Proceedings of the Edinburgh Mathematical Society (1993) 36, 289-297 ©

THE *p*-HUPPERT-SUBGROUP AND THE SET OF *p*-QUASI-SUPERFLUOUS ELEMENTS IN A FINITE GROUP

by ANGEL CAROCCA and RUDOLF MAIER

(Received 31st July 1991)

Based on the theory of *p*-supersoluble and supersoluble groups, a prime-number parametrized family of canonical characteristic subgroups $\Gamma_p(G)$ and their intersection $\Gamma(G)$ is introduced in every finite group G and some of its properties are studied. Special interest is dedicated to an elementwise description of the largest *p*-nilpotent normal subgroup of $\Gamma_p(G)$ and of the Fitting subgroup of $\Gamma(G)$.

1991 Mathematics subject classification: 20D25, 20E28.

0. Introduction

Let p be a prime number. The p-supersoluble groups ([4, p. 713]) are characterized among the p-soluble groups by a famous theorem due to Huppert ([4, p. 717, Th. 9.2/ 9.3], [5]). The p-soluble group G is p-supersoluble, if and only if, for every maximal subgroup V of G, the index |G: V| is p or relatively prime to p.

Huppert's theorem has a general significance in all finite groups G: For every prime p we introduce the characteristic subgroup $\Gamma_p(G)$ (the p-Huppert-subgroup of G) as being the intersection of all maximal subgroups of G which have composite index divisible by p. Let $A_p(G)$ be the largest normal p-soluble subgroup of G. Then $A_p(\Gamma_p(G)) = A_p(G) \cap \Gamma_p(G)$ is p-supersoluble for every G. Moreover, $\Gamma(G) = \bigcap_p \Gamma_p(G)$, the intersection of all maximal subgroups of G of composite indices, is supersoluble. These results can be deduced from recent literature [2]. Using Huppert's theorem and a natural generalization for p-soluble groups of G aschütz' theory of saturated formations, we give independently a short proof of these facts.

Our main attention we direct to $\mathbf{F}_p(\mathbf{\Gamma}_p(G))$, the largest *p*-nilpotent normal subgroup of $\mathbf{\Gamma}_p(G)$ and $\mathbf{F}(\mathbf{\Gamma}(G))$, the Fitting subgroup of $\mathbf{\Gamma}(G)$. These subgroups merit special interest: The elements of the Frattini-subgroup $\Phi(G)$, the intersection of all maximal subgroups of *G*, are known as the *superfluous* elements of *G* (see [4, p. 268]). We call an $x \in G$ a *quasi-superfluous* element of *G*, if the cyclic group $\langle x \rangle$ is permutable with every maximal subgroup of *G*. With respect to a prime number *p*, we call *x* a *p*-*quasi-superfluous* element of *G* if $\langle x \rangle V = V \langle x \rangle$ holds for the maximal subgroups *V* of *G* which have index divisible by *p*. Let $\mathbf{Qs}_p(G)$ denote the set of all *p*-quasi-superfluous elements, $\mathbf{Qs}(G) = \bigcap_p \mathbf{Qs}_p(G)$ the set of all quasi-superfluous elements of *G*. We show: For every group *G*, the set $\mathbf{Qs}(G)$ coincides with $\mathbf{F}(\mathbf{\Gamma}(G))$ and, for odd prime *p*, the set $\mathbf{Qs}_p(G) \cap \mathbf{A}_p(G)$ is $F_p(\Gamma_p(G))$. In particular these sets are subgroups of G which from their definition is not immediate. We use conventional notions and notation.

1. The *p*-Huppert-subgroup

Definition. Let G be a group.

(a) For every prime number p, the p-Huppert-subgroup $\Gamma_p(G)$ of G is the intersection of all maximal subgroups V of G such that $p||G: V| \neq p$.

(b) The intersection $\Gamma(G) = \bigcap_{p} \Gamma_{p}(G)$ we call the Huppert-subgroup of G.

Obviously $\Gamma_p(G)$ and $\Gamma(G)$ are characteristic subgroups of G which contain $\Phi(G)$. We have $\Gamma_p(G) = G$ if and only if every maximal subgroup of G is of index p or relatively prime to p. $\Gamma(G) = G$ if and only if every maximal subgroup of G is of prime index in G.

By the definition it is clear that, for a normal subgroup N of G such that $N \leq \Gamma_p(G)$, one has $\Gamma_p(G/N) = \Gamma_p(G)/N$. Moreover, the largest normal p'-subgroup $\mathbf{O}_{p'}(G) \leq \Gamma_p(G)$.

One first observation is:

Proposition 1.1. (a) The p-soluble group G is p-supersoluble if and only if $\mathbf{F}_p(G) \leq \Gamma_p(G)$.

(b) The soluble group G is supersoluble if and only if $F(G) \leq \Gamma(G)$.

Proof. Applying (a) for all p, we see that (b) is a consequence of (a). To prove (a) we mention that, by Huppert's theorem, the p-soluble group G is p-supersoluble if and only if $\Gamma_p(G) = G$. So we only have to prove that $\Gamma_p(G) = G$ if $\mathbf{F}_p(G) \leq \Gamma_p(G)$. By definition of $\Gamma_p(G)$, it suffices to show that $G/\Gamma_p(G)$ is abelian. We induct on |G| to show that $G/\mathbf{F}_p(G)$ is abelian. If $N = \Phi(G)$ or $N = \mathbf{O}_{p'}(G)$, then $\Gamma_p(G/N) = \Gamma_p(G)/N$ and $\mathbf{F}_p(G/N) = \mathbf{F}_p(G)/N$. Therefore the result holds by induction in the case N > 1. So we may assume that $\Phi(G) = \mathbf{O}_{p'}(G) = 1$. Now $\mathbf{F}_p(G)$ is a p-group and $1 = \Phi(G) = \Gamma_p(G) \cap \mathbf{F}_p(G) \cap D = \mathbf{F}_p(G) \cap D$, where D is the intersection of all maximal subgroups U of G such that $\mathbf{F}_p(G) \leq U$. For every such U we have that |G:U| = p and $\mathbf{F}_p(G)/\mathbf{F}_p(G) \cap U$ is a chief factor of G of order p. Therefore the commutator subgroup $G' \leq \bigcap_U C_G(\mathbf{F}_p(G)/\mathbf{F}_p(G) \cap U) = C_G(\mathbf{F}_p(G)/\mathbf{F}_p(G) \cap D) = C_G(\mathbf{F}_p(G)/\mathbf{F}_p(G) \cap D) = C_G(\mathbf{F}_p(G)/\mathbf{F}_p(G) \cap D) = C_G(\mathbf{F}_p(G)/\mathbf{F}_p(G) \cap D)$.

The following lemmas are straightforward.

Lemma 1.2. Let G be a group, V a subgroup of G of prime index |G:V| = p and let $V_G = \bigcap_{g \in G} V^g = 1$. Suppose there exists a normal p-soluble subgroup N of G, such that G = VN. Then G is metacyclic.

Proof. If N is chosen minimal with G = VN, then |N| = p, N is self-centralizing in G and G/N is cyclic.

Corollary 1.3. Let G be a group, V a subgroup of G of prime index p and let N be a psoluble normal subgroup of G, such that G = VN. Then G/V_G is metacyclic.

Proof. The group G/V_G fulfills the hypothesis of Lemma 1.2 with NV_G/V_G as *p*-soluble normal subgroup.

If G is a group, \mathscr{F} a formation (see [4, p. 696]), we denote by $G^{\mathscr{F}}$ the smallest normal subgroup of G having \mathscr{F} -factor group ($G^{\mathscr{F}}$ is the so-called \mathscr{F} -residual of G). We remember that a subgroup $H \leq G$ is called a *covering* \mathscr{F} -subgroup or Sylow- \mathscr{F} -subgroup of G, if $H \in \mathscr{F}$ and if for $H \leq X \leq G$ we have $HX^{\mathscr{F}} = X$.

Let $Syl_{\mathscr{F}}(G)$ denote the set of Sylow- \mathscr{F} -subgroups of G.

Lemma 1.4 ([4, p. 701, Th. 7.11]). Let G be a group and \mathscr{F} a formation. Suppose $H \in Syl_{\mathscr{F}}(G)$. If \mathscr{F} contains all groups of prime orders, then $N_G(H) = H$. We are interested in formations which satisfy the following:

Condition (*). Let p be a prime number, \mathcal{F} a non-empty formation of p-soluble groups such that for any group G:

- (a) If $G/\Phi(G) \in \mathcal{F}$, then $G \in \mathcal{F}$ (\mathcal{F} is a so-called saturated formation).
- (b) If $G/\mathbf{O}_{p'}(G) \in \mathscr{F}$, then $G \in \mathscr{F}$.

Examples of formations which satisfy the condition (*) are: The class of *p*-nilpotent groups and the class of all *p*-soluble groups whose *p*-length does not exceed a given upper limit. It is clear that the essential contents of Huppert's theorem, cited in the introduction, can be stated as:

Lemma 1.5. For any prime number p, the class of p-supersoluble groups is a formation satisfying (*) and which contains all metacyclic groups.

It is not hard to show (see [4, p. 700, Th. 7.10]):

Lemma 1.6. Let G be a p-soluble group, \mathcal{F} a formation which satisfies the condition (*). Then

- (a) G has a Sylow-F-subgroup.
- (b) Any two Sylow-F-subgroups of G are conjugate.

Lemma 1.7 (The Frattini Argument). Let G be a group, \mathscr{F} a formation which satisfies the condition (*) and let U be a normal p-soluble subgroup of G. If $H \in Syl_{\mathscr{F}}(U)$, then $G = N_G(H)U$.

Proof. If $g \in G$, then $H, H^{g} \in Syl_{\mathcal{F}}(U)$. By Lemma 1.6 there is a $u \in U$ such that $H^{u} = H^{g}$. Now, $g = (gu^{-1})u$ with $gu^{-1} \in N_{G}(H)$.

292 ANGEL CAROCCA AND RUDOLF MAIER

With these preparations we are now able to prove:

Proposition 1.8. Let p be a prime number, G a group, U a p-soluble normal subgroup of G and let $\Gamma_p(G)$ be the p-Huppert-subgroup of G. Let \mathscr{F} be a formation which satisfies the condition (*) and which contains all metacyclic groups. Then the following holds:

If $U\Gamma_p(G)/\Gamma_p(G) \in \mathscr{F}$, then $U \in \mathscr{F}$.

Proof. Suppose that the proposition fails, and let G be a minimal counterexample to the statement. We will prove a series of consequences of this assumption.

We put $D = \Gamma_p(G) \cap U$.

(i) We have D > 1:

If D=1, then $U \cong U\Gamma_p(G)/\Gamma_p(G) \in \mathscr{F}$ by hypothesis, which contradicts the choice of G. Let N be a minimal normal subgroup of G, such that $N \leq D$.

(ii) $U/N \in \mathscr{F}$ and N is a p-group: Since

$$\frac{(U/N)\Gamma_p(G/N)}{\Gamma_p(G/N)} = \frac{(U/N)(\Gamma_p(G)/N)}{\Gamma_p(G)/N} \cong U\Gamma_p(G)/\Gamma_p(G) \in \mathscr{F},$$

by the minimality of |G|, we have $U/N \in \mathcal{F}$. By the *p*-solubility of *U*, certainly *N* is a *p*-group or a *p*'-group. If *N* is a *p*'-group, then $U/O_{p'}(U) \in \mathcal{F}$ and by the condition (*) $U \in \mathcal{F}$, a contradiction.

(iii) Let $H \in Syl_{\mathcal{F}}(U)$. Then H is not normal in G and |N| = p:

Certainly \mathscr{F} contains all groups of prime orders. So $N_U(H) = H$ by Lemma 1.4. If $H \leq G$, then $U = G \cap U = N_G(H) \cap U = N_U(H) = H \in \mathscr{F}$, a contradiction. Since $U/N \in \mathscr{F}$, clearly HN = U and by the Frattini argument $G = N_G(H)U = N_G(H)N$. Since $N_G(H) \neq G$, we may choose V a maximal subgroup of G such that $N_G(H) \leq V$. Since $N \leq V$, the index $|G: V| = |N: N \cap V|$ is a p-power. Since $\Gamma_p(G) \leq V$, we have |N| = |G: V| = p.

(iv) The contradiction

Since N is a normal p-soluble subgroup of G and NV = G, we have that G/V_G is metacyclic by Corollary 1.3. Also $U/U \cap V_G \cong UV_G/V_G$ is metacyclic and therefore an \mathscr{F} -group. So $N = U^{\mathscr{F}} \subseteq V_G \cap U \subseteq V_G \subseteq V$, contradicting the choice of V.

Our Proposition 1.8 contains:

Theorem 1.9. For any prime number p and any group G we have that $A_p(\Gamma_p(G)) = \Gamma_p(G) \cap A_p(G)$ is p-supersoluble.

Proof. In our proposition we choose $U = A_p(\Gamma_p(G))$. By Lemma 1.5 we take for \mathscr{F} the formation of the *p*-supersoluble groups. Since the unit group $\Gamma_p(G)/\Gamma_p(G)$ surely is *p*-supersoluble, the *p*-supersolubility of $A_p(\Gamma_p(G))$ follows.

Remark. The *p*-supersolubility of $A_p(\Gamma_p(G))$ can also be deduced from [2]: $A_p(\Gamma_p(G))$ is obtained as $\Phi_f(G)$ in [2], choosing there the formation function f to be:

 $f(q) = \begin{cases} \text{the class of the abelian groups whose exponent divides } p-1 & \text{if } q = p \\ \text{the class of all finite groups if } q \neq p. \end{cases}$

Since this f defines locally the formation of all p-supersoluble groups, the result of [2] shows the p-supersolubility of $A_p(\Gamma_p(G))$.

Corollary 1.10. Let G be a group and p a prime number. Suppose that for all maximal subgroups V of G we have

$$p = |G: V|$$
 or $p|G: V|$.

Then $A_n(G)$ is p-supersoluble.

Proof. By hypothesis, $\Gamma_p(G) = G$.

Corollary 1.11 (see [1] and [2]). For every group G, the Huppert subgroup $\Gamma(G)$ is supersoluble.

Proof. By definition $\Gamma(G) = \bigcap_p \Gamma_p(G)$. Let $M = \bigcap_p A_p(\Gamma_p(G))$. By Theorem 1.9, M is supersoluble and $M \leq \Gamma(G)$. If we know that $\Gamma(G)$ is soluble, then $\Gamma(G) \leq \bigcap_p A_p(G)$ and $\Gamma(G) = M$.

So we have to prove that $\Gamma(G)$ is soluble. We proceed by induction on |G|: Clearly we may assume $\Gamma(G) \neq 1$. Let p be the largest prime divisor of $|\Gamma(G)|$ and consider a Sylowp-subgroup P of $\Gamma(G)$. The (ordinary) Frattini argument yields that $G = N_G(P)\Gamma(G)$. If P is not normal in G, choose a maximal subgroup V of G, such that $N_G(P) \leq V$. Since $\Gamma(G) \leq V$, |G:V| = q for some prime number q.

We put $U = \Gamma(G) \cap V$ and obtain

$$q = |G: V| = |\Gamma(G)V: V| = |\Gamma(G): U|.$$

Applying Sylow's Theorem for P in $\Gamma(G)$ and in U, we obtain

$$1 \equiv |\Gamma(G): \mathbf{N}_{\Gamma(G)}(P)| = |\Gamma(G): U| |U: \mathbf{N}_{U}(P)| \equiv q \cdot 1 \mod p,$$

whence $q \equiv 1 \mod p$. Since q divides $|\Gamma(G)|$, q is not bigger than p, a contradiction. So $P \cong G$. By induction. $\Gamma(G)/P = \Gamma(G/P)$ is soluble. Therefore also $\Gamma(G)$ is soluble.

2. The *p*-quasi-superfluous elements

The purpose of this second section is to describe the elements of $F(\Gamma(G))$ and (for odd p) those of $F_p(\Gamma_p(G))$ by means of permutability properties.

Definition. Let G be a group and $x \in G$.

(a) If p is a prime number, we call x a p-quasi-superfluous element of G, if $\langle x \rangle V = V \langle x \rangle$ holds for the maximal subgroup V of G, whenever p ||G: V|.

(b) We call x a quasi-superfluous element of G, if x is p-quasi-superfluous for every p.

Let $\mathbf{Qs}_p(G)$ denote the set of *p*-quasi-superfluous elements, $\mathbf{Qs}(G) = \bigcap_p \mathbf{Qs}_p(G)$ the set of the quasi-superfluous elements of G.

Certainly, $Qs_p(G)$ and Qs(G) are characteristic subsets of G. Qs(G) is exactly the set of elements x of G such that $\langle x \rangle$ is M-embedded (M-eingebettet) in G in the sense of [6].

Let $\Delta(G)$ denote the intersection of the non-normal maximal subgroups of G (see [3]). Clearly all elements of $\Delta(G)$, in particular the elements of the Frattini subgroup, as well as the elements of the hypercentre of G, are quasi-superfluous.

In the simple group G = PSL(2, 7) we have $Qs_3(G) = G$ whereas $Qs_7(G) = \{x \in G \mid x^7 = 1\}$ is not a subgroup of G.

In the symmetric group S_4 of degree four we get $Qs_3(S_4) = A_4$, the alternating group, whereas $Qs_2(S_4)$ is not a subgroup of S_4 , because the four cycle $(iklm) \in Qs_2(S_4)$, but $(il)(km) = (iklm)^2 \notin Qs_2(S_4)$.

Our aim is to prove:

Theorem 2.1. Let G be a group and p a prime number.

(a) $\mathbf{F}_p(\Gamma_p(G)) \subseteq \mathbf{Qs}_p(G) \cap \mathbf{A}_p(G)$.

(b) If p is odd or if G has no factor group isomorphic to S_4 , then $Qs_p(G) \cap A_p(G) = F_p(\Gamma_p(G))$. In particular, $Qs_p(G) \cap A_p(G)$ is a p-nilpotent characteristic subgroup of G.

(c) $Qs(G) = F(\Gamma(G))$. In particular, Qs(G) is always a nilpotent characteristic subgroup of G.

Remark. Since $Qs_2(S_4)$ is not a subgroup of S_4 , the hypothesis in (b) can not be omitted.

We mention the following interesting and immediate consequence, which is not at all evident from the definition of the sets Qs(G) and $Qs_p(G)$.

Corollary 2.2. (a) Let $x, y \in G$ be elements such that $\langle x \rangle$ and $\langle y \rangle$ are permutable with every maximal subgroup of G. Then for all $z \in \langle x, y \rangle$, the group $\langle z \rangle$ is also permutable with every maximal subgroup of G.

(b) Let p > 2 be a prime number and G a p-soluble group. If $x, y \in G$ are elemenets such that $\langle x \rangle$ and $\langle y \rangle$ are permutable with every maximal subgroup of G of index divisible by p, then, for all $z \in \langle x, y \rangle$, also $\langle z \rangle$ is permutable with the same maximal subgroups.

As a consequence of 2.1 and 1.1 we have:

294

Corollary 2.3. (a) Let G be a p-soluble group. Suppose p>2 or G has no factor group isomorphic to S_4 . Then G is p-supersoluble if and only if $\mathbf{F}_p(G) = \mathbf{Qs}_p(G)$. (b) The soluble group G is supersoluble if and only if $\mathbf{F}(G) = \mathbf{Qs}(G)$.

Proof. (a) Since $A_p(G) = G$, we conclude $Qs_p(G) = F_p(\Gamma_p(G))$ by 2.1(b). Now $F_p(G) = F_p(\Gamma_p(G))$ if and only if $F_p(G) \leq \Gamma_p(G)$. We apply 1.1(a).

(b) The proof is similar to (a).

We prepare the proof of Theorem 2.1.

Lemma 2.4. Let p be a prime number, G a group and V a maximal subgroup of G. Suppose there exists a normal p-soluble subgroup N of G and a p-element $x \in G$, such that $G = VN = V\langle x \rangle$. Then |G:V| = p or p = 2 and |G:V| = 4.

Proof. This is a generalization of a classical result due to Ritt [8]. See [7, Th. 2.5].

Lemma 2.5. Let G be a group, V a maximal subgroup of G and let X be a subgroup of G such that $X \leq V$. If $V^g X = XV^g$ for every $g \in G$, then $X^G \leq \bigcap_{a \in G} V^g$.

Proof. See [6, Th. 2.6].

Let G be a group and π a set of prime numbers. We recall that G is said to satisfy the Sylow- π -theorem, if there exists a Hall- π -subgroup H of G and if every π -subgroup of G is conjugate to a subgroup of H (see [4, p. 284]).

Lemma 2.6. Let G be a group and π a set of prime numbers, π' its complementary set in the set of all prime numbers. If $x \in \bigcap_{q \in \pi} \mathbf{Qs}_q(G)$ and if the normal closure $Y = (\mathbf{O}_{\pi'}(\langle x \rangle))^G$ is a group which satisfies the Sylow- π' -theorem, then $\mathbf{O}_{\pi'}(\langle x \rangle) \leq \mathbf{O}_{\pi'}(G)$.

Proof. Let H be a Hall- π' -subgroup of Y, such that $\mathbf{O}_{\pi'}(\langle x \rangle) \leq H$. By the Frattini argument $G = \mathbf{N}_G(H)Y$. If $H \cong G$, then $\mathbf{O}_{\pi'}(\langle x \rangle) \leq H \leq \mathbf{O}_{\pi'}(G)$. Suppose $\mathbf{N}_G(H) \neq G$ and let V be a maximal subgroup of G such that $\mathbf{N}_G(H) \leq V$. Then $Y \leq V$. Clearly the index |G: V| is divisible (only) by primes in π . Therefore $\langle x \rangle$ is permutable with all conjugates of V. If $\langle x \rangle \leq V$, then $Y \leq \langle x \rangle^G \leq \bigcap_{g \in G} V^g \leq V$ by Lemma 2.5, a contradiction. If $\langle x \rangle \leq V$, we get that $G = \langle x \rangle V = V \langle x \rangle$, whence $Y = (\mathbf{O}_{\pi'}(\langle x \rangle))^G = (\mathbf{O}_{\pi'}(\langle x \rangle))^{\langle x \rangle V} = (\mathbf{O}_{\pi'}(\langle x \rangle))^V \leq H^V \leq V$, the same contradiction.

Corollary 2.7. Let G be a group.

- (a) We have $Qs(G) \subseteq F(G)$.
- (b) If $x \in \mathbf{Qs}_p(G) \cap \mathbf{A}_p(G)$ for some prime number p, then $\mathbf{O}_{p'}(\langle x \rangle) \leq \mathbf{O}_{p'}(G)$.

Proof. (a) Let p be a prime number and π the set of all primes $\neq p$. If $x \in Qs(G)$, then also $x \in \bigcap_{q \in \pi} Qs_q(G)$. Since $\pi' = \{p\}$, the group $Y = (O_p(\langle x \rangle))^G$ certainly satisfies the

Sylow- π' -theorem. Therefore $O_p(\langle x \rangle) \leq O_p(G) \leq F(G)$. Since this holds for all p, we conclude $x \in \langle x \rangle \leq F(G)$.

(b) Let $x \in \mathbf{Qs}_p(G) \cap \mathbf{A}_p(G)$. The group $Y = (\mathbf{O}_{p'}(\langle x \rangle))^G \leq \mathbf{A}_p(G)$ certainly satisfies the Sylow-p'-theorem. Therefore $\mathbf{O}_{p'}(\langle x \rangle) \leq \mathbf{O}_{p'}(G)$.

Proof of Theorem 2.1. (a) Let $x \in \mathbf{F}_p(\Gamma_p(G))$ be an arbitrary element. Certainly $x \in \mathbf{A}_p(G)$. To show that $x \in \mathbf{Qs}_p(G)$, let V be a maximal subgroup of G, such that p||G: V|. We prove $\langle x \rangle V = V \langle x \rangle$ by induction on |G|. Clearly we may assume |G| > 1 and $x \notin V$.

Case I: $O_{p'}(G) > 1$.

Let $L = \mathbf{O}_{p'}(G)$. We have $L \leq \Gamma_p(G)$ and $L \leq \mathbf{F}_p(G)$. Since $\mathbf{F}_p(G/L) = \mathbf{F}_p(G)/L$ and $\Gamma_p(G/L) = \Gamma_p(G)/L$ we see that $xL \in \mathbf{F}_p(\Gamma_p(G))/L = \mathbf{F}_p(\Gamma_p(G/L))$. Since $L \leq V$, we conclude by the inductive hypothesis $\langle xL \rangle \langle V/L \rangle = \langle V/L \rangle \langle xL \rangle$ and therefore $\langle x \rangle V = V \langle x \rangle$.

Case 11: $O_{n'}(G) = 1$.

We have that $R = \mathbf{F}_p(\Gamma_p(G))$ is now a *p*-group, RV = G and since $\Gamma_p(G) \leq V$ we get that $|R: V \cap R| = |G: V| = p$ by definition of $\Gamma_p(G)$. So $V \cap R \leq R$. We conclude $R = \langle x \rangle (V \cap R) = (V \cap R) \langle x \rangle$, whence $V \langle x \rangle = V(V \cap R) \langle x \rangle = VR = G = \langle x \rangle V$.

(b) By (a) we only have to show that $\mathbf{Qs}_p(G) \cap \mathbf{A}_p(G) \subseteq \mathbf{F}_p(\Gamma_p(G))$. Suppose that this is false, and let G be a minimal counterexample. Let x be an element of $\mathbf{Qs}_p(G) \cap \mathbf{A}_p(G)$ such that $x \notin \mathbf{F}_p(\Gamma_p(G))$.

We will prove a series of items under this assumption, which will lead to a contradiction. Certainly the hypothesis in (b) is inherited by factor groups.

(i) $O_{p'}(G) = 1$:

Suppose $L = \mathbf{O}_{p'}(G) > 1$. Then $xL \in \mathbf{Qs}_p(G/L) \cap \mathbf{A}_p(G/L)$. Since |G| is minimal, we get that $xL \in \mathbf{F}_p(\Gamma_p(G/L)) = \mathbf{F}_p(\Gamma_p(G))/L$. So $x \in \mathbf{F}_p(\Gamma_p(G))$, a contradiction.

(ii) x is a p-element: $\mathbf{O}_{p'}(\langle x \rangle) \leq \mathbf{O}_{p'}(G) = 1$ by Corollary 2.7.

(iii) $x \notin \Gamma_p(G)$:

If $x \in \Gamma_p(G)$, then $x \in A_p(\Gamma_p(G))$. Since $A_p(\Gamma_p(G))$ is *p*-supersoluble by Theorem 1.9 and $O_{p'}(G) = 1$, we have that $A_p(\Gamma_p(G))$ has a normal Sylow-*p*-subgroup (see [4, p. 691, Th. 6.6]). We conclude that $x \in F_p(\Gamma_p(G)) \in Syl_p(A_p(\Gamma_p(G)))$, contradicting the choice of x.

(iv) The contradiction

Let $N = \langle x \rangle^G$. Since $x \notin \Gamma_p(G)$, there exists a maximal subgroup V of G such that $p | |G: V| \neq p$ and $N \nleq V$. Then $G = \langle x \rangle V = NV$ and by Lemma 2.4 we have that |G: V| = 4. So $G/V_G \cong S_4$, a contradiction.

(c) By (a) we have

$$\mathbf{F}(\mathbf{\Gamma}(G)) = \mathbf{F}(G) \cap \mathbf{\Gamma}(G) = \bigcap_{p} \mathbf{F}_{p}(G) \cap \bigcap_{p} \mathbf{\Gamma}_{p}(G)$$
$$= \bigcap_{p} \mathbf{F}_{p}(\mathbf{\Gamma}_{p}(G)) \subseteq \bigcap_{p} \mathbf{Qs}_{p}(G) \cap \bigcap_{p} \mathbf{A}_{p}(G) \subseteq \mathbf{Qs}(G)$$

Let $x \in Qs(G)$ be an arbitrary element. By Corollary 2.7(a) we have $x \in F(G)$. If V is a maximal subgroup of G such that $x \notin V$, then $F(G) \leq V$ and G = VF(G). Moreover $D = F(G) \cap V \leq G$ because of the maximality of V and the nilpotency of F(G). So F(G)/D is a chief factor of G of prime exponent. Also $\langle x \rangle V = V \langle x \rangle = G$, whence $F(G) = G \cap F(G) = V \langle x \rangle \cap F(G) = (V \cap F(G)) \langle x \rangle = D \langle x \rangle$. So $F(G)/D \simeq \langle x \rangle/D \cap \langle x \rangle$ is also cyclic. We conclude that |F(G)/D| = |G:V| is a prime number. Therefore $x \in \Gamma(G)$ by the definition of $\Gamma(G)$ and finally $x \in \Gamma(G) \cap F(G) = F(\Gamma(G))$.

REFERENCES

1. H. C. BHATIA, A Generalized Frattini Subgroup of a Finite Group (Ph.D. thesis, Michigan State Univ., East Lansing, 1972).

2. Y.-Q. FENG and B.-L. ZHANG, Frattini subgroup relative to formation functions, J. Pure Appl. Algebra 64 (1990), 145–148.

3. W. GASCHUTZ, Über die Φ -Untergruppe endlicher Gruppen, Math. Z. 58 (1953), 160–170.

4. B. HUPPERT, Endliche Gruppen I (Springer-Verlag, Berlin, Heidelberg, New York, 1967).

5. B. HUPPERT, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409-434.

6. R. MAIER, Zur Vertauschbarkeit und Subnormalität von Untergruppen, Arch. Math. 53 (1989), 110–120.

7. R. MAIER, Faktorisierte p-auflösbare Gruppen, Arch. Math. 27 (1976), 576-583.

8. I. F. RITT, On algebraic functions which can be expressed in terms of radicals, *Trans. Amer.* Math. Soc. 24 (1923), 21-30.

Universidade de Brasilia Departamento de Matemática-IE 70.910 Brasilia-D.F. Brazil

E-Mail: MAIERR @ BRUNB