(Continued from page 112)
P6. (Conjecture). If $a_{1}<a_{2}<\ldots$ is a sequence of positive integers with $a_{n} / a_{n+1} \rightarrow 1$ and if for every d, every residue class (mod d) is representable as the sum of distinct a's, then at most a finite number of positive integers are not representable as the sum of distinct a's.

> P. Erdös

SOLUTIONS

Problem 5. of sixth issue of Newsletter C.M.C.
Prove that for every positive integer n, the expression

$$
(3+2 \sqrt{2})^{2 n-1}+(3-2 \sqrt{2})^{2 n-1}-2
$$

is a square.

> L. Moser

Solution. Set $a=\sqrt{2}+1, b=\sqrt{2}-1$. Then $a^{2}=3+2 \sqrt{2}$, $b^{2}=3-2 \sqrt{2}$ and $a b=1$. Hence

$$
(3+2 \sqrt{2})^{2 n-1}+(3-2 \sqrt{2})^{2 n-1}-2=\left(a^{2 n-1}-b^{2 n-1}\right)^{2} .
$$

Since $2 n-1$ is odd, it is clear that $a^{2 n-1}-b^{2 n-1}$ is an integer.
R. Ree

