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Based on the theory of p-supersoluble and supersoluble groups, a prime-number parametrized family of
canonical characteristic subgroups T^G) and their intersection F(G) is introduced in every finite group G and
some of its properties are studied. Special interest is dedicated to an elementwise description of the largest p-
nilpotent normal subgroup of TP(G) and of the Fitting subgroup of P(G).

1991 Mathematics subject classification: 20D25, 20E28.

0. Introduction

Let p be a prime number. The p-supersoluble groups ([4, p. 713]) are characterized
among the p-soluble groups by a famous theorem due to Huppert ([4, p. 717, Th. 9.2/
9.3], [5]). The p-soluble group G is p-supersoluble, if and only if, for every maximal
subgroup V of G, the index \G:V\ is p or relatively prime to p.

Huppert's theorem has a general significance in all finite groups G: For every prime p
we introduce the characteristic subgroup TP(G) {the p-Huppert-subgroup of G) as being
the intersection of all maximal subgroups of G which have composite index divisible by
p. Let Ap(G) be the largest normal p-soluble subgroup of G. Then Ap(rp(G)) =
Ap(G)nrp(G) is p-supersoluble for every G. Moreover, r(G) = Qprp(G), the intersection
of all maximal subgroups of G of composite indices, is supersoluble. These results can be
deduced from recent literature [2]. Using Huppert's theorem and a natural generaliza-
tion for p-soluble groups of Gaschiitz' theory of saturated formations, we give
independently a short proof of these facts.

Our main attention we direct to Fp(rp(G)), the largest p-nilpotent normal subgroup of
Tp(G) and F(r(G)), the Fitting subgroup of T(G). These subgroups merit special interest:
The elements of the Frattini-subgroup <1>(G), the intersection of all maximal subgroups
of G, are known as the superfluous elements of G (see [4, p. 268]). We call an xeG a
quasi-superfluous element of G, if the cyclic group <x> is permutable with every maximal
subgroup of G. With respect to a prime number p, we call x a p-quasi-superfluous
element of G if <x>7= V<x> holds for the maximal subgroups V of G which have index
divisible by p. Let Qsp(G) denote the set of all p-quasi-superfluous elements, Qs(G) =
f)pQsp(G) the set of all quasi-superfluous elements of G. We show: For every group G,
the set Qs(G) coincides with F(r(G)) and, for odd prime p, the set Qsp(G)nAp(G) is
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Fp(rp(G)). In particular these sets are subgroups of G which from their definition is not
immediate. We use conventional notions and notation.

1. The p-Huppert-subgroup

Definition. Let G be a group.

(a) For every prime number p, the p-Huppert-subgroup Tp(G) of G is the intersection
of all maximal subgroups V of G such that p\ \G: V\ #p.

(b) The intersection F(G) = f]pTp(G) we call the Huppert-subgroup of G.

Obviously FP(G) and F(G) are characteristic subgroups of G which contain O(G). We
have Fp(G) = G if and only if every maximal subgroup of G is of index p or relatively
prime to p. F(G) = G if and only if every maximal subgroup of G is of prime index in G.

By the definition it is clear that, for a normal subgroup N of G such that N ^ FP(G),
one has rp(G/N) = Tp(G)/N. Moreover, the largest normal p'-subgroup Op.(G)gFp(G).

One first observation is:

Proposition 1.1. (a) The p-soluble group G is p-supersoluble if and only if Fp(G) ^
rp(G).

(b) The soluble group G is supersoluble if and only i/F(G)^F(G).

Proof. Applying (a) for all p, we see that (b) is a consequence of (a). To prove (a) we
mention that, by Huppert's theorem, the p-soluble group G is p-supersoluble if and only
if Fp(G) = G. So we only have to prove that Fp(G) = G if Fp(G)^Fp(G). By definition of
Fp(G), it suffices to show that G/Fp(G) is abelian. We induct on \G\ to show that
G/FP(G) is abelian. If N = <D(G) or N = O,(G), then rp(G/N) = Tp(G)/N and Fp(G/N) =
Fp(G)/N. Therefore the result holds by induction in the case 7V>1. So we may assume
that <D(G) = OP-(G) = 1. Now Fp(G) is a p-group and 1 = <D(G) = FP(G) nFp(G)n£> =
FP(G) n D, where D is the intersection of all maximal subgroups U of G such that
FP(G)£U. For every such U we have that \G:U\=p and FJG)/Fp(G)n U is a chief
factor of G of order p. Therefore the commutator subgroup G'-^\\v CG(Fp(G)/Fp(G) n U) =
CG(Fp(G)/Fp(G) nD) = CG(FP(G)) ̂  FP(G) ([4, p. 690, Th. 6.5]). Q

The following lemmas are straightforward.

Lemma 1.2. Let G be a group, V a subgroup of G of prime index \G\ V\=p and let
FG = P)geG V9 = l. Suppose there exists a normal p-soluble subgroup N of G, such that
G = VN. Then G is metacyclic.

Proof. If N is chosen minimal with G=VN, then |N|=p, N is self-centralizing in G
and G/N is cyclic.
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Corollary 1.3. Let G be a group, V a subgroup of G of prime index p and let N be a p-
soluble normal subgroup of G, such that G= VN. Then G/VG is metacyclic.

Proof. The group G/VG fulfills the hypothesis of Lemma 1.2 with NVG/VG as
p-soluble normal subgroup.

If G is a group, ^ a formation (see [4, p. 696]), we denote by Gy the smallest normal
subgroup of G having ^"-factor group (G^ is the so-called ^"-residual of G). We
remember that a subgroup H ^ G is called a covering IF-subgroup or Sylow-lF-subgroup
of G, if HeF and if for H^X^G we have HX*= X.

Let Syl?(G) denote the set of Sylow-J^-subgroups of G.

Lemma 1.4 ([4, p. 701, Th. 7.11]). Let G be a group and P a formation. Suppose
HeSylp(G). If' 3F contains all groups of prime orders, then NG(H) = H.

We are interested in formations which satisfy the following:

Condition (*). Let p be a prime number, S' a non-empty formation of p-soluble
groups such that for any group G:

(a) If G/<D(G)e J*", then GeP {3F is a so-called saturated formation).

(b) If G/Op.{G)e^, then GeJ*\

Examples of formations which satisfy the condition (*) are: The class of p-nilpotent
groups and the class of all p-soluble groups whose p-length does not exceed a given
upper limit. It is clear that the essential contents of Huppert's theorem, cited in the
introduction, can be stated as:

Lemma 1.5. For any prime number p, the class of p-supersoluble groups is a formation
satisfying (*) and which contains all metacyclic groups.

It is not hard to show (see [4, p. 700, Th. 7.10]):

Lemma 1.6. Let G be a p-soluble group, !F a formation which satisfies the condition
(*). Then

(a) G has a Sylow-!F-subgroup.

(b) Any two Sylow-&-subgroups of G are conjugate.

Lemma 1.7 (The Frattini Argument). Let G be a group, SP a formation which satisfies
the condition (*) and let U be a normal p-soluble subgroup of G. If HeSyl?(U), then

Proof. If geG, then H,H9eSyl^{U). By Lemma 1.6 there is a ueU such that
H" = H9. Now, g = (gu ~1) u with gu " 1 e NG{H).
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With these preparations we are now able to prove:

Proposition 1.8. Let p be a prime number, G a group, U a p-soluble normal subgroup
of G and let Tp(G) be the p-Huppert-subgroup of G. Let 2F be a formation which satisfies
the condition (*) and which contains all metacyclic groups. Then the following holds:

If UTp{G)/rp(G)eSF, then Ue&.

Proof. Suppose that the proposition fails, and let G be a minimal counterexample to
the statement. We will prove a series of consequences of this assumption.

WeputZ> = r p (G)nt / .

(i) We have D> 1:
If £>= 1, then t / s UTp(G)/Tp(G) e & by hypothesis, which contradicts the choice of G.
Let N be a minimal normal subgroup of G, such that N^D.

(ii) U/N e $F and N is a p-group:
Since

{U/N)TD(G/N) _ (U/N)(TP(G)/N) „
TP(G/N) ~ rp(G)/N = v

by the minimality of \G\, we have U/Ne^. By the p-solubility of U, certainly N is a
p-group or a p'-group. If N is a p'-group, then l//Op.(l/)e,^' and by the condition (*)
U e !F, a contradiction.

(iii) Let HeSyl?(U). Then H is not normal in G and \N\=p:
Certainly 3F contains all groups of prime orders. So NV(H) = H by Lemma 1.4. If

H-SG, then U = G n U = NG(H) n U = NV(H) = H e 3?, a contradiction. Since U/NeS?,
clearly HN = U and by the Frattini argument G = NG(H)[/ = NG(//)JV. Since NG(H)#G,
we may choose V a maximal subgroup of G such that NG(H) ̂  V. Since N£V, the index
\G:V\ = \N: N n V\ is a p-power. Since Tp(G) £ V, we have \N\ = \G: V\ =p.

(iv) The contradiction
Since N is a normal p-soluble subgroup of G and NV = G, we have that G/VG is

metacyclic by Corollary 1.3. Also U/Un VG^UVG/VG is metacyclic and therefore an
•F-group. So N=U^^VGnU^VG^V, contradicting the choice of V. •

Our Proposition 1.8 contains:

Theorem 1.9. For any prime number p and any group G we have that Ap(Tp(G)) =
Tp(G) n AP(G) is p-supersoluble.

Proof. In our proposition we choose U = Ap(Tp(G)). By Lemma 1.5 we take for &
the formation of the p-supersoluble groups. Since the unit group rp(G)/Tp(G) surely is
p-supersoluble, the p-supersolubility of Ap(rp(G)) follows. •
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Remark. The p-supersolubility of Ap(Fp(G)) can also be deduced from [2]: Ap(rp(G))
is obtained as Q>f(G) in [2], choosing there the formation function / to be:

ft \ _ J t n e c^ass °ftne abelian groups whose exponent divides p — 1 if q = p
{the class of all finite groups iiq¥=p.

Since this / defines locally the formation of all p-supersoluble groups, the result of [2]
shows the p-supersolubility of Ap(Fp(G)).

Corollary 1.10. Let G be a group and p a prime number. Suppose that for all maximal
subgroups V of G we have

p = \G:V\ or p\G:V\.

Then Ap(G) is p-supersoluble.

Proof. By hypothesis, Fp(G) = G. •

Corollary 1.11 (see [1] and [2]). For every group G, the Huppert subgroup T(G) is
supersoluble.

Proof. By definition T(G) = f)prp(G). Let M = f)pAp(rp(G)). By Theorem 1.9, M is
supersoluble and M ̂ F(G). If we know that F(G) is soluble, then T(G)^f)pAp(G) and
F(G) = M.

So we have to prove that F(G) is soluble. We proceed by induction on \G\: Clearly we
may assume F(G)# 1. Let p be the largest prime divisor of |F(G)| and consider a Sylow-
p-subgroup P of T(G). The (ordinary) Frattini argument yields that G=Nc(P)r(G). If P
is not normal in G, choose a maximal subgroup V of G, such that NC(P)^K Since

V, \G: V\ = q for some prime number q.
We put t/ = F(G) n V and obtain

Applying Sylow's Theorem for P in F(G) and in U, we obtain

1 EE|F(G):Nf(C)(P)| = |F(G): U\\U:NW(P)| = q-1 modp,

whence q=lmodp. Since q divides |F(G)|, q is not bigger than p, a contradiction. So
P-&G. By induction. F(G)/P=F(G/P) is soluble. Therefore also F(G) is soluble. O

2. The p-quasi-superfluous elements

The purpose of this second section is to describe the elements of F(F(G)) and (for odd
p) those of Fp(Fp(G)) by means of permutability properties.
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Definition. Let G be a group and x e G.

(a) If p is a prime number, we call x a p-quasi-superfluous element of G, if
<x>F = F<x> holds for the maximal subgroup V of G, whenever p\ \G: V\.

(b) We call x a quasi-superfluous element of G, if x is p-quasi-superfluous for every p.

Let QSp(G) denote the set of p-quasi-superfluous elements, Qs(G) = p)pQsp(G) the set
of the quasi-superfluous elements of G.

Certainly, Qsp(G) and Qs(G) are characteristic subsets of G. Qs(G) is exactly the set of
elements x of G such that <x> is M-embedded (M-eingebettet) in G in the sense of [6].

Let A(G) denote the intersection of the non-normal maximal subgroups of G (see [3]).
Clearly all elements of A(G), in particular the elements of the Frattini subgroup, as well
as the elements of the hypercentre of G, are quasi-superfluous.

In the simple group G = PSL(2,7) we have Qs3(G) = G whereas Qs7(G) = {xeG|x7 =
1} is not a subgroup of G.

In the symmetric group S4 of degree four we get Qs3(S4) = A4, the alternating group,
whereas Qs2(S4) is not a subgroup of S4, because the four cycle (iklm) eQs2(S4), but

Our aim is to prove:

Theorem 2.1. Let G be a group and p a prime number.

(a) Ff(rp(G))cQSp(G)nAp(G).
(b) / / p is odd or if G has no factor group isomorphic to S4, then Qsp(G) n Ap(G) =

Fp(Fp(G)). In particular, Qsp(G) n AP(G) is a p-nilpotent characteristic subgroup of G.
(c) Qs(G) = F(F(G)). In particular, Qs(G) is always a nilpotent characteristic subgroup

ofG.

Remark. Since Qs2(S4) is not a subgroup of S4, the hypothesis in (b) can not be
omitted.

We mention the following interesting and immediate consequence, which is not at all
evident from the definition of the sets Qs(G) and Qsp(G).

Corollary 2.2. (a) Let x,yeG be elements such that <x> and <_y> are permutable with
every maximal subgroup of G. Then for all ze<x,j>>, the group <z> is also permutable
with every maximal subgroup of G.

(b) Let p>2 be a prime number and G a p-soluble group. If x,yeG are elemenets such
that <x> and <_y> are permutable with every maximal subgroup of G of index divisible by
p, then, for all ze(x,y~>, also <z> is permutable with the same maximal subgroups.

As a consequence of 2.1 and 1.1 we have:
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Corollary 23. (a) Let G be a p-soluble group. Suppose p>2 or G has no factor
group isomorphic to SA. Then G is p-supersoluble if and only i/Fp(G) = Qsp(G).

(b) The soluble group G is supersoluble if and only ifF(G) = Qs(G).

Proof, (a) Since AP(G) = G, we conclude Qsp(G) = Fp(rp(G)) by 2.1(b). Now FP(G) =
Fp(Fp(G)) if and only if FP(G) ̂ Fp(G). We apply l.l(a).

(b) The proof is similar to (a).

We prepare the proof of Theorem 2.1.

Lemma 2.4. Let p be a prime number, G a group and V a maximal subgroup of G.
Suppose there exists a normal p-soluble subgroup N of G and a p-element x e G, such that
G=VN=V{x}. Then\G:V\=p or p = 2 and |G:F| = 4.

Proof. This is a generalization of a classical result due to Ritt [8]. See [7, Th. 2.5].

Lemma 2.5. Let G be a group, V a maximal subgroup of G and let X be a subgroup of
G such that X^V.If VgX = XVg for every geG, then XG^f]geG VB.

Proof. See [6, Th. 2.6].

Let G be a group and n a set of prime numbers. We recall that G is said to satisfy the
Sylow-Tt-theorem, if there exists a Hall-rc-subgroup H of G and if every 7r-subgroup of G
is conjugate to a subgroup of H (see [4, p. 284]).

Lemma 2.6. Let G be a group and % a set of prime numbers, n' its complementary set
in the set of all prime numbers. If xe(}qenQsq(G) and if the normal closure Y=
(On.«x»)G is a group which satisfies the Sylow-n'-theorem, then On.«x»^On.(G).

Proof. Let H be a Hall-rc'-subgroup of Y, such that O n « x » ^ H . By the Frattini
argument G = NG(//)7. If H-^G, then On.«x))^H|OB.(G). Suppose NG(H)^G and let
V be a maximal subgroup of G such that NG(//) ^ V. Then Y ^ V. Clearly the index
|G: V\ is divisible (only) by primes in n. Therefore <x> is permutable with all conjugates
of V. If <x>^ V, then Y g<x> G g f \ e c V9< V by Lemma 2.5, a contradiction. If <x>£ V,
we get that G = <x>K=K<x>, whence y=(On.«x»)G = (On.«x»)<I>K = (O) t .«x»)K^
Hy ^ V, the same contradiction. •

Corollary 2.7. Let G be a group.

(a) We have Qs(G)cF(G).
(b) 7/xeQsp(G) n AP(G) for some prime number p, then Op-«x» g Op.(G).

Proof, (a) Let p be a prime number and n the set of all primes #p . If xeQs(G),
then also xef)qenQsq(G). Since 7t' = {p}, the group y=(Op«x»)G certainly satisfies the
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Sylow-7r'-theorem. Therefore Op(<x»gOp(G)^F(G). Since this holds for all p, we
conclude xe(x)gF(G).

(b) Let xeQsp(G)nAp(G). The group y=(O p «x») G gA p (G) certainly satisfies the
Sylow-p'-theorem. Therefore O p « x » ^ O -(G). •

Proof of Theorem 2.1. (a) Let xeFp(rp(G)) be an arbitrary element. Certainly
xeAp(G). To show that xeQsp(G), let V be a maximal subgroup of G, such that
p||G:F|. We prove <x>F=F<x> by induction on \G\. Clearly we may assume |G|>1
andx^K

Case /.OP.(G)>1.
Let L = OP.(G). We have L^Tp(G) and L^Fp(G). Since Fp(G/L) = Fp(G)/L and

rp(G/L) = rp(G)/L we see that xLeFp(rp(G))/L = Fp(rp(G/L)). Since L^V, we conclude
by the inductive hypothesis <xL>( K/L) = (K/L)<xL> and therefore <x>K=F<x>.

Case II: OP-(G)=1.
We have that R = Fp(rp(G)) is now a p-group, RV = G and since Fp(G)^F we get

that \R:VnR\ = \G:V\ = p by definition of TP(G). So K n f i ^ R . We conclude i? =
>, whence K<x> = V(V n

(b) By (a) we only have to show that Qsp(G) n Ap(G)sFp(rp(G)). Suppose that this is
false, and let G be a minimal counterexample. Let x be an element of Qsp(G) n AP(G)
such that x^Fp(rp(G)).

We will prove a series of items under this assumption, which will lead to a
contradiction. Certainly the hypothesis in (b) is inherited by factor groups.

(i) OP,(G) = 1:
Suppose L = Op.(G)>l. Then xLeQsp(G/L) n Ap(G/L). Since \G\ is minimal, we get

that xLeFp(rp(G/L)) = Fp(rp(G))/L. So xeFp(rp(G)), a contradiction.

(ii) x is a p-element:
O p «x»^O p . (G) = l by Corollary 2.7.

(iii) x*Fp(G):
If xerp(G), then xe Ap(rp(G)). Since Ap(rp(G)) is p-supersoluble by Theorem 1.9 and

Op.(G) = l, we have that Ap(Tp(G)) has a normal Sylow-p-subgroup (see [4, p. 691, Th.
6.6]). We conclude that xeFp(rp(G))eSy/p(Ap(rp(G))), contradicting the choice of x.

(iv) The contradiction
Let N = <x>G. Since x£Tp(G), there exists a maximal subgroup V of G such that

p| |G:K|#p and N£V. Then G = <x>K=NF and by Lemma 2.4 we have that |G: V| = 4.
So G/KG^S4, a contradiction. •

(c) By (a) we have
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F(r(G)) = F(G) n T(G) = ft FP(G) n f) FP(G)
p

= f| Fp(rp(G)) <= pi QMG) n n AP(G) S Q S ( G ) .p\* pV -̂V/ — I I ̂ c^pV*-*/ | | np\
P P P

Let xeQs(G) be an arbitrary element. By Corollary 2.7(a) we have xeF(G). If V is a
maximal subgroup of G such that x$V, then F(G)^K and G=FF(G). Moreover
D = F(G) n f ^ G because of the maximality of V and the nilpotency of F(G). So F(G)/D
is a chief factor of G of prime exponent. Also <x>F= K<x> = G, whence
F(G) = GnF(G) = K<x>nF(G) = (KnF(G))<x> = D<x>. So F(G)/Ds(x>/Dn<x> is
also cyclic. We conclude that |F(G)/£)| = |G: V\ is a prime number. Therefore xeT(G) by
the definition of T(G) and finally x e T(G) n F(G) = F(r(G)). D
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