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Abstract. The solar tachocline is shown as hydrodynamically stable against nonaxisymmetric
disturbances if it is true that no cos4θ term exists in its rotation law. We also show that the
toroidal field of 200 Gauss amplitude which produces the tachocline in the magnetic theory
of Rüdiger & Kitchatinov (1997) is stable against nonaxisymmetric MHD disturbances – but
it becomes unstable for rotation periods slightly slower than 25 days. The instability of such
weak fields lives from the high thermal diffusivity of stellar radiation zones compared with the
magnetic diffusivity. The growth times, however, result as very long (of order of 105 rotation
times). With estimations of the chemical mixing we find the maximal possible field amplitude to
be ∼500 Gauss in order to explain the observed lithium abundance of the Sun. Dynamos with
such low field amplitudes should not be relevant for the solar activity cycle.

With nonlinear simulations of MHD Taylor-Couette flows it is shown that for the rotation-
dominated magnetic instability the resulting eddy viscosity is only of the order of the molecular
viscosity. The Schmidt number as the ratio of viscosity and chemical diffusion grows to values
of ∼ 20. For the majority of the stellar physics applications, the magnetic-dominated Tayler
instability will be quenched by the stellar rotation.
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1. Introduction
We ask for the stability of differential rotation in radiative stellar zones under the

presence of magnetic fields. If the magnetic field is aligned with the rotation axis then
the answer is simply ‘magnetorotational instability’ (MRI). If the field is mainly toroidal
(the rule rather than the exception) the answer is more complicated. Then the Rayleigh
criterion for stability against axisymmetric perturbations of Taylor-Couette (TC) flow
with the rotation profile Ω =Ω(R) reads

1
R3

d
dR

(R2Ω)2 − R

μ0ρ

d
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(
Bφ

R

)2

> 0. (1.1)

Hence, almost uniform fields or fields with Bφ ∝ 1/R (a current-free field) are stabilizing
the TC flow and no new instability appears.

More interesting is the question after the stability against nonaxisymmetric perturba-
tions. Tayler (1973) found the necessary and sufficient condition

d
dR

(RB2
φ) < 0 (1.2)

for stability of an ideal fluid against nonaxisymmetric perturbations. Now almost ho-
mogenous fields are unstable while the fields with Bφ ∝ 1/R are stable.

We have probed the interaction of such stable toroidal fields with stable flat rotation
laws and found, surprisingly, the Azimuthal Magnetorotational Instability (AMRI) which
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for small magnetic Prandtl number scales with the magnetic Reynolds number Rm of
the global rotation similar to the standard MRI (Rüdiger et al. 2007).

In the following, as an astrophysical application of these nonaxisymmetric instabilities
the magnetic theory of Rüdiger & Kitchatinov (1997, 2007) of the solar tachocline is
presented. In the last Section we return to a TC flow under the presence of strong enough
toroidal fields presenting first results of the eddy viscosity and the turbulent diffusion of
chemicals for the Tayler instability (TI).

2. Solar tachocline
The tachocline is the thin shell between the solar convection zone and the radiative

interior of the Sun where the rotation pattern dramatically changes.

Figure 1. The tachocline formation on the basis of a fossil poloidal field of 10−4 Gauss confined
in the radiative solar interior (Rüdiger & Kitchatinov 1997). Left: the stationary rotation profile;
right: the isolines of the resulting toroidal field with its amplitude of 200 Gauss.

The nonuniform rotation of the solar convection zone – which is due to the interaction
of the convection with the global rotation – has no counterpart in the solar core but
the convection zone rotates in the average with the same angular velocity as the interior
does. The radial coupling is thus large. This phenomenon cannot be explained by viscous
coupling (the viscosity below the convection zone is by more than 10 orders of magnitude
smaller) but it can be explained with a weak fossil poloidal field which is confined in the
solar radiative interior. For the amplitude of this field only values of order mGauss are
necessary resulting in a tachocline thickness of about 5% of the solar radius (Fig. 1). The
resulting toroidal field amplitude inside the tachocline of about 200 Gauss mainly depends
on the magnetic Prandtl number (and the rotation velocity) for which Pm = 5 · 10−3

has been used in the model (Rüdiger & Kitchatinov 1997, 2007). One can estimate the
resulting toroidal field in terms of the Alfvén velocity VA =Bφ/

√
μ0ρ simply as

VA =
√

PmU0 (2.1)

with U0 the linear velocity of rotation, U0 =RΩ . For Pm � 1 the resulting toroidal field
amplitude would be of order 100 kGauss which is certainly unstable. For Pm � 10−4 the
field strength is reduced to only 1 kGauss so that we have carefully to check its stability.
The magnetic theory holds for two main conditions: i) the field must completely be
confined in the radiation zone and ii) the magnetic Prandtl number must be small enough.
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Figure 2. Neutral hydrodynamic instability lines for the rotation law without cos4θ-term in
3D. Only A1 and S2 modes are unstable. The A1 mode for wavenumber k → 0 reproduces the
Watson (1981) result a = δΩ/Ω0 � 0.286.

There are several possibilities to fulfill the first condition (cf. Garaud 2007; Rüdiger &
Kitchatinov 2007) which, however, shall not be discussed in the present paper.

2.1. Hydrodynamic stability
To fulfill the second condition the radiative tachocline must hydrodynamically be stable.
On the first view this should not be a problem. As the differential rotation in latitude
forms a shear flow its amplitude, δΩ =Ωeq − Ωpole , decides the stability properties. By
use of a 2D approximation which ignores the radial coordinate Watson (1981) derived for
ideal fluids the condition δΩ/Ω < 0.286 for stability. This rather large value would lead
to a stable tachocline. The radial velocity components, however, are small but not zero.
Also the latitudinal profile of the angular velocity is more complicate than the simple
cos2 θ-law used by Watson. We have thus to rediscuss the stability of shear flows with

Ω(θ)=Ω0

(
1 − a((1 − f) cos2 θ + f cos4 θ)

)
(2.2)

where δΩ/Ω0 = a; f is the contribution of the cos4 θ term which describes the shape of
the rotation law in midlatitudes. At the solar surface we have a � 0.286 and f = 0.55.

The radial density gradient forms a ‘negative’ buoyancy leading to damped oscillations
with the frequency

N =
(

g

Cp

∂S

∂r

) 1
2

. (2.3)

S is the entropy. The frequency N in the upper solar core is by more than a factor of
100 larger than the rotation frequency Ω . So the equation system

∂u

∂t
+ (U∇)u + (u∇)U = −

(
1
ρ
∇p

)′
+ νΔu

T

(
∂s

∂t
+ (U∇)s + (u∇)S

)
=CpχΔT ′ (2.4)

must be solved for the flow perturbation u and the entropy fluctuation s. It is divu = 0;
s= − Cpρ

′/ρ. T ′ and ρ′ are the fluctuations of the temperature and the density, resp.
The mean flow U is given by (2.2). The equations are solved with a Fourier expansion
exp(i(kr + mφ − ωt)) in the short-wave approximation kr � 1 with m as the azimuthal
wave number. As usual, in latitude a series expansion after Legendre polynomials is used.
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170 G. Rüdiger, L. L. Kitchatinov & M. Gellert

In both latitude and longitude the modes are global. The parameter including the
density stratification is

λ̂ =
N

krΩ
, (2.5)

so that λ̂ → ∞ reproduces the 2D approximation by Watson (1981) and Cally (2001).
They showed that only nonaxisymmetric modes with m = 1 can be unstable and the same
is true in the present 3D approximation. The modes with uθ antisymmetric with respect
to the equator are marked with Am and the modes with uθ symmetric with respect to
the equator are marked with Sm .

Let us start with the rotation law (f = 0). The Prandtl number is fixed as

Pr =
ν

χ
= 2 · 10−6 , (2.6)

where ν and χ are viscosity and thermal conductivity.
The main result is given in Fig. 2 which shows the neutral-stability lines for various

a= δΩ/Ω . Only A1 and S2 are obtained as unstable (S1 is stable!). For k → 0 the Watson
result a= 0.286 is reproduced. With radial stratification, however, this critical value is
reduced to a= 0.21. For ideal fluids Cally (2003) found instability for a= 0.24 which also
fits our result. Hence, for a < 0.21 the solar tachocline remains hydrodynamically stable.
There is thus no shear-induced turbulence. Note also that for N → 0 (mimicking the
convection zone) no instability exists.

Figure 3. Hydrodynamic-stability map for various values f for the power of the cos4 θ-term
in the rotation law (2.2). This term destabilizes the S1 mode. For high f already rather small
shear values become unstable.

The calculations have been repeated with the cos4 θ-term included in the rotation law.
Then the S1 mode becomes dominant and reduces the critical shear. For f = 0.5 the
maximum shear for stability results to a= 0.16 (Fig. 3).

This is a rather small value. Both our modifications of the Watson approach are desta-
bilizing the differential rotation. If the shape of the surface rotation with f = 0.5 would be
conserved through the convection zone and the tachocline then only 50% of the surface
shear can indeed produce hydrodynamic turbulence in the tachocline. If the shear is not
conserved (f = 0) then the minimum shear for turbulence is 0.21, large enough to ensure
stability.

A dramatic stabilization, however, of the latitudinal shear results from the inclu-
sion of the tachocline rotation law as observed with its large radial gradients into the
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calculations. With a 3D code without stratification one can show that in this case all
rotation laws with a < 0.5 should be stable (Arlt et al. 2005).

In order to decide the stability problem of the solar tachocline informations are needed
about the exact shape of the rotation law there. Charbonneau et al. (1999) analyzed the
helioseismic data and found a � 0.15 and f � 0. After our analysis (and also after theirs)
such a rotation law is hydrodynamically stable. Obviously, we have to know in detail the
space dependence (and time dependence) of the internal solar rotation.

2.2. MHD stability

We consider the tachocline as hydrodynamically stable. The magnetic Prandtl number
is thus the microscopic one for which we use Pm = 0.005 as a characteristic value. For
the instability of toroidal fields the ratio of Pm and Pr, the Roberts number

q=
χ

η
(2.7)

plays a basic role. For the Sun the typical value 2500 is used. The interaction of rotation
and toroidal magnetic fields (of a simplified structure) will be demonstrated with these
parameters. The general result is that for small q the field must be strong to become
unstable while for q � 1 much weaker fields become unstable. However, the growth
times (in units of the rotation period) for the weak-fields are much longer (by orders of
magnitudes) than the growth times of strong fields (of order of the Alfvén period).

The left plot of Figs. 4 concerns a field with only one belt which peaks at the equator.
The Alfvén frequency ΩA is defined by

Bφ = r sin θ
√

μ0ρΩA , (2.8)

and is considered as constant (see Cally 2003). The global rotation is assumed as rigid.
For this case Fig. 4 (left) reveals the fields with ΩA >Ω as always unstable with growth
rates >∼ ΩA. Toroidal fields with amplitudes VA

>∼ Ueq , i.e. ∼105 Gauss (for the Sun)
cannot stably exist in the radiative solar core. Even weaker fields with ΩA

>∼ 0.005Ω can
be unstable but only for very high heat-conductivity. For q = 0 the weak fields are stable.
For q � 1 they are indeed unstable but with growth rates smaller than 10−4 . The growth
time τgrowth in units of the rotation period is

τgrowth

τrot
=

1
2πγ

(2.9)

with the normalized growth rate γ =
(ω)/Ω0 . The maximum growth time is then > 1000
rotation periods (but much shorter than the diffusion time). Even for very large q there
is a magnetic limit below the magnetic field is always stable. From Fig. 4 (one or two
belts) we find the minimum field is ΩA � 0.005Ω . For the Sun, therefore, the maximum
stable field in the model is ∼600 Gauss.

The model is insofar correct as the microscopic diffusivity values (viscosity, magnetic
diffusivity, heat-conductivity) have their real amplitudes (for ideal fluids, see Cally 2003).
The model, however, is insofar not correct as the radial profiles of the fields are assumed
as nearly uniform. Arlt et al. (2007) work with a 3D code without buoyancy (q →
∞,Pm= 0.01) for toroidal field belts with strong radial gradients and find instability for
weak fields with amplitudes of order 10 Gauss.

Not surprisingly, for two belts with equatorial antisymmetry (the field vanishes at the
equator) there are some differences to the one-belt model, but the maximal stable field
amplitudes are always of the same order (Fig. 4, right).
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Figure 4. Normalized growth rates for the magnetic instability in rigidly rotating stars. The
curves are marked with their values of the Roberts number (2.7). Left: one magnetic belt peaking
at the equator; right: two magnetic belts with zero-field at the equator. There are two instability
domains: for strong magnetic fields (ΩA > Ω) the growth rates are high (� ΩA /Ω) and for weak
magnetic fields (ΩA < Ω) they are very small (� (ΩA /Ω)2 ). The latter domain only exists for
q � 1 (perfect heat conduction).

Figure 5. A star spinning down moves from the top (stable area) to the bottom (unstable area).
It is shown that a toroidal magnetic field of 200 Gauss is stable for the solar rotation period but
the stability is lost for slower rotation.

2.3. Effect of stellar spin-down

The question arises whether a solar-type star is always able to form a tachocline. The older
the star the slower its rotation. Hence the rotational quenching of the Tayler instability
becomes weaker and weaker for older stars so that the instability becomes more efficient.
By its spin-down the star moves to the right along the abscissa of both the Figs. 4. The
(slow) magnetic decay goes in the opposite direction; this effect is still neglected. We
assume that the total amount of the latitudinal differential rotation remains constant
during the star’s spin-down. This is a well-established assumption (see Kitchatinov &
Rüdiger 1999; Küker & Stix 2001).

Figure 5 shows the results. We have computed the normalized growth rates of the
magnetic instability of rotating stars with a toroidal field of 200 Gauss and a differential
rotation of δΩ � 0.06 day−1 (the solar value). The rotation period is normalized with
25 days in Fig. 5 so that the horizontal yellow line represents the Sun. In the upper part
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of the plot the 200 Gauss are stable while in the lower part of the plot they are unstable.
Obviously, the Sun lies in the stable area but very close to the instability limit. We are
thus tempted to predict that G2 stars older than the Sun (or better: of slower rotation)
should not have a tachocline. When the toroidal field becomes unstable then the resulting
turbulence is able to destroy the tachocline rather fast.

2.4. Chemical mixing

The flow pattern of the magnetic instability also mixes passive scalars like temperature
and chemical concentrations. The instability, therefore, could be relevant for the so-
called lithium problem. In order to explain the observed lithium concentration at the
solar surface one needs a turbulent mixing beneath the convection zone which enhances
the microscopic value of the diffusion coefficient of 30 cm2/s by (say) two orders of
magnitude. Note the smallness of this quantity; only a very mild turbulence can provide
such a small value of the diffusion coefficient

DT � 〈u′2〉τcorr . (2.10)

This relation is used here as a rough estimate, a quasilinear theory of turbulent mixing
has been established by Rüdiger & Pipin (2001) also for rotating turbulences. For a
correlation time of the order of the rotation period the desired mixing velocity is only
1 cm/s.

One can estimate the characteristic time by τcorr � l2/DT with l as the radial scale
of the instability and DT � 104 cm2/s. For the radial scale the value 1000 km has been
found by Kitchatinov & Rüdiger (2008). With this value it follows τcorr � 1012 s which
corresponds to a very small normalized growth rate of τrot/τ � 10−6 . The resulting
toroidal field which fulfills this condition is smaller than 600 Gauss (Fig. 6). Stronger
fields would produce a too strong mixing which would lead to much smaller values for
the lithium abundance in the solar convection zone than observed.

Our result in connection with the observed lithium values also excludes the possibility
that some dynamo works in the upper part of the solar radiative core. If such a (‘Tayler-
Spruit’) dynamo exists then the resulting toroidal fields with less than 600 Gauss are much
too weak to influence the magnetic activity of the Sun with magnetic fields exceeding
10 kGauss.

Figure 6. Growth rates in units of Ω for the two-belts model and for a fixed radial scale of
1000 km. The right-hand scale gives the estimated values for the diffusion coefficient for passive
scalars and the uppermost scale gives the magnetic field amplitude in kGauss.
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3. Tayler instability in Taylor-Couette systems
To simplify matters we consider the pinch-type instability in a Taylor-Couette system

filled with a conducting fluid which is nonstratified in axial direction. The stationary
rotation law between the cylinders is Ω = a + b/R2 where a and b are given by the fixed
rotation rates of the cylinders. In a similar way the stationary toroidal field results as
Bφ = AR+B/R. In the following we have fixed the values at the cylinders to Ωout = 0.5Ωin
and mostly μB = Bout/Bin = 1 is used. The outer cylinder radius is fixed to 2Rin . Reynolds
number Rm and Hartmann number Ha are defined as

Rm =
ΩinR2

in

η
, Ha =

BinRin√
μ0ρνη

, (3.1)

the magnetic Prandtl number here is always put to unity.
A detailed description of the used nonlinear MHD code for incompressible fluids is

given by Gellert et al. (2007). In the vertical direction periodic boundary conditions are
used to avoid endplate problems. In this approximation the endplates rotate with the
same rotation law as the fluid does. The height of the virtual container is assumed as
6D with D the gap width between the cylinders. The cylinders are considered as perfect
conductors. The code was first tested for the nonaxisymmetric AMRI which appears
if stable rotation laws and stable toroidal fields (current-free, μB = 0.5) are combined
(Rüdiger et al. 2007). Figure 7 (left) shows the instability domain (solid) which for given
(supercritical) magnetic field always lies between a lower Reynolds number and an upper
Reynolds number. For too slow rotation the nonaxisymmetric modes are not yet excited,
but for too fast rotation the nonaxisymmetric instability modes are destroyed so that
the field becomes stable again.

Figure 7. Pm = 1, μB = 0.5 (current-free). Left: stability diagram from nonlinear simulations.
Dots: stability, stars: instability; the solid line results from the linear theory. Right: m-spectrum
for Re = 250, Ha = 110. The m = 1 mode contains 69% of the total magnetic energy.

Between the limiting Reynolds numbers the instability is no longer monochrome but
also other modes than m = 1 are nonlinearly excited. The m = 1 mode often contains
the majority of the total magnetic energy (Fig. 7, right). There are also cases, however,
where m = 0 and m = 1 contain nearly the same amount of magnetic energy. Note that
the nonlinear effects can provide remarkable portions of the energy of the instability in
form of axisymmetric rolls although the basic instability is a nonaxisymmetric one.

Now with μB = 1 positive axial currents between the cylinders are allowed. Again there
are two different instability domains for the nonaxisymmetric modes with m = 1. They
are separated by a stable domain (Fig. 8, left). The upper one is for fast rotation and
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Figure 8. Left: The instability map for μΩ = 0.5, μB = 1, Pm = 1. The hatched area is stable.
Right: The growth rate (normalized with the rotation rate of the inner cylinder) along the
horizontal line at Re = 500. The instability in the upper domain (AMRI) grows slowly while in
the lower domain (TI) it grows much faster.

weak fields (Re >Ha) and the lower one is for strong fields and slow rotation (Ha>Re).
The growth rates in both domains are very different: The weak-field instability is slow
and the strong-field instability is very fast (Fig. 8, right). The rotation-dominated insta-
bility disappears for rigid rotation while the magnetic-dominated instability even exists
without rotation (Re = 0). The latter one is the Tayler instability (TI) under the stabiliz-
ing influence of the basic stellar rotation (Pitts & Tayler 1985). The rotation-dominated
(‘upper’) instability appears to be the AMRI which also exists under the modifying in-
fluence of weak axial currents in the fluid. Note again that i) too fast rotation finally
stops both the instabilities, and ii) its growth rate is very small. One must also stress
that the presented results only concern the most simple case of Pm= 1. For very strong
fields the stable domain between AMRI and TI disappears.

The condition for the existence of TI as given in Fig. 8 (left) is Bφ >
√

μ0ρRΩ while
the condition for AMRI is RΩ >Bφ/

√
μ0ρ. Both the instabilities, however, only exist if

the rotation is not too fast. Nonaxisymmetric modes are always stabilized by sufficiently
fast rotation.

Ap stars (with 10 kGauss and a rotation period of several days) and neutron stars (with
1012 Gauss and a rotation period of 10 ms) are rotation-dominated. Their instabilities
are not of the Tayler-type. In the following we have thus considered the AMRI in more
detail. For given Ha (= 500) the eddy viscosity, the diffusion coefficient DT and the
Schmidt number

Sc =
νT

DT
(3.2)

are computed. The eddy viscosity νT is the ratio of the angular momentum transport
by Reynolds stress and Maxwell stress and the differential rotation. We find a νT of the
order of the microscopic value (Fig. 9, left). The maximum exists as the instability –
as mentioned – disappears for too fast rotation. The averaging procedure concerns the
whole container so that the values in Fig. 9 are lower limits.

So far the diffusion coefficient for chemicals could only be estimated by DT � 〈u′2
R 〉/Ω .

It proves to be much smaller than the viscosity. Brott et al. (2008) have shown that for
too strong mixing the stellar evolution is massively affected. A better theory must solve
the diffusion equation.

Accepting this approximation the resulting Schmidt number (3.2) reaches values of
20 . . . 30 (Fig. 9, right). Obviously, the angular momentum is mainly transported by the
Maxwell stress while the diffusion of passive scalars is due to only the Reynolds stress
which is much smaller. Quite similar results have been obtained by Carballido et al.
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Figure 9. Left: the eddy viscosity in units of the microscopic viscosity for μΩ = 0.5, μB = 1,
Pm = 1 and Ha = 500. It grows for faster rotation. Right: the Schmidt number (3.2).

(2005) and Johansen et al. (2006) for the Schmidt number of the standard MRI. Maeder
& Meynet (2005) for a hot star with 15 solar masses and for 20 kGauss find much
higher values of the Schmidt number (106). Also Heger et al. (2005) work with magnetic
amplitudes of 10 kGauss for which ΩA < Ω hence the growth rates are small.
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Arlt, R., Sule, A., & Rüdiger, G. 2005, A&A 441, 1171
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Rüdiger, G. & Pipin, V. V. 2001, A&A 375, 149
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