracket. To
see this, consider local coordinates xa on M, and write ω as

ω =
1

2
ωabdxa

∧ dxb. (1.1.6)

Recall that ω is closed dω = 0 if and only if

∂cωab + ∂aωbc + ∂bωca = 0 with ωab + ωba = 0. (1.1.7)

1 In more abstract language, the defining property of θ is that α∗(θ ) = α for any one-form α = pidqi on N . Here
α∗ is the pullback map associated with α, viewed as section α : N → T∗N =M of the cotangent bundle.
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8 Differentiable manifolds

Since ωab is nondegenerate, we can consider the inverse tensor field θab

θabωbc = δ
a
c , (1.1.8)

which is also antisymmetric. This defines a bivector field θab∂a⊗∂b on M, or equivalently
a bracket on the algebra A = C∞(M) of functions on M via

{ f , g} := θab∂af ∂bg. (1.1.9)

It is easy to see that this bracket satisfies the following properties:

{ f , g} = −{g, f } antisymmetry

{ f , g + λh} = { f , g} + λ{ f , h} linearity

{ f , gh} = g{ f , h} + h{ f , g} Leibniz (product) rule

{ f , {g, h}} + {g, {h, f }} + {h, { f , g}} = 0 Jacobi identity (1.1.10)

for any f , g, h ∈ A, and λ ∈ R, which constitutes the definition of a Poisson bracket; the
Jacobi identity follows from (1.1.7). In terms of local coordinates, the Jacobi identity takes
the form

θad∂dθ
bc
+ θbd∂dθ

ca
+ θcd∂dθ

ab
= 0, (1.1.11)

which is a consequence of (1.1.7).
This is a simple but profound result since the Jacobi relation is a nonlinear partial

differential equation (PDE) for θab. The framework of symplectic forms allows to recast
this nonlinear PDE as a linear PDE (1.1.7) for ωab, which is much easier to handle. Hence,
symplectic forms allow to understand and classify nondegenerate Poisson brackets. In
particular, the canonical variables qi and pj on M = T∗N satisfy the following Poisson
brackets:

{qi, pj} = δ
i
j

{qi, qj
} = 0 = {pi, pj}. (1.1.12)

The following important theorem states that this “canonical” form of the Poisson brackets
can always be achieved locally for every symplectic manifold.

Theorem 1.3 (Darboux) For any point x in a symplectic manifold M, there is an open
neighborhood U 3 x and local coordinates qi, pj : U → R such that

ω =
∑

i

dpi ∧ dqi. (1.1.13)

In these local coordinates, the Poisson brackets take the form (1.1.12).
We introduce some further concepts and notation. A Poisson manifold is a manifold

M carrying a Poisson structure, i.e. a bracket satisfying the relations (1.1.10). A Poisson
structure can be conveniently encoded as a bivector field θab∂af ∂bg, where

θab
= {xa, xb

} (1.1.14)

in local coordinates xa. The θab will be denoted as Poisson tensor.
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9 1.1 Symplectic manifolds and Poisson structures

If the tensor field θab is nondegenerate, we can invert it and obtain a symplectic structure.
Then Darboux theorem implies that, locally, the Poisson tensor takes the standard form

θab
=

(
0 1n

−1n 0

)
(1.1.15)

in canonical coordinates xa
= (pi, qi). If the Poisson tensor is degenerate and hence not

invertible, one can still use it to define a symplectic foliation into symplectic leaves. The
general statement is that any (regular, finite-dimensional) Poisson manifold is the disjoint
union of its symplectic leaves.2 For a more detailed discussion, see e.g. [137].

More generally, a (commutative) Poisson algebra A is an algebra together with a bracket

{., .} : A×A→ A (1.1.16)

such that the relations (1.1.10) are satisfied. The most important case is where A = C(M)
is the algebra of (smooth, typically) functions on some manifold M. Then the Poisson
bracket can be identified with a bivector field θab∂af ∂bg.

Another useful result related to Darboux’s theorem is Moser’s lemma, which is a
statement about local deformations of a symplectic structure. The statement is the
following.

Lemma 1.4 (Moser) Letωt be a family of symplectic forms depending smoothly on t ∈ R.
Then for any point p ∈M, there exists a local neighborhood U of p and a family of maps
gt : U → U with g0 = id and g∗t ωt = ω0.

This means that any smooth deformation of a symplectic form can be absorbed locally
by some diffeomorphism, which is the essence of Darboux’s theorem. The idea of the proof
is to consider the infinitesimal version of this relation, given by

0 =
d

dt
(g∗t ωt) = g∗t

(
LVtωt +

d

dt
ωt
)
, (1.1.17)

where the vector field Vt generates gt. Sinceωt is closed, this reduces to 0 = iVtωt+µt using
Cartan’s magic formula (1.0.18), where µt is defined locally by d

dtωt = dµt via Poincare’s
lemma. This can be solved for Vt as ωt is nondegenerate, which upon integration yields gt.

1.1.1 Hamiltonian vector fields

For any Poisson manifold, one can define an important class of special vector fields as
follows.

Definition 1.5 For any f ∈ C(M), the Hamiltonian vector field Vf is defined by

Vf [g] := { f , g} ∀ g ∈ C(M). (1.1.18)

2 This is proved using Frobenius’ theorem, using the fact that Hamiltonian vector fields are always in involution.

https://doi.org/10.1017/9781009440776.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009440776.002


10 Differentiable manifolds

We use here the fact that vector fields are naturally identified with derivations of the
algebra C(M) of smooth functions on a manifold. If the Poisson structure is nondegenerate,
then (1.1.18) is equivalent to the well-known relation

iVf ω = d f , (1.1.19)

where iVω is the contraction of the vector field V with the two-form ω. Indeed writing the
Hamiltonian vector field Vf = (Vf )a∂a in local coordinates, this gives

iVf ω = (Vf )aωab dxb !
= d f = ∂b fdxb. (1.1.20)

Hence,

(Vf )a
= (ω−1)ba∂b f = θba∂b f = { f , xa

} (1.1.21)

using (1.1.8), consistent with (1.1.18). The relation between symplectic forms and Poisson
brackets can now be stated in a coordinate-free form as follows:

{ f , g} = ω(Vg, Vf ), (1.1.22)

which in local coordinates reduces to

θab∂af ∂bg = ωabθ
caθdb∂cf ∂dg. (1.1.23)

In particular, Cartan’s magic formula LVω = (iV d + diV )ω gives immediately Liouville’s
theorem.

Theorem 1.6 (Liouville)

LVf ω = 0 = LVf ω
∧n (1.1.24)

for any Hamiltonian vector field Vf on a symplectic manifold M of dimension 2n.

The second statement implies that any symplectic manifold is equipped with a natural
volume form

� :=
1

n!
ω∧n
= ρM (x)d2nx, (1.1.25)

which is preserved by Hamiltonian vector fields; we will often write ωn
≡ ω∧n. Here

ρM (x) := pf(ω) =
1

2nn!
εa1b1...anbnωa1b1 . . . ωanbn =

√
detωab (1.1.26)

is the symplectic density on M, which is given by the Pfaffian pf(ω) of the antisymmetric
matrix ωab. The relation with the determinant can be seen by writing ωab in block-diagonal
form, noting that both the Pfaffian and the determinant factorize.

The first statement of (1.1.24) also deserves some discussion: it means that the
symplectic structure is invariant under Hamiltonian vector fields:

LVf ω = 0, LVf θ
ab
= 0. (1.1.27)

Therefore, the flow defined by any Hamiltonian vector field is a symplectomorphism, i.e. a
diffeomorphism that leaves ω invariant.

https://doi.org/10.1017/9781009440776.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009440776.002
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We conclude this brief introduction with some important observations. First, the Jacobi
identity implies the following useful identity for any Poisson tensor:

0 = ∂a(ρMθ
ab), (1.1.28)

where ρM is the symplectic volume density (1.1.26). To see this, consider

∂aθ
ab
=− θaa′∂aθ

−1
a′b′θ

b′b
= θaa′θb′b(∂a′θ

−1
b′a + ∂b′θ

−1
aa′ )

= −θaa′∂a′θ
b′bθ−1

b′a − θ
b′b∂b′θ

aa′θ−1
aa′

= −∂aθ
ab
− 2θabρ−1

M ∂aρM , (1.1.29)

noting that 2ρ−1
M ∂bρM = ∂bθ

aa′θ−1
aa′ and using the fact that ωab = θ−1

ab is closed in the
second step. Then (1.1.28) follows. As an application of this formula, we note that all
Hamiltonian vector fields satisfy the following divergence constraint:

∂a(ρM V a
f ) = −∂a(ρMθ

ab∂b f ) = 0, (1.1.30)

which expresses the fact that Vf preserves � = ρM d2nx. Another way to see this is by
computing (1.1.24) directly:

0 = LV� = d(iV�) =
1

(2n− 1)!
d(ρM V bεba2...a2ndxa2 . . . dxa2n )

=
1

(2n− 1)!
εba2...a2n∂c(ρM V b)dxcdxa2 . . . dxa2n

= ∂b(ρM V b)� (1.1.31)

since εba2...a2nε
ca2...a2n = (2n− 1)! δc

b.
Finally, we note the important identity

[Vf , Vg] = V{ f ,g}, (1.1.32)

where the left-hand side is the Lie bracket of the Hamiltonian vector fields associated with
f and g. This relation follows from the Jacobi identity, upon acting on some test function h:

[Vf , Vg][h] = { f , {g, h}} − {g, { f , h}} = {{ f , g}, h} = V{ f ,g}[h]. (1.1.33)

It means that the Hamiltonian vector fields satisfy the same Lie algebra as the Poisson
brackets of their generators. In more abstract terms, the map f → Vf is a Lie algebra
homomorphism from the (Poisson) Lie algebra on the space of functions C(M) on M to
the Lie algebra of vector fields on M. These relations are cornerstones of Hamiltonian
mechanics, and they will play an important role in the following.

Exercise 1.1.1 Verify the Jacobi identity (1.1.11) explicitly using dω = 0 (1.1.7).

1.2 The relation with Hamiltonian mechanics

We have seen that the symplectic structure of the cotangent bundle T∗N is canonical, i.e.
independent of any extra structure such as a Lagrangian. It is nevertheless worthwhile to
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12 Differentiable manifolds

recall the relation with Lagrangian and Hamiltonian mechanics. Assume that some physical
system is described through some Lagrangian L(qi, v j), which is a function on TN . Here
qi are local coordinates on N , and v j

= q̇ j are the associated tangent space coordinates.
We assume that L is convex in the velocities v j, which is tantamount to stability. Then the
(fiber-wise) map φ : TqN → T∗qN defined through

φ(v)[w] =
d

ds

∣∣∣
0
L(q, v + sw) (1.2.1)

is invertible. Explicitly, vi is expressed in terms of pj via

pi =
∂L
∂vi , (1.2.2)

where pi is the canonical momentum (1.1.3). Then the Legendre transformation maps the
function L on TN to the function H on T∗N via

C(TN )→ C(T∗N )

L(qi, v j) 7→ H(qi, pj) := piφ∗(vi)− φ∗
(
L(qi, vi)

)
. (1.2.3)

Here φ∗ indicates the identification via φ by substituting (1.2.2). The Legendre
transformation is involutive, i.e. it is its own inverse, and maps convex functions to convex
functions. The Euler–Lagrange equations can then be recast in Hamiltonian form,

ḟ = { f , H} = −VH [ f ], (1.2.4)

for any function f on T∗N , with canonical Poisson structure given by (1.1.5). This
formulation leads to powerful tools such as canonical transformations (which by definition
preserve the Poisson or symplectic structure) in Hamiltonian mechanics, and it is essential
to understand the relation with quantum mechanics.
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