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THE BERRY-ESSEEN BOUND FOR THE POISSON SHOT-NOISE

JOHN A. LANE, * University College of Wales, Aberystwyth

Abstract

This note provides a useful extension of the Berry-Esseen bound
on the error in the normal approximation for shot-noise. The special
cases treated are of particular interest in the statistical analysis of
Poisson processes and cluster point processes.

POISSON PROCESS; CLUSTER POINT PROCESSES

The Berry-Esseen theorem provides a uniform bound on IFz - <I>(x) I where <I> is the
standard normal cumulative distribution function (c.d.f.) and Fz is the c.d.f. of Z, a
random variable suitably normalised and centred. When Z is Poisson shot-noise such
bounds have been considered by Papoulis (1971), Lane (1979) and Heinrich and
Schmidt (1985). With minimal extra effort the latter result can usefully be extended by
removing the requirements that the primary Poisson process be stationary and the
secondary random functions be translation-invariant.

Suppose A is a metric space with its Borel a-algebra, ~. Let N(·) denote the
counting measure of a Poisson point process on (A, ~) with a-finite intensity measure
A(·) = IEN(·). The points of the Poisson process may be enumerated as Tk' k =
1,2, .. '. Suppose also that {H(s): sEA} is a family of independent real random
variables which is independent of N(·). The Poisson shot-noise discussed here is the
sum

(1)
N(A) f

y= ~ H(T;) = AH(S)N(ds).

The characteristic function of Y takes the well-known form

where CH(O; s) = IE exp [iOH(s)]. From this it follows that the mean and variance of Y
are respectively J-ly = JA IEH(s)A(ds) and at= fA IEH2(s)A(ds). We assume throughout
that py = fAIE IH(s)13A(ds) < 00. Let Z = (Y - J-ly)/ay have c.d.f. Fz and characteristic
function Cz(O). From the expansion of exp {iOH(s)/ay } , we see that

[logCz(O) + ~021 ~ 101 3 py/(6c4).

The argument leading to Theorem 7 of Heinrich and Schmidt (1985) now yields that

IFz(x) - <I>(x)1 < 2·21py/a~.

Frequently in practice A (or H) will be taken to be 0 outside some subspace Q cA.
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Suppose that as the expected number of points A(Q)~ 00, we have py = O(A(Q» and
A(Q)/at= 0(1). Then IFz(x) - cIl(x)1 = 0(A(Q)-1). Note however that, as in Lane
(1984), a non-normal limit can arise even when Var Yand higher moments are finite.

Example 1. In a cluster point process the primary points T:k are cluster centres, each
triggering off a secondary point process or cluster. Let Ns(Q) be the number of cluster
points in Q, (Q E 00), triggered off by a primary point at s. Then H(s) =Ns(Q) and Y
denotes the total number of cluster points in Q.

The following construction defines a cluster point process of Neyman-Scott type
(Neyman and Scott (1958), Vere-Jones (1970». Suppose Ns(A), the total cluster size
triggered from s, has probability generating function P(·) for all s and let m., j = 1, 2, 3
denote its first three factorial moments. Given Ns(A), the cluster points are laid down
independently with conditional probability GQ(s) that a cluster point lies in Q. It is
easily verified that

CH(O; s) = P[GQ(s)(exp (iO) - 1) + 1]

and that

JJy = I t (Q), at = I t (Q) + 12(Q )

py = I t (Q) + 312(Q ) + 13(Q )

where ~(Q) =mj fA GQ(sYA(ds). Now pyla2y~ (mt + 3m2+ m3)/(m t + m2). In special
cases, the rate of normal convergence ay! , will reduce to A(Q)-t Thus, if both
fA\QGQ(s)A(ds) and fQGA\Q(s)A(ds) are o(A(Q) then a~~A(Q). These conditions
reflect a tendency for clusters triggered off from within Q to be concentrated in Q and
to form the dominant component of Y.

Example 2. Statistics of the form (1) occur extremely often in statistical problems
concerning Poisson processes observed over a subspace Q c A = lR d; see for example
Krickeberg (1982). Typically H(·) is a deterministic function which is 0 outside Q.

In the 'natural' linear model, A depends on real parameters y through

A(o; y) =JA(S; y) ds, log A(S;y) = yTg(s)

where g(s) is a real vector function on A and we take ds to denote Lebesgue measure
(or some appropriate dominating measure) on (A, 00). The log likelihood is

LIOg A(S; y)N(ds) - A(Q; y).

Its first derivative, or score, vector U is of interest for, among other things, the
development of locally most powerful tests. Now

U =Lg(s)N(ds) - Lg(S)A(S; y) ds

which of course has mean O. Denote the covariance matrix of U by

1: = 1:(Q) = Lg(S)g(SfA(S; y) ds,

which we assume is positive definite with smallest eigenvalue m (Q) > 0 and let
h(Q) = sUPseQ IIg(s)lI·
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where

Consider the distribution of W =ITl:-!U where, without loss of generality, ITI= 1.
Now

so that

IFw(x) - <I>(x )1 ~ 2·21pw

o; = LIITI;(Q)-!g(sW A(S;Y)ds

~ II}:(Q)-!II h(Q)a~

=m(Q)-!h(Q).

Let {Qt} be a sequence of sets in g7J for which A(Qt)~ 00 as t~ 00. Under the condition

(2)

as t~ 00, for some k > 0, we have

IFw(x) - <I>(x)I= O(A(Qt)-!).

Since I is arbitrary, U is asymptotically multivariate normal N(O, l:(Q)). The condition
(2) is more transparent in the case where IgI is an increasing scalar function on IR and
Qt = [0, t]. For an extensive range of plausible models

m([O, t]) = [g(siA(S) ds - kg(t)2A(t).

On the other hand, for A(s) = log [1 + log (1 + s)], (2) fails as

[IIOg A(s)I' A(S)ds - exp (rA(t))/r (r = 1, 2, ... ).

Here Pwla: --- 23/213 but nonetheless asymptotic normality can be proved via Theorem 3
of Lane (1984).
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