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THE J0-RADICAL OF A MATRIX NEARRING
CAN BE INTERMEDIATE

J. D. P. MELDRUM AND J. H. MEYER

ABSTRACT. An example is constructed to show that the J0-radical of a matrix near-
ring can be an intermediate ideal. This solves a conjecture put forward in [1].

1. Introduction. Soon after the discovery of intermediate ideals in matrix nearrings
(see [1] and [4]), several questions were raised in connection with these ideals. A fact
which followed immediately was that the J2-radical of a matrix nearring can never be
intermediate—for any (zerosymmetric) nearring R we have J2

�
Mn(R)

�
≥

�
J2(R)

�Ł
(see

[7, Theorem 4.4]). Because this relation does not hold for the J0-radical in general (see
[2]), the question was raised in [1] whether the J0-radical of a matrix nearring can be
intermediate. The object of this note is to provide an example of a finite zerosymmetric
abelian nearring R for which J0

�
Mn(R)

�
is an intermediate ideal.

2. Preliminaries. We will assume R to be a right zerosymmetric nearring with iden-
tity 1. For a natural number n we define Rn to be the direct sum of n copies of the (not
necessarily abelian) group (R, +). For r 2 R and 1 � i, j � n we define the function
f r
ij: Rn ! Rn by f r

ijã ≥ ìi
�
rôj(ã)

�
for each ã 2 Rn, where ìi: R ! Rn and ôi: Rn ! R are

the i-th injection and projection functions respectively. The subnearring of M(Rn) gen-
erated by the set ff r

ij j r 2 R, 1 � i, j � ng is called the n ð n matrix nearring over R
and denotedMn(R). It is easy to verify thatMn(R) is also a right zerosymmetric nearring
with identity.

For an ideal A Ø R there are two ways to construct an ideal in Mn(R) which relates
naturally to A (see [6]), namely

A+ :≥ idhf a
ij j a 2 A, 1 � i, j � ni

and
AŁ :≥ fU 2 Mn(R) j Uã 2 An for all ã 2 Rng.

It easily follows that A+ � AŁ, and several examples exist (see [6], [2], [1] and [4])
to show that A+ ²

Â≥

AŁ is possible. It is also possible that ideals of Mn(R) can be properly

situated between A+ and AŁ (see [1] and [4]). Any ideal I of Mn(R) with the property
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that A+ ²
Â≥

I ²
Â≥

AŁ for some ideal A of R is called an intermediate ideal of Mn(R). In [1]

it is shown that an intermediate ideal can never be of the form B+ or BŁ for any ideal B
of R. In the next section we construct a nearring R for which J0

�
Mn(R)

�
is intermediate.

3. An example. We need the following result.

LEMMA 3.1. Suppose R is a zerosymmetric nearring with an ideal A such that A2 ≥
f0g. Then (A+)2 ≥ f0g in Mn(R).

PROOF. From [6, Proposition 7] it follows that (A+)2 � A+AŁ � f0gŁ ≥ f0g.

The example: Consider the following abelian groups:

M :≥ Z2 ý Z2

N :≥ M ý Z2

G :≥ N ý Z2.

Let M1, M2, M3 denote the two-element subgroups of M with mi 2 Mi the nonzero
element for each i ≥ 1, 2, 3. Similarly, let N1, N2, N3, N4 denote the two-element sub-
groups of N which are not subgroups of M, with ni 2 Ni the nonzero element for
each i ≥ 1, 2, 3, 4. Finally, let g1, g2, . . . , g8 denote the elements of G n N. We iden-
tify Mýf0gý f0gwith M and Nýf0gwith N, and 0̄ :≥ (0, 0, 0, 0) denotes the neutral
element of G.

Define the nearring R as follows:

R :≥ ff 2 M0(G) j f (Mi) � Mi, 1 � i � 3; f (Nj) � Nj, 1 � j � 4;

g, g0 2 G and g� g0 2 M ) f (g) � f (g0) 2 M;

g, g0 2 G and g� g0 2 N ) f (g) � f (g0) 2 Ng.

Then R is a right, zerosymmetric abelian nearring with identity 1. Moreover, R is finite
with jRj ≥ 223.

Define the R-subgroups K and L of R as follows:

K :≥ ff 2 R j f (gi) 2 M, 1 � i � 8; 0̄ otherwiseg

L :≥ ff 2 R j f (gi) 2 N, 1 � i � 8; 0̄ otherwiseg.

We may now draw several conclusions.

I. K and L are R-ideals of R.

PROOF. This follows because M and N are R-ideals of RG.

Observation I enables us to consider the R-modules RK, R(LÛK) and R(RÛL).
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II. J0(R) ≥ AnnR N \AnnR(GÛN).

PROOF. Each of Mi(1 � i � 3) and Nj(1 � j � 4) and GÛN, is an R-module of type
0 (they are all of order 2 and nontrivial). We also have that

AnnR N ≥
� 3\

i≥1
AnnR Mi

½
\
� 4\

j≥1
AnnR Nj

½
.

It follows that
J0(R) � AnnR N \AnnR(GÛN).

But since AnnR N \ AnnR(GÛN) is a nilpotent ideal of R, the reverse inclusion also
follows.

Note that the R-modules Mi(1 � i � 3), Nj(1 � j � 4) and GÛN are in fact of type 2,
implying that J0(R) ≥ J2(R).

III.
�
J0(R)

�+
is a nilpotent ideal of nilpotency degree 2 in M2(R).

PROOF. By II we have that
�
J0(R)

�2
≥ f0g. The result now follows directly from

Lemma 3.1.

IV. J0

�
M2(R)

�
contains a nilpotent element of nilpotency degree 3.

PROOF. By I we can consider K2, L2ÛK2 and R2ÛL2 asM2(R)-modules (see also [3,
Proposition 4.1]). Define

A :≥ AnnM2(R) K2 \AnnM2(R)(L
2ÛK2) \ AnnM2(R)(R

2ÛL2).

Then A is a nilpotent ideal of M2(R) (A3 ≥ f0g) yielding

A � J0

�
M2(R)

�
.

Consider the elements g1, n1, n2, m3 2 G, where

g1 :≥ (0, 0, 0, 1)

n1 :≥ (0, 1, 1, 0) 2 N

n2 :≥ (1, 0, 1, 0) 2 N

m3 :≥ (1, 1, 0, 0) 2 M;

and the elements a, b, c, d 2 R, where

a(gi) :≥ n1, 1 � i � 8; 0̄ otherwise

b(gi) :≥ n2, 1 � i � 8; 0̄ otherwise

c(m3) :≥ m3; 0̄ otherwise

d(nj) :≥ nj, 1 � j � 4; 0̄ otherwise;

and finally here, the matrix V 2 M2(R), defined by

V :≥ f a
11 + f b

21 + f c
11(f d

11 + f d
12).
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We show that V 2 A. Take any hk, k0i 2 K2. Then Vhk, k0i ≥ hak +c(dk +dk0), bki. Now,
for any i, 1 � i � 8, we have k(gi), k0(gi) 2 M while a(M) ≥ b(M) ≥ d(M) ≥ f0̄g. Since
k(N) ≥ k0(N) ≥ f0̄g, it follows that ak + c(dk + dk0) ≥ bk ≥ 0, implying that

(1) V 2 AnnM2(R) K2.

Now take any hl, l0i 2 L2. Then Vhl, l0i ≥ hal + c(dl + dl0), bli. Since l(G), l0(G) � N and
a(N) ≥ b(N) ≥ f0̄g, while c(G) � M, it follows that [al + c(dl + dl0)](gi), bl(gi) 2 M for
all i, 1 � i � 8. Also, l(N) ≥ l0(N) ≥ f0̄g, and we deduce that

(2) V 2 AnnM2(R)(L
2ÛK2).

Finally, take any hr, r0i 2 R2. Then Vhr, r0i ≥ har + c(dr + dr0), bri. Since a(G), b(G),
c(G) � N, it follows that [ar + c(dr + dr0)](gi), br(gi) 2 N for all i, 1 � i � 8. Consider
nj 2 Nj (1 � j � 4). Then

[ar + c(dr + dr0)](nj) 2 a(Nj) + c
�
d(Nj) + d(Nj)

�
� c(Nj) ≥ f0̄g.

Also, br(nj) ≥ 0̄. Now consider mi 2 Mi (1 � i � 3). Then

[ar + c(dr + dr0)](mi) 2 a(Mi) + c
�
d(Mi) + d(Mi)

�
� c(Mi) ≥ f0̄g,

while br(mi) ≥ 0̄. It follows that har + c(dr + dr0), bri 2 L2, i.e.,

(3) V 2 AnnM2(R)(R
2ÛL2).

Our claim that V 2 A is now established by virtue of (1), (2) and (3). Now consider

V2h1, 0i ≥ Vha + cd, bi

≥ Vha, bi since cd ≥ 0

≥ ha2 + c(da + db), bai

≥ hc(da + db), 0i since a2 ≥ ba ≥ 0.

This, together with

c(da + db)(g1) ≥ c
�
d(n1) + d(n2)

�

≥ c(n1 + n2)

≥ c(m3), since n1 + n2 ≥ m3

≥ m3 Â≥ 0̄,

shows that V2 Â≥ 0. Since A � J0

�
M2(R)

�
, IV is proved.

V.
�
J0(R)

�+
²
Â≥

J0

�
M2(R)

�
.

PROOF. This follows directly from III and IV.
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VI. J0

�
M2(R)

�
²
Â≥

�
J0(R)

�Ł
.

PROOF. Consider the R-subgroup K0 of K generated by the elements k1, k2 2 K
where

k1(g1) :≥ m1; 0̄ otherwise,

k2(g1) :≥ m2; 0̄ otherwise.

In other words,
K0 ≥ ff 2 R j f (g1) 2 M; 0̄ otherwiseg.

Now suppose f0g ²
Â≥

K0
0 ²

Â≥

K0 is a proper nontrivial R-subgroup of K0. Then there exists

m 2 M such that m Û2 K0
0(g1). Choose km 2 K0 such that km(g1) ≥ m and r 2 R such that

r(m) ≥ m and r(g) ≥ 0̄ if g Â≥ m. Now let k 2 K0
0, k Â≥ 0. Then [r(k + km) � rkm](g1) ≥

�m Û2 K0
0(g1), which implies that r(k + km) � rkm Û2 K0

0, i.e., K0
0 is not an R-ideal of K0.

Consequently, K0 is a simple R-module R-generated by two elements k1, k2 2 K. This
means that K2

0 ≥ K0 ý K0 is a simple M2(R)-module generated by the single element
hk1, k2i, i.e., K2

0 is anM2(R)-module of type 0 (see [5, Lemma 3.1(b)]). This implies that

(4) J0

�
M2(R)

�
� AnnM2(R) K2

0.

Now consider the matrix
W :≥ f s

11(f t
11 + f t

12),

where t(mi) :≥ mi, i ≥ 1, 2; 0̄ otherwise, and s(m3) :≥ m3; 0̄ otherwise. Take any hr, r0i 2 R2.
Then Whr, r0i ≥ hs(tr + tr0), 0i. For mi, i ≥ 1, 2, we have

s(tr + tr0)(mi) 2 s
�
t(Mi) + t(Mi)

�
� s(Mi) ≥ f0̄g.

Also, for m3 we see that

(tr + tr0)(m3) 2 s
�
t(M3) + t(M3)

�
� s(f0̄g) ≥ f0̄g.

For nj, 1 � j � 4, we obtain s(tr + tr0)(nj) ≥ f0̄g, since s(nj) ≥ 0̄, 1 � j � 4. Hence, we
see that s(tr+tr0) 2 AnnR N. Also, since s(G) � N, it follows that s(tr+tr0) 2 AnnR(GÛN),
whence W 2

�
J0(R)

�Ł
. Now consider hk1, k2i 2 K2

0. Then Whk1, k2i ≥ hs(tk1 + tk2), 0i

and s(tk1 + tk2)(g1) ≥ s
�
t(m1) + t(m2)

�
≥ s(m1 + m2) ≥ s(m3) ≥ m3 Â≥ 0̄.

Consequently, W Û2 AnnM2(R) K2
0. By (4), W Û2 J0

�
M2(R)

�
and so J0

�
M2(R)

�
²
Â≥

�
J0(R)

�Ł
.

VII. J0

�
M2(R)

�
is an intermediate ideal.

PROOF. This follows by V and VI.
One of the key properties of this example is that

�
J0(R)

�+
� J0

�
M2(R)

�
. It is not

known whether this is true in general, although it seems to be a plausible conjecture,
which we formalize as follows:
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CONJECTURE 2.2. If R is a zerosymmetric nearring with identity, then
�
J0(R)

�+
�

J0

�
Mn(R)

�
.
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