On Some Stochastic Perturbations of Semilinear Evolution Equations

Anna Milian

Abstract

We consider semilinear evolution equations with some locally Lipschitz nonlinearities, perturbed by Banach space valued, continuous, and adapted stochastic process. We show that under some assumptions there exists a solution to the equation. Using the result we show that there exists a mild, continuous, global solution to a semilinear Itô equation with locally Lipschitz nonlinearites. An example of the equation is given.

1 Introduction

Let (Ω, \mathcal{F}, P) be a probability space together with the normal filtration $\mathbb{F}=$ $\left\{\mathcal{F}_{t}, t \geq 0\right\}$. Let \mathcal{P}_{∞} denote a predictable σ-field on $\Omega_{\infty}=[0, \infty) \times \Omega$ and the restriction of \mathcal{P}_{∞} to $\Omega_{T}=[0, T] \times \Omega$ will be denoted by \mathcal{P}_{T}. Let P_{∞} be the product of the Lebesgue measure in $[0, \infty)$ and the measure P. Let P_{T} be the product of the Lebesgue measure in $[0, T]$ and the measure P.

Let E be a separable Banach space and let $\mathcal{B}(E)$ be the σ-field of its Borel subsets. Given a C_{0}-semigroup $S(\cdot)$ of linear operators in E, a mapping $f: \mathbb{R}_{+} \times \Omega \times E \rightarrow E$, a stochastic process β on \mathbb{R}_{+}and $x_{0} \in E$, we are interested in finding a stochastic process X on \mathbb{R}_{+}such that

$$
\begin{equation*}
X(t, \omega)=S(t) x_{0}+\int_{0}^{t} S(t-s) f(s, \omega, X(s, \omega)) d s+\beta(t, \omega), \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

for P-almost all $\omega \in \Omega$. We fix $T>0$ and make the following assumptions:
(i) $f:[0, T] \times \Omega \times E \rightarrow E$ is measurable from $\left(\Omega_{T} \times E, \mathcal{P}_{T} \times \mathcal{B}(E)\right)$ into $(E, \mathcal{B}(E))$.
(ii) There exists an increasing mapping $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for some $K>0$, for all $\omega \in \Omega, 0 \leq s \leq T$ and $x, y \in E$ such that $\|x\| \leq r,\|y\| \leq r$, the following conditions hold:
(a) $\|f(s, \omega, x)\| \leq K+\varphi(r) \cdot\|x\|$,
(b) $\|f(s, \omega, x)-f(s, \omega, y)\| \leq \varphi(r) \cdot\|x-y\|$.
(iii) $\beta:[0, T] \times \Omega \rightarrow E$ is an adapted, continuous stochastic process.

The main result of this paper is the following.
Theorem 1.1 If (i)-(iii) hold, $S(\cdot)$ is a contraction \mathfrak{C}_{0}-semigroup, and

$$
\int_{0}^{\infty} \frac{d x}{x \varphi(x)+1}=\infty
$$

Received by the editors June 5, 2007.
Published electronically May 11, 2010.
AMS subject classification: $\mathbf{6 0 H} \mathbf{2 0}$.
Keywords: evolution equation, mild solution, non-Lipschitz drift, Ito integral.
then there exists a continuous adapted process X determined on $[0, T]$, satisfying (1.1). For each $\omega \in \Omega$ the following estimation of X holds:

$$
\sup _{0 \leq t \leq T}\left\|X_{t}(\omega)\right\| \leq \Phi^{-1}\left[\Phi\left(\sup _{0 \leq t \leq T}\left\|\beta_{t}(\omega)\right\|+1\right)+\left(2 \sup _{0 \leq t \leq T}\left\|\beta_{t}(\omega)\right\|+1\right) T\right]
$$

where

$$
\Phi(x)=\int_{0}^{x} \frac{d t}{t \varphi(t)+K}
$$

If (i)-(iii) hold for every $T>0$, then the solution is determined on $[0, \infty)$.

2 Proof of Theorem 1.1

We have divided the proof into a sequence of lemmas. For abbreviation we write β_{t} instead of $\beta(t, \omega), f(s, x)$ instead of $f(s, \omega, x)$, and X_{s} instead of $X(s, \omega)$.

Lemma 2.1 If $\left\{X_{t}^{(1)}\right\},\left\{X_{t}^{(2)}\right\}, t \in[0, T]$ are continuous processes, (i)-(iii) hold, and P-a.s.,

$$
X_{t}^{(i)}=\beta_{t}+\int_{0}^{t} S(t-s) f\left(s, X_{s}^{(i)}\right) d s, \quad t \in[0, T], i=1,2
$$

then $X_{t}^{(1)}(\omega)=X_{t}^{(2)}(\omega)$ and for all $t \in[0, T]$, for P-almost all $\omega \in \Omega$.
Proof Fix $\omega \in \Omega$ and denote $\sup \left\{\left\|X_{t}^{(i)}(\omega)\right\|, t \in[0, T], i=1,2\right\}$ by r. Then for some $K(r)$ we have

$$
\left\|X_{t}^{(1)}(\omega)-X_{t}^{(2)}(\omega)\right\| \leq K(r) \int_{0}^{t}\left\|X_{s}^{(1)}(\omega)-X_{s}^{(2)}(\omega)\right\| d s, \quad t \in[0, T]
$$

Gronwall's lemma leads to the desired conclusion.
Lemma 2.2 If (i)-(iii) hold, X is a continuous process such that P-a.s.

$$
X_{t}=\beta_{t}+\int_{0}^{t} S(t-s) f\left(s, X_{s}\right) d s, \quad t \in[0, T]
$$

then X is adapted.
Proof We begin with the additional assumption that f is Lipschitzean. Define

$$
X_{t}^{(0)}=\beta_{0} \text { and } X_{t}^{(n+1)}=\beta_{t}+\int_{0}^{t} S(t-s) f\left(s, X_{s}^{(n)}\right) d s, \text { for } \omega \in \Omega, t \in[0, T], n \in \mathbb{N}
$$

$X_{t}^{(n)}$ are \mathcal{F}_{t}-measurable for $t \in[0, T]$ and $n \in \mathbb{N}$. Moreover

$$
\sup _{0 \leq t \leq \tau}\left\|X_{t}^{(n+1)}-X_{t}^{(n)}\right\| \leq C \cdot \tau \cdot \sup _{0 \leq t \leq \tau}\left\|X_{t}^{(n)}-X_{t}^{(n-1)}\right\| \quad P \text {-a.s., for some } C>0
$$

By Lemma 2.1 $\lim _{n \rightarrow \infty} \sup _{0 \leq t<\tau}\left\|X_{t}^{(n)}-X_{t}\right\|=0 P$-a.s., where $\tau<\min \left\{T, \frac{1}{C}\right\}$. We conclude that X is adapted to $\left\{\mathcal{F}_{t}, 0 \leq t \leq \tau\right\}$. Now consider equation (1.1) on the interval $[\tau, 2 \tau]$:
$X_{\tau+t}=\beta_{\tau+t}+\int_{0}^{\tau} S(\tau+t-s) f\left(s, X_{s}\right) d s+\int_{0}^{t} S(t-u) f\left(\tau+u, X_{\tau+u}\right) d u, \quad t \in[0, \tau]$.
Denoting $\tilde{X}_{t}=X_{\tau+t}$ and $\tilde{\beta}_{t}=\beta_{\tau+t}+\int_{0}^{\tau} S(\tau+t-s) f\left(s, X_{s}\right) d s$, we have

$$
\tilde{X}_{t}=\tilde{\beta}_{t}+\int_{0}^{t} S(t-u) f\left(\tau+u, \tilde{X}_{u}\right) d u
$$

where $\tilde{\beta}_{t}$ is $\tilde{\mathcal{F}}_{t}=\mathcal{F}_{\tau+t}$-measurable for $0 \leq t \leq \tau$. From what has already been proved, \tilde{X} is adapted to $\left\{\tilde{\mathcal{F}}_{t}, 0 \leq t \leq \tau\right\}$. After a finite number of steps we conclude that X is adapted to $\left\{\mathcal{F}_{t}, 0 \leq t \leq T\right\}$. We now turn to assumption (ii). Let us take a bounded, lipschitzean mapping $h^{(n)}: E \rightarrow E$ such that $h^{(n)}(x)=x$ for $x \in$ E such that $\|x\| \leq n$. Let $X^{(n)}$ denote a solution to (1.1) with f replaced by $f^{(n)}$, where $f^{(n)}(s, \omega, x)=f\left(s, \omega, h^{(n)}(x)\right)$. Let us regard $\omega \in \Omega$ as fixed and let $r=$ $\sup \left\{\left\|X_{s}(\omega)\right\|, 0 \leq s \leq T\right\}$.

For $n \geq r$ we have $\left\|X_{s}(\omega)\right\| \leq n$ and consequently
$X_{t}(\omega)=\beta_{t}(\omega)+\int_{0}^{t} S(t-s) f\left(s, \omega, X_{s}(\omega)\right) d s=\beta_{t}(\omega)+\int_{0}^{t} S(t-s) f^{(n)}\left(s, \omega, X_{s}(\omega)\right) d s$
But $X_{t}^{(n)}(\omega)=\beta_{t}(\omega)+\int_{0}^{t} S(t-s) f^{(n)}\left(s, \omega, X_{s}^{(n)}(\omega)\right) d s$. By Lemma 2.1, $X_{t}(\omega)=$ $X_{t}^{(n)}(\omega)$ for each $n \in \mathbb{N}, n \geq r$. Since $X_{t}^{(n)}$ are \mathcal{F}_{t}-measurable, for $n \in \mathbb{N}$ and $X_{t}^{(n)} \rightarrow$ $X_{t}, n \rightarrow \infty P$-a.s., it follows that X_{t} is \mathcal{F}_{t}-measurable.

Lemma 2.3 If β is a continuous, adapted process such that

$$
P\left\{\sup _{0 \leq t \leq T}\|\beta(t)\| \leq L\right\}=1
$$

for some $L>0$, and moreover (ii) and (iii) hold, then there exists an adapted and continuous stochastic process X, determined on $[0, \Delta]$ for some $0<\Delta \leq T$, satisfying (1.1).

Proof Here we apply the idea of the proof of Theorem 1.4 in [1]. Let $K>0$ be such that $\|f(t, \omega, 0)\| \leq K$ for $t \in[0, T], \omega \in \Omega$, moreover let $\|S(t)\| \leq M$ for $t \in[0, T]$. Let us regard $\omega \in \Omega$ as fixed. Consider the transformation

$$
(\mathcal{T} x)(t)=\beta_{t}+\int_{0}^{t} S(t-s) f\left(s, x_{s}\right) d s, \quad \text { for } x \in \mathcal{C}([0, T], E)
$$

Define

$$
\varrho=L+1, \quad \Delta=\frac{1}{M[(L+1) \varphi(L+1)+K]}
$$

The mapping \mathcal{T} maps the closed ball $B(0, \varrho)$ of radius ϱ centered at 0 of $\mathcal{C}([0, \Delta], E)$ into itself, because

$$
\begin{aligned}
\|\mathcal{T} x\| & =\sup _{0 \leq t \leq \Delta}\left\|\beta(t)+\int_{0}^{t} S(t-s) f\left(s, x_{s}\right) d s\right\| \\
& \leq L+\Delta M \sup _{0 \leq s \leq \Delta}\left\|f\left(s, x_{s}\right)\right\| \\
& \leq L+M \Delta \sup _{0 \leq s \leq \Delta}\left(\left\|f\left(s, X_{s}\right)-f(s, 0)\right\|+\|f(s, 0)\|\right) \\
& \leq L+M \Delta(\varrho \varphi(\varrho)+K)=\varrho
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\|\mathcal{T} x-\mathcal{T} y\| & =\sup _{0 \leq t \leq \Delta}\left\|\int_{0}^{t} S(t-s)\left(f\left(s, x_{s}\right)-f\left(s, y_{s}\right)\right) d s\right\| \leq M \Delta \varphi(\varrho) \cdot\|x-y\| \\
& \leq \frac{1}{L+1}\|x-y\|, \quad \text { for } x, y \in B(0, \varrho)
\end{aligned}
$$

Thus \mathcal{T} possesses a unique fixed point x in the ball, being the desired solution to (1.1) on the interval $[0, \Delta]$.
Proof of Theorem 1.1 We begin analogously to the proof of Lemma 2.3 For fixed ω we have a mapping $x \in B(0, \varrho) \subset \mathcal{C}([0, \Delta], E)$, satisfying (1.1) on the interval $[0, \Delta]$. Let

$$
L=\sup _{0 \leq t \leq T}\left\|\beta_{t}(\omega)\right\|, \quad \varrho=\varrho_{1}=L+1, \quad \Delta=\Delta_{1}=\frac{1}{(L+1) \varphi(L+1)+K}
$$

Proceeding by induction, we assume that there exists $x \in \mathcal{C}\left(\left[0, \Delta_{i}\right], E\right)$ satisfying (1.1) on $\left[0, \Delta_{i}\right]$. Moreover, we assume that x considered as a function on $\left[\Delta_{i-1}, \Delta_{i}\right]$ is a unique fixed point of the transformation

$$
(\mathcal{T} u)(t)=\beta_{t}+S\left(t-\Delta_{i-1}\right)\left(X_{\Delta_{i-1}}-\beta_{\Delta_{i-1}}\right)+\int_{\Delta_{i-1}}^{t} S(t-s) f\left(s, u_{s}\right) d s
$$

$\Delta_{i-1} \leq t \leq \Delta_{i}$, in the ball $B\left(0, \varrho_{i}\right) \subset \mathcal{C}\left(\left[\Delta_{i-1}, \Delta_{i}\right], E\right)$.
We proceed to show that x can be extended to the interval [$0, \Delta_{i+1}$] with $\Delta_{i+1}>$ Δ_{i}, by defining x on $\left[\Delta_{i}, \Delta_{i+1}\right]$, as a solution to the equation

$$
X_{t}=\beta_{t}+S\left(t-\Delta_{i}\right)\left(X_{\Delta_{i}}-\beta_{\Delta_{i}}\right)+\int_{\Delta_{i}}^{t} S(t-s) f\left(s, X_{s}\right) d s
$$

$\Delta_{i} \leq t \leq \Delta_{i+1}$. For this purpose, we set

$$
\varrho_{i+1}=2 L+1+\varrho_{i}, \quad \delta_{i+1}=\frac{1}{\varrho_{i+1} \varphi\left(\varrho_{i+1}\right)+K}, \quad \Delta_{i+1}=\Delta_{i}+\delta_{i+1}, \quad \Delta_{1}=\delta_{1}
$$

We consider the mapping

$$
(\mathcal{T} u)(t)=\beta_{t}+S\left(t-\Delta_{i}\right)\left(X_{\Delta_{i}}-\beta_{\Delta_{i}}\right)+\int_{\Delta_{i}}^{t} S(t-s) f\left(s, u_{s}\right) d s, \quad \Delta_{i} \leq t \leq \Delta_{i+1}
$$

acting in the space $\mathcal{C}\left(\left[\Delta_{i}, \Delta_{i+1}\right], E\right)$. If $u \in B\left(0, \varrho_{i+1}\right) \subset \mathcal{C}\left(\left[\Delta_{i}, \Delta_{i+1}\right], E\right)$, then

$$
\|\mathcal{T} u\| \leq L+\varrho_{i}+L+\delta_{i+1} \sup _{\Delta_{i} \leq s \leq \Delta_{i+1}}\left\|f\left(s, u_{s}\right)\right\| \leq 2 L+\varrho_{i}+1=\varrho_{i+1}
$$

Hence \mathcal{T} maps the ball $B\left(0, \varrho_{i+1}\right)$ of $\mathcal{C}\left(\left[\Delta_{i}, \Delta_{i+1}\right], E\right)$ into itself. Moreover, in the ball we have the following estimation:

$$
\begin{aligned}
\|\mathcal{T} u-\mathcal{T} v\| & \leq \delta_{i+1} \varphi\left(\varrho_{i+1}\right) \cdot\|u-v\|=\frac{\varphi\left(\varrho_{i+1}\right)}{\varrho_{i+1} \varphi\left(\varrho_{i+1}\right)+K}\|u-v\| \\
& \leq \frac{1}{\varrho_{i+1}}\|u-v\| \leq \frac{1}{L+1}\|u-v\|
\end{aligned}
$$

Hence \mathcal{T} has a unique fixed point $\tilde{x} \in B\left(0, \varrho_{i+1}\right) \subset \mathcal{C}\left(\left[\Delta_{i}, \Delta_{i+1}\right], E\right)$:

$$
\tilde{x}_{t}=\beta_{t}+S\left(t-\Delta_{i}\right)\left(X_{\Delta_{i}}-\beta_{\Delta_{i}}\right)+\int_{\Delta_{i}}^{t} S(t-s) f\left(s, \tilde{x}_{s}\right) d s, \quad \Delta_{i} \leq t \leq \Delta_{i+1}
$$

The function \tilde{x} is a continuous extension of x, being a solution to (1.1) on $\left[0, \Delta_{i}\right]$, to a solution to (1.1) on $\left[0, \Delta_{i+1}\right]$, because

$$
\begin{aligned}
\tilde{x}_{t} & =\beta_{t}+S\left(t-\Delta_{i}\right)\left(\beta_{\Delta_{i}}+\int_{0}^{\Delta_{i}} S\left(\Delta_{i}-s\right) f\left(s, x_{s}\right) d s-\beta_{\Delta_{i}}\right)+\int_{\Delta_{i}}^{t} S(t-s) f\left(s, \tilde{x}_{s}\right) d s \\
& =\beta_{t}+S\left(t-\Delta_{i}\right) \int_{0}^{\Delta_{i}} S\left(\Delta_{i}-s\right) f\left(s, x_{s}\right) d s+\int_{\Delta_{i}}^{t} S(t-s) f\left(s, \tilde{x}_{s}\right) d s \\
& =\beta_{t}+\int_{0}^{\Delta_{i}} S(t-s) f\left(s, x_{s}\right) d s+\int_{\Delta_{i}}^{t} S(t-s) f\left(s, \tilde{x}_{s}\right) d s
\end{aligned}
$$

$\Delta_{i} \leq t \leq \Delta_{i+1}$ and $\tilde{x}_{\Delta_{i}}=x_{\Delta_{i}}$. Thus we obtain a solution to (1.1) on the interval $[0, \bar{\Delta})$, where $\Delta=\sum_{i=1}^{\infty} \delta_{i}$. Theorem 1.1] will be proved once we show $\sum_{i=1}^{\infty} \delta_{i}=\infty$. It is easy to see that $\varrho_{i}=L+1+(i-1)(2 L+1), i \in \mathbb{N}$. Since φ is increasing and $\varrho_{i}<i(2 L+1)$, so

$$
\begin{aligned}
\sum_{i=1}^{\infty} \delta_{i} & =\sum_{i=1}^{\infty} \frac{1}{\varrho_{i} \varphi\left(\varrho_{i}\right)+K}>\sum_{i=1}^{\infty} \frac{1}{i(2 L+1) \varphi[i(2 L+1)]+K} \\
& =\sum_{i=1}^{\infty} \int_{i}^{i+1} \frac{d x}{i(2 L+1) \varphi[i(2 L+1)]+K} \\
& \geq \sum_{i=1}^{\infty} \int_{i}^{i+1} \frac{d x}{x(2 L+1) \varphi[x(2 L+1)]+K} \\
& =\int_{1}^{\infty} \frac{d x}{x(2 L+1) \varphi[x(2 L+1)]+K}=\int_{2 L+1}^{\infty} \frac{d t}{[(t \varphi(t)+K](2 L+1)}=\infty
\end{aligned}
$$

Denoting

$$
\Phi(x)=\int_{0}^{x} \frac{d t}{t \varphi(t)+K}
$$

it is easy to see that

$$
\begin{aligned}
\sum_{i=1}^{N} \delta_{i} & \geq \int_{1}^{N+1} \frac{d x}{[L+1+(x-1)(2 L+1)] \varphi[L+1+(x-1)(2 L+1)]+K} \\
& =\frac{1}{2 L+1} \int_{\varrho_{1}}^{\varrho_{N+1}} \frac{d t}{[(t \varphi(t)+K]}=\frac{1}{2 L+1}\left(\Phi\left(\varrho_{N+1}\right)-\Phi\left(\varrho_{1}\right)\right)
\end{aligned}
$$

We have

$$
\frac{1}{2 L+1}\left(\Phi\left(\varrho_{N+1}\right)-\Phi\left(\varrho_{1}\right)\right)=T \Longleftrightarrow \varrho_{N+1}=\Phi^{-1}\left(\Phi\left(\varrho_{1}\right)+(2 L+1) T\right)
$$

Since $L=\sup _{0 \leq t \leq T} \|\left|\beta_{t}(\omega)\right|$, we obtain the following estimation of the solution:

$$
\sup _{0 \leq t \leq T}\left\|X_{t}(\omega)\right\| \leq \Phi^{-1}\left[\Phi\left(\sup _{0 \leq t \leq T}\left\|\beta_{t}(\omega)\right\|+1\right)+\left(2 \sup _{0 \leq t \leq T}\left\|\beta_{t}(\omega)\right\|+1\right) T\right],
$$

$\omega \in \Omega$.

3 An Application

Let $E=H$ and U be separable Hilbert spaces, Q be a bounded, self-adjoint, strictly positive operator on U such that $\operatorname{Tr} Q \leq \infty$. Denote by U_{0} the subspace $Q^{1 / 2}(U)$ of U equipped with the inner product $\langle u, v\rangle=\left\langle Q^{-1 / 2} u, Q^{-1 / 2} v\right\rangle$.

Let W be a cylindrical Q-Wiener process with respect to \mathbb{F} on an arbitrary Hilbert space U_{1} such that U is embedded continuously into U_{1} and the embedding of U_{0} into U_{1} is Hilbert-Schmidt. Let $L_{2}^{0}=L_{2}\left(U_{0}, H\right)$ be the Hilbert space of all HilbertSchmidt operators acting from U_{0} into H, with the norm $\|\Phi\|_{L_{2}^{0}}=\operatorname{Tr}[\Phi Q \Phi]$. Let $N_{W}^{2}\left(0, T, L_{2}^{0}\right)$ denote a Hilbert space of all L_{2}^{0} predictable processes Φ such that $\mathbb{E}\left(\int_{0}^{T}\|\Phi(s)\|_{L_{2}^{0}}^{2 r} d s\right)<\infty$. If $S(\cdot)$ is a contraction semigroup and $\Phi \in N_{W}^{2}\left(0, T, L_{2}^{0}\right)$, then the process

$$
\beta_{t}=\int_{0}^{t} S(t-s) \Phi(s) d W_{s}, \quad t \in[0, T]
$$

is adapted and has a continuous modification [2, Theorem 6.10]. Hence by Theorem 1.1 we obtain the following.
Corollary 3.1 If (i)-(iii) hold, $S(\cdot)$ is a contraction C_{0}-semigroup, and

$$
\int_{0}^{\infty} \frac{d x}{x \varphi(x)+1}=\infty
$$

then there exists a continuous and \mathbb{F}-adapted process $\left\{X_{t}, 0 \leq t \leq T\right\}$ such that P-a.s.

$$
\begin{equation*}
X_{t}=S(t) x_{0}+\int_{0}^{t} S(t-s) f\left(s, X_{s}\right) d s+\int_{0}^{t}\left(S(t-s) \Phi(s) d W_{s}, \quad 0 \leq t \leq T\right. \tag{3.1}
\end{equation*}
$$

The process is unique, up to indistinguishability.

To obtain global existence of a unique solution to (3.1) in $\mathcal{C}([0, \infty], H)$ it is sufficient to assume that conditions (i)-(iii) hold for every $T>0$.

Example

Let D be an open subset of \mathbb{R}^{d} and let $H=L^{2}(D)$. We will show that $F: H \rightarrow H$, given by the formula

$$
(F(x))(\xi)=x(\xi) \cdot \ln \left(1+\|x\|^{2}\right), \quad x \in H, \xi \in D
$$

satisfies (ii). Let $e_{j}, j \in \mathbb{N}$ be a complete orthonormal system in H and let $x_{j}=$ $\left\langle x, e_{j}\right\rangle, x \in H, j \in \mathbb{N}$. Then

$$
\begin{equation*}
\|F(x)-F(y)\|^{2}=\sum_{i=1}^{\infty}\left(x_{j} \ln (1+\|x\|)-y_{j} \ln (1+\|y\|)\right)^{2}, x, y \in H \tag{3.2}
\end{equation*}
$$

Let us fix $n \in \mathbb{N}$ and consider the mapping $\Phi(x)=x \cdot \ln \left(1+\|x\|^{2}\right)$, for $x \in \mathbb{R}^{n}$. It is easy to see that

$$
\Phi^{\prime}(x)=\ln \left(1+\|x\|^{2}\right) \cdot I+\frac{2}{1+\|x\|^{2}} \cdot A, \quad x \in \mathbb{R}^{n}
$$

where $I=\left[\delta_{i j}\right]_{n \times n}$ and $A=\left[a_{i j}\right]_{n \times n}$ with $a_{i j}=x_{i} x_{j}$.
Since $\|A u\|=\|x\| \times|\langle x, u\rangle|$ for $u \in \mathbb{R}^{n}$, it follows that $\|A\| \leq\|x\|^{2}$ and

$$
\Phi^{\prime}(x) \leq \ln \left(1+\|x\|^{2}\right)+2, \quad \text { for } x \in \mathbb{R}^{n}
$$

Hence for $x, y \in \mathbb{R}^{n}$ such that $\|x\| \leq r$ and $\|y\| \leq r$ we have

$$
\begin{aligned}
\|\Phi(x)-\Phi(y)\| & =\left[\sum_{j=1}^{n}\left(x_{j} \ln \left(1+\sum_{j=1}^{n} x_{j}^{2}\right)-y_{j} \ln \left(1+\sum_{j=1}^{n} y_{j}^{2}\right)\right)^{2}\right]^{1 / 2} \\
& \leq\left(\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}\right)^{1 / 2} \dot{\left(2+\ln \left(1+r^{2}\right)\right)}
\end{aligned}
$$

Consequently, for $x, y \in H$ such that $\|x\| \leq r$ and $\|y\| \leq r$ and for each $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& {\left[\sum_{j=1}^{n}\left(x_{j} \ln \left(1+\sum_{j=1}^{n} x_{j}^{2}\right)-y_{j} \ln \left(1+\sum_{j=1}^{n} y_{j}^{2}\right)\right)^{2}\right]^{1 / 2}} \\
& \leq \\
& \leq\left(\sum_{j=1}^{\infty}\left(x_{j}-y_{j}\right)^{2}\right)^{1 / 2} \dot{\left(2+\ln \left(1+r^{2}\right)\right)}
\end{aligned}
$$

and (ii) is shown, letting n tend to infinity. Moreover, $\int_{1}^{\infty} \frac{d r}{r\left(2+\ln \left(1+r^{2}\right)\right)}=\infty$. Hence there exists a global, continuous, mild solution to the equation

$$
d X=(A X+F(X))) d t+\Phi(t) d W_{t}
$$

for A and Φ satisfying assumptions of Corollary 3.1 and F given by (3.2).

References

[1] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.
[2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications 44. Cambridge University Press, 1992.

Cracow University of Technology
e-mail: milian@usk.pk.edu.pl

