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The paper addresses the fluid—structure interaction of submerged aquatic canopies, with
particular focus on the complex interplay between coherent flow structures and the motion
of vegetation elements. New insights into the underlying mechanisms are gained from a
large eddy simulation of a submerged model canopy flow. The model canopy is made up of
800 highly flexible blades, each individually resolved by an immersed boundary method.
The obtained high-resolution flow data reveal well-known coherent turbulent structures,
including velocity streaks, Kelvin—-Helmholtz (KH) vortices in the mixing layer as well as
hairpin (HP) vortices in the outer flow region. The present results show that the interaction
of these prototypical structures plays a key role creating unique turbulent features such as
composite KH/HP vortices located between a high-speed and low-speed streak. Under
the influence of these pronounced eddies, groups of blades respond by a strong local
reconfiguration. Due to the convection of the coherent structures by the mean flow this
causes an apparent wave-like motion of the canopy in streamwise direction, known as
monami. A frequency analysis of this phenomenon shows that the vegetation responds
almost passively, merely reflecting local flow conditions.

Key words: flow—structure interactions, turbulent boundary layers

1. Introduction
1.1. Terminology and classification

Aquatic ecosystems constitute a topic of high relevance due to their abundance and their
various roles on different scales, ranging from the quality of drinking water taken from
the local river to the large-scale impact on climate change (Costanza et al. 1997; Jeppesen
et al. 1998). The interactions between the flow and the flexible plants in an aquatic canopy,
as displayed in figure 1(a), play a central role in hydraulics as well as transport of sediment,
nutrients and pollutants (Jeppesen et al. 1998; Nepf 2012). Such flows over and through
natural vegetation are extremely difficult to measure experimentally, especially inside the
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FIGURE 1. Seagrass meadow as an example of a dense submerged canopy. (a) Real
configuration found in nature (Adobe 2018). (b) A simplified model canopy employed for the
present scale-resolving simulations. The model vegetation is made out of flexible blades of equal
properties, arranged uniformly in the fluid domain (same spacing in the x- and z-directions).
This rendering depicts a snapshot from a simulation with domain size 12H x H x 6H, where H
is the flow depth.

canopy, due to limited optical access (Nezu & Sanjou 2008). Here, numerical simulations
are advantageous to provide detailed information. The numerical study of canopy flows is
arather young research field, in particular when it comes to resolving individual structures.
Indeed, scale-resolving flow data are required, since, for example, little is known about the
three-dimensional nature of turbulent structures in canopy flows. This lack of knowledge
is addressed in the present work by conducting highly resolved simulations of a model
canopy flow, with a sample picture shown in figure 1(b).

Nepf (2012) provides a comprehensive overview of canopy flows which can be classified
into terrestrial and aquatic canopies. The rigidity of terrestrial plants, e.g. cereal plants,
is usually higher compared to aquatic plants since aquatic canopies are supported by
buoyancy to act against gravity, which is not the case for terrestrial plants. Consequently,
the deflection of single plants is smaller in terrestrial canopies (Raupach, Finnigan &
Brunei 1996; Dupont et al. 2010). Their low rigidity aids aquatic plants to lower drag
by changing their geometry when subjected to hydrodynamic loads, a phenomenon
commonly termed reconfiguration (Vogel 1994; de Langre 2012). The reconfigured
geometry modifies the fluid motion resulting in a strongly coupled two-way fluid—structure
interaction (FSI).

Canopies can be further classified by their submergence. Atmospheric canopies are
located at the bottom of an atmospheric boundary layer thicker by orders of magnitude than
the vegetation layer and not exhibiting a sharp upper boundary, so that the submergence is
extremely high. For aquatic canopies the situation is more complex as the water depth is
finite and usually restricted to moderate depths. From a fluid mechanics point of view the
ratio between the water depth H and the height of plants after reconfiguration L* is used
to distinguish between deep submergence with H/L* > 10 and shallow submergence with
H/L* < 5, completed by a regime of intermediate submergence in between (Nepf 2012).
Due to the requirement of sunlight, shallow submergence is common in aquatic systems.
While deeply submerged canopies show similarities to terrestrial canopies for sufficiently
large ratios H/L*, the situation is different for aquatic canopies with shallow submergence,
revealing substantially different turbulent structures (Nepf & Vivoni 2000) which are
not affected by large-scale outer-layer turbulent structures as observed in atmospheric
boundary layers (Dupont et al. 2010).

Another important parameter is the density of the canopy, measured by the frontal area
of vegetation elements per bed area A*, the frontal area index. In the present case featuring
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blades of constant width W and a spacing AS between individual plants it is
LW

CASY

When multiplied with the drag coefficient C, one obtains a measure for the flow resistance
of the canopy. While the flow over and through sufficiently sparse canopies (Cy;1* < 0.1)
closely resembles common boundary layer flows, dense canopies (Cy1* > 0.23) generate
a pronounced mixing layer at their top making the flow prone to Kelvin—Helmholtz
(KH) instabilities (Nepf 2012). Analysis of corresponding turbulent structures in dense
shallow canopies of rigid elements shows that the flow is dominated by strong sweep and
ejection events in the mixing layer (Okamoto & Nezu 2010a). Depending on the degree of
reconfiguration of vegetation elements, the interaction between these coherent structures
and the canopy results in different flow patterns (Carollo, Ferro & Termini 2005; Okamoto
& Nezu 2009). In this regard, the Cauchy number Ca is an important dimensionless
number to distinguish between different types of vegetation. It is defined as

(pr/2D)UPWL
Ca=-H122 72
E,/L?

with the fluid density pf, the bulk velocity U, and the length L and flexural rigidity E,/
of an individual vegetation element, where E; is the Young’s modulus of the material
and / the second moment of area. The Cauchy number represents the ratio between drag
forces and restoring elastic forces, so that a high degree of reconfiguration relates to large
values of Ca. Often, a nominal C, is included in the numerator of the definition of Ca
to emphasize this relation. Different mechanisms of fluid—structure interaction can be
observed with increasing Ca, as illustrated in figure 2. For Ca < 1 vegetation elements
remain erect (Luhar & Nepf 2011). A mixing layer occurs at the top of the canopy
(figure 2a) with KH vortices generated and convected in streamwise direction. At a certain
value of Ca the elements start to sway independently and with small amplitudes, a regime
called ‘gently swaying’ (figure 2b). For larger Ca the elements are more reconfigured and
can exhibit highly coherent waving motions, a phenomenon called monami (Japanese:
mo = aquatic plant, nami = wave; Ackerman & Okubo 1993; Okubo & Levin 2001) as
sketched in figure 2(c). Very large values of Ca result in a substantial reconfiguration
with elements mainly aligned in streamwise direction (figure 2d). The mixing layer and
the corresponding KH vortices are suppressed since the canopy top is fully covered
by reconfigured elements. This prevents most of the momentum exchange in vertical
direction.

Coherent flow structures generated by the shear layer are only one part of a number
of particular features at a hierarchy of scales (Nikora et al. 2012), illustrated in figure 3.
They range from the sub-plant scale over the plant scale where wakes of individual plants
are observed, up to the canopy scale featuring the shear layer between the canopy and the
outer flow and the scale of the boundary layer above the canopy. Additionally, in natural
rivers aquatic plants are often separated in patches, so that the patch scale is also important
for some processes (Nikora et al. 2012; Cornacchia et al. 2018). To date, the coexistence
and interaction of these different scales is not fully understood and constitutes a major
challenge for experimental studies and numerical investigations.

*

(1.1)

(1.2)

1.2. Experimental studies of canopy flows

Due to the wide range of scales in aquatic canopies, experimental studies range from field
studies in real rivers to laboratory experiments with abstracted model canopies. The former
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FIGURE 2. Influence of the Cauchy number Ca on the FSI of dense shallowly submerged
canopies. Pictures drawn according to Okamoto & Nezu (2010a) and Okamoto, Nezu & Sanjou
(2016). The value of Ca is well below one in (a) and increases in (b—d), accompanied by an
increased mean reconfiguration of the vegetation elements (green) and substantially different
regimes of fluid and structure dynamics. No KH vortex (red) is observed in the regime of strong
reconfiguration (d).

FIGURE 3. Illustration of flow features on different length scales as sketched and labelled
by Nikora et al. (2012). (1) Depth-scale shear-generated turbulence, (2) canopy-height-scale
turbulence at the upper boundary of the vegetation canopy, (3) small-scale turbulence associated
with flow separation from stems, (4) small-scale turbulence within local boundary layers attached
to leaves or stem surfaces, (5) small-scale turbulence in the wake of plant leaves, (6) fluctuations
due to plant leaf waviness.

generally address the patch scale or larger scales (Sukhodolova 2008; Nikora et al. 2012)
while smaller scales are generally not addressed since this is more convenient in laboratory
flumes. Here, model canopies can be made of natural plants (Jarveld 2005; Puijalon et al.
2008), but due to the difficulties of conducting long term experiments with living plants
and to focus on the fundamental effects, most of the studies in flumes were conducted
with model plants (Kouwen & Unny 1973; Ghisalberti & Nepf 2002; Wilson et al. 2003;
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Okamoto & Nezu 2010a; Siniscalchi, Nikora & Aberle 2012). As demonstrated in Luhar &
Nepf (2011) and Rominger & Nepf (2014) model plants, usually shaped as cylinders or thin
blades, are indeed able to capture the behaviour of living plants, such as drag forces and
reconfiguration. Furthermore, the flexural rigidity of model plants can be chosen more
easily such that a desired Cauchy number is obtained. Shallow canopies made of rigid
cylinders or blades were experimentally studied in Nezu & Sanjou (2008), Okamoto &
Nezu (2010a), Lu & Chen (2014) and Okamoto et al. (2016), while flexible model plants
were employed in Ghisalberti & Nepf (2006), Okamoto & Nezu (2010a), Marjoribanks
et al. (2014) and Le Bouteiller & Venditti (2015). As an example, Ghisalberti & Nepf
(2006) modelled each plant by a rigid stem with highly flexible plastic blades attached,
mimicking the typical morphology of eelgrass.

Unfortunately, obtaining spatially detailed measurements inside the canopy is
particularly difficult due to limited optical access. This also holds for data acquisition
of the plant motion. Thus, most of the experimental studies mentioned above focused on
drag forces, exerted by the canopy on the flow as a whole in relation to the reconfigured
canopy height. Only very few experimental studies of flexible canopies were conducted
with simultaneous measurements of blade motion and fluid flow (Okamoto & Nezu
2009; Okamoto et al. 2016). This, however, is a prerequisite for a deeper understanding
of hydrodynamic processes in canopy flows. Consequently, data acquisition must be
complemented by numerical studies which are discussed in the following.

1.3. Numerical simulations of canopy flows in the literature

Depending on the scales of interest different numerical models have been employed for the
simulation of canopy flows. In most cases it was deemed sufficient to use a homogenized
representation of the canopy as a whole, especially when interested in average quantities,
such as mean velocity profiles, Reynolds stresses, etc. For terrestrial canopies, solving
the Reynolds-averaged Navier—Stokes (RANS) equations using a homogenized drag law
is state of the art (Barrios-Pina er al. 2014). In submerged aquatic canopies, however,
the reconfiguration is larger so that the RANS approach must be supplemented with the
deformability of the canopy (Velasco, Bateman & Medina 2008; Dijkstra & Uittenbogaard
2010). When interested in the nature of coherent structures, eddy-resolving approaches,
such as large eddy simulation (LES), are employed to resolve large-scale coherent vortex
structures (Li & Xie 2011; Gac 2014; Marjoribanks et al. 2017). For the sake of simplicity,
canopies can still be modelled as time-independent homogeneous continua. Shaw &
Schumann (1992) were the first in this direction proposing a relation for the drag force
proportional to the canopy density. A time-dependent flexible homogenized canopy in an
LES was realized by Dupont ez al. (2010) for a terrestrial grainfield.

Besides a homogenized representation of vegetation, LES have also been used to
study channel flows with regularly arranged, geometrically obstacles of various shapes.
Earlier studies are (Mathey, Frohlich & Rodi 1999; Kanda, Moriwaki & Kasamatsu 2004;
Stoesser, Kim & Diplas 2010) with many others in more recent years. Further work in
this direction, but with a clear focus on aquatic canopy flow, was undertaken in the group
of Okamoto & Nezu (2010b) simulating an experiment with rigid blades conducted in the
same group (Nezu & Sanjou 2008). Due to the fine spatial and temporal resolution required
for these investigations, geometry-resolving simulations of the fluid—structure interaction
in canopy flows are extremely costly, especially when reliable statistical data are to be
accumulated over a longer time interval.

The coupling of fluid and structures in a numerical simulation can be established
by means of very different approaches ranging from a body-fitted grid to an immersed
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boundary method (IBM) (Bungartz & Schifer 2006; Sotiropoulos & Yang 2014). For the
latter group it is comparatively easy and computationally efficient to impose boundary
conditions for complex time-dependent geometries, as needed for flexible structures of
low rigidity.

So far, only very few simulations have been undertaken addressing the flow over
arrays of flexible structures of canopy-like geometry. Yang, Preidikman & Balaras (2008)
employed an IBM to perform two-dimensional simulations of the flow around 16 rigid
cylinders mounted elastically to the bottom wall. Yusuf, Karim & Osman (2009) computed
the flow around 10 triangular and round structures undergoing only small deformations
in a uniform cross-flow by means of an adaptive mesh technique. Recently, IBM were
combined with structure solvers able to represent large deformations (Sotiropoulos & Yang
2014; Tian et al. 2014; Kim, Lee & Choi 2018). The latter one, for example, applied the
method to a single flexible blade in cross-flow. Only very few numerical studies could
be found in the literature reporting on simulations of large numbers of highly flexible
structures. To the knowledge of the authors, the work of Marjoribanks (Marjoribanks 2013;
Marjoribanks et al. 2014) provides the most advanced simulation of an entire canopy with
up to 300 individual flexible elements in cross-flow. The geometrical description of the
structures, however, is simplified by using a porosity distribution and the level of resolution
is below the state of the art achieved for simulations of canopies with rigid structures (e.g.
Okamoto & Nezu 2010b), or for simulations of single flexible structures undergoing large
deformations (e.g. Tian et al. 2014). In fact, recurrence to simpler models is employed
to alleviate the high cost for a full canopy mentioned above. Another numerical study
addressing an entire canopy is (Gac 2014), but the agreement with the corresponding
experiment is not as desired. The lack of numerical studies of canopies with flexible
elements results from the fact that simulating a whole canopy with individual structures
being resolved is methodologically very complex and requires an extremely efficient,
tailored numerical method. With the FSI approach employed in the present work this
gap is closed and highly resolved simulations of canopies with hundreds of structures
are possible.

1.4. Research questions and structure of the paper

In the present study, LES of a suitably designed model canopy are reported and analysed in
physical terms focussing on scales (1)—(3) defined in figure 3 for a situation exhibiting the
monami phenomenon (figure 2¢). In particular, the hydrodynamic coupling between the
flow and the slender flexible blades is addressed to answer the following questions: How
is the fluid flow over and through a canopy affected by the flexibility of the blades? What
is the relation between the characteristics of the blade motion and the characteristics of
the fluid motion? Which kind of three-dimensional coherent structures are observed and
what is their impact? To address these questions a numerical method will be employed
which has recently been developed by the present authors (Tschisgale & Frohlich 2020)
and is recalled in § 2. Section 3 then defines the physical configuration addressed here and
provides the numerical parameters. In § 4 various instantaneous and statistical quantities
are presented, generating new insight into the dynamics of a typical canopy flow. On this
basis a prototypical understanding of coherent structures in this situation is developed in
§ 5. Finally, § 6 assembles conclusions and perspectives.

2. Physical and numerical model

The present paper is devoted to the physical analysis of a canopy flow, rather than
numerical issues. This section provides the required information on the algorithm
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employed which is based on earlier work of the present authors (Kempe & Frohlich
2012; Tschisgale, Kempe & Frohlich 2017, 2018; Tschisgale, Thiry & Frohlich 2019).
A very detailed description with numerous validations is provided in Tschisgale &
Frohlich (2020).

2.1. Fluid phase

The physical problem addressed consists of a Newtonian viscous fluid of constant density
interacting with an array of elastic blades. The governing equations for the fluid motion
are the unsteady three-dimensional Navier—Stokes equations

u

1
+V.-(u®u)=—V-0+f, 2.1a)
at O

V.eu=0, (2.1b)

where u = (u, v, w)T is the velocity vector in Cartesian components along the Cartesian
coordinates x, y, z, while f represents the time, oy the fluid density, f a mass-specific force
and o the hydrodynamic stress tensor

o0 = —pl+ u(Vu+ Vu"), (2.2)

with p the pressure, uy = psv; the dynamic viscosity, v, the kinematic viscosity and
I the identity matrix. The Navier-Stokes equations (2.1) are solved with the in-house
code PRIME which is based on a second-order finite volume approach on a staggered
Cartesian Eulerian grid with constant grid step size Ax in all directions for the spatial
discretization and a semi-implicit second-order scheme for the time integration (Kempe &
Frohlich 2012; Tschisgale et al. 2017, 2018). In the present application a direct numerical
simulation (DNS) with a grid fine enough to capture all turbulent fluctuations down to
the Kolmogorov scale is not feasible with presently available resources and not needed
for this investigation, as demonstrated below. Hence, an LES approach is employed using
the Smagorinsky subgrid-scale model (Smagorinsky 1963) with a global Smagorinsky
constant C;.

2.2. Structural part

Elastic blades are considered, with their length L far longer than their width W and their
thickness 7', again, much smaller than their width, so that they constitute a particular kind
of beam. To model such blades a certain number of approximations allows replacing the
fully three-dimensional representation of the elastic body by a one-dimensional rod model.
Several models of this type exist. The one applied here is the geometrically exact Cosserat
rod model, which is suitable for rods undergoing large deflections (Simo 1985; Antman
2005). The corresponding differential equations of motion are

¢ Af o
AZe_ Y L& 23
pA 8Z+f (2.3a)
). 0@ I om | e fn (2.3b)
Je—F+oxpl-w=— +— x , :
Pt o PO =57 "%z i

where c¢ is the position vector to a point on the centreline, and Z the corresponding
arc length coordinate. The motion of the centreline is governed by (2.3a) and depends

A v
on the internal forces f and the external forces f. With the Cosserat rod model, the
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cross-sections of the blade are assumed to be rigid and plane throughout the deformation
(Simo 1985; Antman 2005). Their local angular velocity @ depends on the internal forces

jA" and the internal moments 7, as well as the external moments m, as described by
(2.3b), with I the tensor of inertia in the global Eulerian frame. The blades considered
here have constant geometrical properties, i.e. constant cross-sectional areas A, constant
material properties, such as the density p,, and the same linear viscoelastic material
of Kelvin—Voigt type over their entire length. With these assumptions, the equations
of motion (2.3a) and (2.3b) are solved numerically according to Lang, Linn & Arnold
(2011). The centreline is decomposed into N, one-dimensional segments of equal length
L, = L/N,. A finite-difference method and a special description of the rotations of the
cross-sections by quaternions are then employed yielding a highly efficient algorithm
(Tschisgale & Frohlich 2020).

2.3. Coupling of fluid and blades

The physical coupling of the continuous fluid phase and the blades is accomplished by
the no-slip condition. While the physical value of the cross-sectional area A is finite in
the Cosserat rod model, the geometry of the blades considered here is such that their
thickness is substantially smaller than their width. Hence, for the coupling to the fluid the
thickness of the blades is assumed to vanish. Numerically, the coupling is realized by an
IBM. Each embedded blade is represented by N, planar elements, the same number as
used for the discretization of (2.3), having a length L,, a width W, and zero thickness.
Lagrangian marker points are distributed over each segment in square arrangement with
Ny, points in longitudinal and Ny points in lateral direction. At the position of each marker
point an artificial force f;,, is added to the momentum balance of the fluid (2.1a). This
source term is determined in each time step by the so-called direct forcing approach
(Mohd-Yusof 1997; Fadlun er al. 2000; Tschisgale et al. 2018) to enforce the no-slip
condition at the blades. This involves interpolation of the fluid velocity to the marker
points, computation of the source term at the marker points, and spreading of the source
back to the Eulerian grid. Both, interpolation and spreading are accomplished using a
so-called smoothed delta function §,(r), where r = (r,, ry, )T =x,— X ;i is the distance
between a Lagrangian marker x; and an Eulerian grid point x ;. The three-dimensional
function §, is generated by the tensor product of three one-dimensional functions, i.e.
Sn(r) = 8}P(ry) 8jP(ry) 8]P(r,). Furthermore, §;°(r,) = ®(r)/h and r = r,/h, etc., with h
characterizing the width of §/”. Here, the function @ is chosen according to the work
of Roma, Peskin & Berger (1999) which ensures a good balance between numerical
efficiency and smoothing properties. More details on the immersed boundary coupling
can be found in Tschisgale et al. (2018). A detailed description of the IBM for blades of
vanishing thickness together with a validation of each ingredient and a discussion of its
efficiency is provided in Tschisgale & Frohlich (2020).

Besides the interaction between fluid and blades, flexible blades in a canopy can collide
with each other. A corresponding modelling approach was developed and validated by the
present authors in Tschisgale ef al. (2019).

3. Model canopy and numerical set-up
3.1. Physical set-up of the model canopy

The model canopy consists of an array of identical, strip-shaped blades with vanishing
thickness but finite rigidity, fixed to the bottom wall of the simulation domain.
This yields a parameter space of 11 physical parameters, resulting in 8 independent
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Variable Value

Set-up (open channel): U 0.2ms™! Bulk velocity

H 210 mm Channel height

g 9.81 ms~2 Grav. acceleration

AS 32.0 mm Blade spacing, AS, = AS; = AS
Fluid (water): of 1000 kg m~—>  Fluid density

vr 1070 m? s~! Kin. viscosity
Structures (OHP slides): L 70.0 mm Blade length

w 8.0 mm Blade width

T 0.1 mm Blade thickness

Ds 1400 kgm~3  Structure density

E 48GNm~2  Young’s modulus

TaBLE 1. Physical parameters defining the shallowly submerged canopy, according to Okamoto
& Nezu (2010a), simulated in the present work.

dimensionless numbers. To find appropriate sets of parameters covering the physics of
real canopies at different regimes is a formidable task. In the present study the conditions
were chosen according to the experiments of Okamoto & Nezu (2010a) who investigated a
variety of shallowly submerged model canopies. These experiments were conducted using
a tilting flume with a length of 10 m and a width of 0.4 m. The vegetation elements
were made of polyester overhead projector (OHP) transparencies and arranged over a
length of 9 m in streamwise direction and the full channel width. Mean velocity profiles
and Reynolds stress distributions are provided in (Okamoto & Nezu 2010a) for different
submergence depths and Cauchy numbers, making the experiment ideally suited for a
direct comparison with the simulation and thus providing a means of validation. Here, one
case at a moderate Cauchy number was selected as it exhibits the monami phenomenon
(figure 2¢). The related three-dimensional turbulent flow structures are very difficult to
measure, so that the present simulation data can be used to investigate the physical
mechanisms behind this phenomenon.

All relevant properties of the fluid and the blades are assembled in table 1. The blades
are mounted in an in-line arrangement, illustrated in figure 4, defined by the distances AS,
and AS, in the streamwise and spanwise directions, respectively. As in the experiment,
a square arrangement is used here with AS = AS, = AS,. One complete set of eight
independent dimensionless numbers is presented in table 2.

Regrettably, several important parameters were not provided in the paper of Okamoto &
Nezu (2010a), but could be partially reconstructed by the present authors from a previous
publication of the same group (Nezu & Sanjou 2008). For instance, the number of blades
fixed to the channel bottom as well as their spacings in the streamwise and spanwise
directions are missing in Okamoto & Nezu (2010a). Two years earlier, Nezu & Sanjou
(2008) used an equal spacing of AS = 32 mm in a very similar experimental set-up with
an array of rigid blades and a frontal area per canopy volume of a = W/AS?> ~ 7.8 m~!.
Since this value of a is nearly equivalent to the value provided in Okamoto & Nezu
(2010a), it is assumed here that the same spacing of 32 mm was also used in the
latter reference. This choice is corroborated by a later publication of the same authors
(Okamoto et al. 2016), where a value of 32 mm is provided for spanwise and lateral blade
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FIGURE 4. Sketch of the canopy investigated and definition of parameters as well as boundary
conditions employed in the simulation.

Definition Value
Independent: Rey = UH /vy 42000 Reynolds number
Ga = LWTg/ vfz 549360  Galilei number
Ca = prUWL? | (2EI) 1715  Cauchy number
B = ApL3WTg/(E,I) 0.34 Buoyancy number
A=LW/AS? 0.55 Unreconfigured roughness density
Ap/pr 04 Relative density difference
H/L 3 Unreconfigured submergence
T/W 0.0125 Cross-section aspect ratio
Additional: Ps/ pf 1.4 Density ratio
L/W 8.75 Blade shape aspect ratio
L*/L 0.8 Reconfiguration
¥ = L*W/AS? 0.44 Roughness density
Re; = U H/vy 8066 Friction Reynolds number

TaBLE 2. Independent dimensionless numbers based on the physical parameters in table 1, with
Ap = (ps — pr), and additional numbers resulting from these or from the simulation result.

spacings in experiments that appear to be identical to those in Okamoto & Nezu (2010a).
Another issue concerns the material properties of the OHP transparencies, especially
the flexural rigidity E,/ and the mass density p;. In Okamoto & Nezu (2010a), the
rigidity is provided with a value of EJJ =73 pN m? yielding a Young’s modulus of
E, = 109.5 GN m~2 for rectangular cross-sections with / = WT?/12. This value, however,
is far too high for OHP transparencies usually made of thermoplastic polymer materials,
e.g. polyvinyl chloride (PVC) or polyethylene terephthalate (PET). To resolve the issue, the
value of E; was adjusted in a preliminary simulation using an iterative procedure taking the
average reconfigured height of the deflected blades L* as the target. The value L*/L = 0.8
given in Okamoto & Nezu (2010a) then resulted in E, = 4.8 GN m~2. Especially for PVC,
PET or similar polymers a wide range of values for E; can be found in the literature ranging
from E; = 2.4 GN m~2 to 11 GN m~2 (Titow 1984; Berins 1991; Brydson 1999; Harper
2000; The Engineering ToolBox 2018), depending on the specific material composition
and the thermo-mechanical treatment during manufacturing. On this background the
value E; = 4.8 GN m~2 obtained here for the blades used by Okamoto & Nezu (2010a)
seems realistic. The value of p;, on the other hand, is entirely missing in Okamoto &
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FIGURE 5. Horizontal domain size and total number of grid points employed for the present

study and in Okamoto & Nezu (20100), Li & Xie (2011), Gac (2014) and Marjoribanks et al.
(2017). The values of H correspond to the heights of the respective domains.

Nezu (2010a) and Okamoto et al. (2016). Therefore, p; = 1400 kg m— is used here, in
accordance with the span of values reported for PVC and PET in the literature, ranging
from p, = 1300 kg m~ to 1450 kg m~ (Titow 1984; GESTIS 2018).

3.2. Numerical set-up

In the experiment the water depth was 0.21 m and the measurement zone was positioned
7 m downstream of the leading edge of the artificial canopy to ensure fully developed
flow (Nezu & Sanjou 2008; Okamoto & Nezu 2010a). Sidewall effects could be excluded
since a two-dimensional mean flow was observed above the canopy in the measurement
zone of width AS, surrounding the centre plane z = L./2 (Nezu & Sanjou 2008). For the
numerical model this justifies the application of periodic boundary conditions in spanwise
direction. The present study addresses the fully developed flow, so that periodic boundary
conditions were applied in the streamwise direction as well. Based on the water depth
of the experiment a computational domain of L, x L, x L, = 1.28 m x 0.21 m x 0.64 m
was chosen. This amounts to a non-dimensional extension of approximately 6H x H x 3H
in the x-, y-, z-directions, respectively, which is larger than classically used for DNS and
LES of plane channel flow simulations (e.g. Moser, Kim & Mansour 1999). Observing
that with L*/L = 0.8 the reconfigured canopy covers approximately 0.27 % of the domain
height, the effective aspect ratio is even larger. Figure 5 compares the present domain size
and the total number of grid points used with four other numerical studies of canopy flows
(Okamoto & Nezu 2010b; Li & Xie 2011; Gac 2014; Marjoribanks et al. 2017). With the
present choice for L, and L, the domain contains N, , = 40 structures in the streamwise
and N, , = 20 structures in the spanwise direction, yielding a total of N; = 800 structures.

At the bottom wall and at the blade surfaces a no-slip boundary condition is employed.
A rigid lid condition is used at the upper boundary which is employed in almost all
simulations of this type, e.g. Rodi, Constantinescu & Stoesser (2013), Vowinckel, Kempe
& Frohlich (2014) and Vowinckel et al. (2016). Indeed, it was verified a posteriori by
assessing the computed pressure at the upper boundary that in case of a free surface
deformations would remain below 0.2 mm.

The channel is horizontal and the flow is driven by a spatially constant volume force.
This represents the flow in a tilted flume very well, since the angle it would take is
extremely small, and is standard practise in simulations of canopies and sediment transport
(Gac 2014; Vowinckel et al. 2014; Kidanemariam & Uhlmann 2017). The volume force is
adjusted in each time step by means of a controller to impose the desired bulk velocity.
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Symbol Value

Ly xLy xL, 1.28 m x 0.21 m x 0.64 m Domain size

Ny x Ny x N, 2048 x 336 x 1024 Number of grid cells
Ax 0.625 mm Grid step size

Ns.x X Ny = N 40 x 20 = 800 Number of blades
N, 30 Elements per blade
Ni, X Ny 6 x 17 Markers on blade element

Cs 0.15 Smagorinsky constant
At 0.4 ms (CFL = 0.5) Time step size
Tov 46.7s=730L,/U =445L,/U  Averaging time

TABLE 3. Overview over numerical parameters used for the present simulation.

' is constant and the

After an initial transient from rest, the bulk velocity U = 0.2 m s~
flow fully developed.

The computational domain is discretized by cubic cells of size Ax = Ay = Az =
0.625 mm in all directions. This results in W/Az = 12.8 grid cells over the blade width
and a total number of approximately 700 million grid cells of the Eulerian grid. Each
blade is discretized with N, = 30 elements, and the surface of each element is covered
with N, x Ny = 6 x 17 markers.

To model the subgrid-scale turbulence a Smagorinsky constant of C; = 0.15 was
chosen, as already employed by Okamoto & Nezu (20105) and Gac (2014) for LES of
canopy flows over rigid blades, and by Li & Xie (2011) for LES of canopy flows involving
flexible vegetation. Marjoribanks used C; = 0.17, which is similar as well (Marjoribanks
2013; Marjoribanks et al. 2014, 2017).

Regarding the temporal discretization, the time step size was set to At = 0.4 ms yielding
a Courant number of CFL = (.5. Averaging was started when the simulation had reached
the statistically steady state. This was checked by monitoring the driving force f, (f) and
the reconfiguration of the blades, verifying that their temporal behaviour was exempt of
any sign related to start-up. The collection of samples was undertaken for a duration of
44.5 T, until one-point statistics were converged.

All relevant numerical parameters are summarized in table 3.

The Appendix contains a detailed study of the sensitivity of the results with respect
to (i) grid resolution, (ii) temporal resolution, (iii) domain size and (iv) subgrid-scale
coefficient C;. These tests show that the numerical parameters are suitable and provide
reliable simulation results.

4. Data analysis and physical interpretation

The canopy defined in § 3.1 was simulated with the numerical parameters determined in
§ 3.2. This section reports on the instantaneous solution and various statistical quantities
computed from the instantaneous data. Throughout, (- --) identifies averages over x, z
and . Whenever a different kind of averaging is meant this is indicated by an index, like
(- ), for time averaging alone.

4.1. Instantaneous solution

Before addressing statistical properties it is instructive to inspect the computed flow itself,
figures 6(a), 6(b), and 6(c) report instantaneous snapshots of u, v and p, respectively, for


https://doi.org/10.1017/jfm.2020.858

https://doi.org/10.1017/jfm.2020.858 Published online by Cambridge University Press

Fluid—structure interaction in an abstracted aquatic canopy 916 A43-13

the same instant, each in the same three perpendicular planes. None of these graphs shows
numerical oscillations or any other sign of problems with the numerical resolution of the
flow.

The streamwise velocity in the horizontal plane of figure 6(a) y = L* shows large-scale
areas of positive and negative fluctuations with a characteristic size of approximately
0.5H to H in lateral direction and approximately 2H in streamwise direction. They
are superimposed on a small-scale pattern with small streamwise velocity when blades
are present and larger velocity in between. The centre plane z = const. shows inclined
patterns with an angle of approximately 20° (x/H ~ 1.5, ..., 3) which are known from
flat plate turbulent boundary layers (Nezu & Nakagawa 1993). This plane also shows the
deflected blades and reveals that at times these can be bent downwards fairly strongly, at
x/H =~ 0.8. The streamwise velocity is small inside the canopy in general, but can also
exhibit larger values where the blades are bent downwards (e.g. x/H ~ 0.8), or when the
outer velocity is larger than the average (x/H =~ 4, ..., 6). Here, the picture also reveals
the fine-scale turbulence, in particular scales of the size of the blade width and smaller,
which correspond to feature (3) in figure 3. The plane x = const. shows the large size of
ejections (z/H ~ 1.5, ...,2.5) and sweeps (z/H =~ 1, z/H ~ 2) which can cover the entire
outer flow up to the surface. Furthermore, this graph shows how the fast fluid moving
downwards (cf. figure 6b) intrudes into the space between the blades (z/H =~ 1), as well
as the reduction of u due to the presence of the blades.

Figure 6(b) shows the instantaneous vertical velocity component providing
complementary information to figure 6(a). The apparent granularity of the pattern in the
horizontal plane is larger here, since the elevation is y = L*, i.e. the mean reconfiguration
height, with blade tips locally above and locally below this plane. Still, it can be seen
that regions of ' > 0 tend to exhibit v" < 0 and vice versa, which will be quantified in
a statistical sense below. The instantaneous values frequently go up to 0.5U and more.
The centre plane z = const. shows the inclined flow feature between x/H =1.5,...,3
addressed above with patches of alternating signs, indicating spanwise oriented vortical
motion. The local vertical velocity revealed in this plane going through a row of blades has
sizable values also inside the canopy due to the upward deflection of the flow by the blades.
Between the streamwise rows of blades the vertical velocity is markedly negative at several
locations, as seen in the cross-plane x = const. of this figure around z/H ~ 0.1, ..., 0.8,
where this feature reaches down to the bottom wall. This plane also shows the ejection and
sweep events addressed before and, by the sign of v, supports this denomination.

The instantaneous pressure in figure 6(c) is much smoother than the velocity field, as
it is related to the latter via its gradient. Pressure minima tend to be located in vortex
centres and the plane z = const. shows such a sequence of vortices along an inclined line
for x/H ~ 0.7, ..., 3. On the blade high pressure is seen in this graph upstream of the
blades, low pressure behind, as expected. The horizontal plane shows roughly spanwise
low pressure regions for z/H ~ 0, ..., 1 around x/H ~ 2.7 and 4.8, for example.

Further below the coherent vortex structures will be addressed by conditional averaging.

4.2. Mean velocity profile and Reynolds stresses

The turbulent velocity field u(x, t) is now analysed in terms of one-point fluid statistics,
i.e. mean velocity (u) and Reynolds stresses (¢’ ® u') with &' = u — (u). The resulting
one-point fluid statistics are displayed in figure 7. Moreover, the profiles of (u) and the
turbulent shear stress (u'v’) are compared to the experimental data of Okamoto & Nezu
(2010a). The comparison shows that the mean streamwise velocity component (#) matches
the experimental data well, as evident from a root mean square difference of e, = 0.048 U,
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FIGURE 6. Instantaneous flow quantities in the vertical planes z = 0.48L; and x = 0.5L, and in
the horizontal plane y = L*. Broken lines indicated the intersections of these planes. Solid lines
in the xz- and xy-slices mark intersections with the blades. Solid lines in the zy-slices outline
the projected blades. (a) Streamwise velocity component u, (b) vertical velocity component v,
(c) pressure p.
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FIGURE 7. Statistical data for the fluid. (a¢) Normalized mean velocity profile in outer
coordinates, () mean velocity in inner coordinates, (¢) normalized streamwise fluctuations, (d)
normalized Reynolds shear stress, (¢) normalized vertical fluctuations, (f) normalized spanwise
fluctuations; ——, present results; o, experimental data of Okamoto & Nezu (2010a) in (a,b,d);
———, logarithmic fit in (a,b), according to (4.2); «------ , mean reconfigured canopy height.

a mean absolute difference of ¢; = 0.045U and a Nash—Sutcliffe efficiency of eysz = 0.99
(Nash & Sutcliffe 1970). The height of the inflection point of the velocity profile and
the velocity magnitude at this location are very well captured by the simulation. This
is in line with expectations, since the position of the inflection point coincides with the
average reconfigured canopy height L* (Nepf & Vivoni 2000) which was adjusted in the
simulation to the experimental observation to obtain the correct rigidity £,/ of the blades
as described in § 3.1 above. In terms of the Reynolds stress (u'v’) the simulation results
are in good agreement with the experiment. The position of its minimum is very close
to the experimental observation and the value within 5.7 %. Towards the channel bed,
the (u'v’) profile deviates from the measurement below a height of approximately 0.5L.
The reason cannot be assessed with certainty here. It might result from imperfections
in the measurement, from slight differences in the properties of the blades, or from tiny
deviations in the mounting of the blades. Bearing in mind these issues the agreement is
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FIGURE 8. Three-zone model of an aquatic submerged canopy flow according to Sanjou (2016).
The lower emergent zone is characterized by the turbulent wake of individual plants. In the
mixing layer zone the flow is prone to instabilities, and turbulent fluctuations evolve to form
coherent structures, e.g. KH-vortices. In the uppermost log-layer zone the free flow behaves very
similarly to a boundary layer flow over a rough wall.

very satisfactory. In the free-flow region above the canopy, (#'v’) behaves linearly in the
simulation as required by the momentum balance, whereas the experimental data exhibit
undulations, contributing to a Nash—Sutcliffe efficiency of only eysz = 0.86. Hence, it
must be conjectured that the experimental statistics for this quantity have limited accuracy.

As described in Sanjou (2016), Poggi et al. (2004) and Ghisalberti & Nepf (2006), the
canopy flow over the entire channel height can be divided into three zones, as displayed in
figure 8, each exhibiting different physical properties. These zones are usually classified
using the mean velocity profile (x) and the Reynolds shear stress (u'v’). The bottom
region inside the canopy is termed the ‘emergent zone’ or ‘wake zone’ where the flow
is dominated by wakes of individual vegetation elements, so that vertical momentum
transfer is comparably small. It extends from the channel bottom to y = y,, with y,
the elevation where (u'v’) reaches 10 % of its minimum value (Nepf & Vivoni 2000).
For the present case this definition yields y,, = 0.06L. With the corresponding velocity
scale U,, = (u)(y,) = 0.24U the Reynolds number characterizing the flow around the
individual blades is

u,w

Re, = ~ 400. (4.1)
Vr

The points of flow separation from the blades are fixed and the force on the blades
dominated by pressure. This situation is known to make the simulation fairly insensitive
to resolution issues, provided it is beyond a certain threshold, as evidenced in the
Appendix.

The subsequent zone is termed the ‘mixing layer zone’ covering the upper canopy region
and the lower part of the free-flow region up to 2L* (Nepf 2012). The velocity profile
exhibits an inflection point at the canopy edge as a result of the shear layer generated in this
zone. In particular, the maximum absolute Reynolds stress —(u/'v'),;, is located slightly
above the average canopy height L*. Here, positive fluctuations u’ are strongly correlated
with negative fluctuations v" and vice versa as illustrated by juxtaposing figures 6(a) and
6(b), and proved by the data in figure 7(d), so that sweeps (' > 0, v < 0) and ejections
(u' < 0,v" > 0) are the main mechanism of momentum transfer between the canopy and
the free-flow region (Patton & Finnigan 2012). The present statistical data are in line with
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this common picture, so that the detailed analysis of the vortex structures in this region
provided below bear general relevance.

A third layer, located above the mixing layer, is the ‘log-layer zone’ (Sanjou 2016). The
velocity profile in this zone is well approximated by

log — -
PO ot (22—t (L) s, @)
: yo :

with the friction velocity U,, the von Kdrman constant k = 0.4, the displacement height
vm, the roughness height yy, the viscous unit [, = v/U,, the constant A = 5.2 reflecting
a smooth wall and the additional drag penalty AU due to the deformable elements. The
friction velocity can be expressed in terms of the Reynolds stress (¢/'v’) at the canopy edge,
ie. U? = — (') |y=rr & — (V") in (Nepf 2012), which gives U/U, ~ 5.2 in the present
case, and a friction Reynolds number of

Re, = YA _ g066. (4.3)

According to Nepf & Ghisalberti (2008), the displacement height is y,, = L* — §/2,
with § ~ [(u)/(d(u)/dy)],=;~ and seems to increase proportionally to the average canopy
height with y,, /L* =~ 0.78 (Okamoto & Nezu 2010a). With these relations the present
simulation yields y,,/L* ~ 0.69. Minimizing ((u)/¢ — (u))? for y > 2L* with y, the free
parameter to choose in (4.2), results in yo/L* = 0.112, which is consistent with the value
of 0.11 reported by Nepf & Vivoni (2000). The value of yy/L* = 0.112 is equivalent to
AUT = 18.9 in (4.2). This value is in the centre of the data points when plotting AU™ as
a function of roughness height, reported in figure 1 of Raupach, Antonia & Rajagopalan
(1991). Using the frontal canopy area per volume a = W/(AS.AS;) =7.81 m’l, this gives
yo = 0.049a~! which is in agreement with the range y, = (0.04 & 0.02)a~' observed by
Nepf (2012) for submerged canopies.

4.3. Reconfiguration and statistics of blade centreline

As done for the fluid velocity field a decomposition into mean and fluctuation is now
performed for the array of blades. Each blade is identified by an index s, with s =
1,...,N,. The time-dependent position of the points on the centreline of blade s are
¢, = ¢(Z, 1), with ¢,(0, 1) = ¢, the position of fixation on the bottom plate and Z the
coordinate along the centreline. The instantaneous shape of each blade, then, is given by

XS(Z, t) = (Xxv ys, ZS)T == cs(Z7 t) - cx,O, s = 1’ ey Nv (44)

(observe the different font of x, y, z here). At each instant in time the average over all N
blades

(X)(Z, 1) = ‘Zx(z ) (4.5)

can be computed, which is then further averaged in time to yield (x),, subsequently
denoted (x) for simplicity. All statistical data for the structures were collected over the time
span T,, (table 3). The non-vanishing components (x) and (y) of the mean blade profile
are given in figure 9(a—c). The standard deviations of the fluctuations /(x'x’) /L, etc., are
shown in figure 9(d—f) to assess the specific type of oscillation, e.g. mode 1 bending
or mixed-mode bending. No lateral reconfiguration (z) in the homogeneous spanwise
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FIGURE 9. Normalized statistics of blade motion components. (@) Mean streamwise position
(x)/L as a function of the blade coordinate Z/L, (b) mean wall-normal coordinate in the same
perspective, (c¢) average shape in laboratory coordinates, (d—f) normalized fluctuations.

direction is obtained, and also the component /(z'Z) /L is below 1.5 x 107> throughout,
hence negligible. This implies that the blades do not undergo any lateral motion which is
a consequence of their flat cross-section, their orientation perpendicular to the mean flow
and their type of arrangement in the canopy. Statistical data of the OHP-strip motion were
not acquired in the experiment (Okamoto & Nezu 2010a), so that a comparison with the
experiment is not possible.

Addressing the data in figure 9, it is observed that the centreline of the blades shows
a pronounced reconfiguration in the streamwise direction (figure 9a—c). All fluctuations
are of the same order of magnitude. This suggests that the blade motion in the x- and
y-direction is strongly coupled, which is naturally the case as a forward bending of the
blade in the x-direction induces a y-deflection. The fluctuations plotted in figure 9(d—f)
show that the motion of the blades is characterized by a mode 1 bending. If the blades were
to oscillate, for instance, with a pronounced second bending mode, the profiles (x'x)(Z),
(X'y'Y(Z) and (y'y')(Z) would have inflection points at some arc length 0 < Z < L.
Furthermore, the correlation coefficient —p,, is superior to 96 % throughout, removing
any doubt in this respect.

This analysis reveals that the entire motion of each blade is fully described by the
motion of its tip yi(t) = y,(Z =L, t),s = 1, ..., N,. Any other material point on the blade
performs an equivalent synchronous motion, just with a smaller amplitude. Hence, the tip
height of the individual blades, y;, mostly denoted y* for better readability, will be used
below to investigate the dynamics of the blades.

4.4. Instantaneous blade tip motion

In the monami regime studied here the blades oscillate vigorously between an almost
upright shape and a maximum deflection of their tip by approximately 50 % of their
length (figure 10). Based on the results of the previous section the tip motion of
the blades is now analysed in detail as it fully represents the motion of the blades.
For illustration, figure 10(a) shows this quantity over time for two blades in the same
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FIGURE 10. Instantaneous and statistical data for the blade tip height y*. (a) Instantaneous
blade tip position over time for two individual blades. Here, t = 0 is assigned the instant when
averaging in time was started and 7, = H/U, blade mounted at (x, z) = (0, L;/2), --+----
blade mounted at (x, z) = (L, /2, L;/2), —-—-— instantaneous ensemble-averaged height (y*)j,
average height (y*). (b) Histogram of the tip height of all blades in the same time span as
depicted in (a).

z-plane with maximum distance L, /2 in x. Figure 10(b) provides the probability density
function (PDF) of the tip position obtained from combined averaging over structures and
time. The sample signals of the unsteady tip positions in figure 10(a) show particular
characteristics. Periodic features are observed with a fairly regular pattern the frequency
content of which is analysed below. The minima, i.e. the instants of largest deflection,
are fairly short, with steep descents and ascents. The maxima, on the other hand are
much rounder. Geometrical issues contribute to this difference, since the signal represents
the vertical coordinate of the tip which changes only little upon flexion in case the
blade is almost upright. Beyond the instantaneous samples, figure 10(a) shows that
the ensemble-averaged canopy height (y*); remains approximately constant in time.
Deviations of this quantity being at most 4 % with respect to the time-averaged value
(y*), once again, indicate that the simulation domain is sufficiently large.

4.5. Frequencies of blade tip motion

It is now interesting to study the frequency content of the blade motion. To this end
the spectrum of y* was computed. This was first done for each individual blade with
the Hann window applied over the entire time span 7,, to prevent frequency leakage.
Then the spectrum was averaged over all blades similarly to (4.5). The resulting mean
spectrum is denoted |y*|(f) in the following with the ensemble-averaging operator
dropped for conciseness. The result is shown in figure 11(a) with the frequency f
normalized by the bulk frequency f, = 1/T}, i.e. the inverse of the bulk flow time unit
T,=H/U.

A well-pronounced dominant frequency peak can be observed at f; ~ 0.14f,
accompanied by two harmonics of lower energy at f> ~ 2f; and f; & 3f; indicating a
periodic blade motion. Indeed, as shown in figure 10 for two individual blades, the
blades exhibit an oscillatory behaviour with reconfigurations mainly in the range of 0.6 <
y*/L < 1. At fairly regular time intervals the blades bend down abruptly, occasionally
even reaching minimum heights of y*/L = 0.4 which is half of the average canopy height.
Statistically, such events happen with a frequency fi, resulting in the dominant frequency
peak of figure 11(a). Plotting the averaged spectrum in logarithmic scale (figure 115) shows
that (|y*|),/L o (f/f,)~" for frequencies covering approximately 70 % of the total energy.
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FIGURE 11. Fourier spectrum of blade tip motion (| f‘|)s (f) (a) in semi-logarithmic scale and
(b) in double-logarithmic scale. The frequency axes are normalized by the bulk flow frequency
f»=1/T, = U/H. The second normalization is performed with the blade frequency f, from
(4.6).

As described above the blades mainly oscillate with a mode 1 bending. The
corresponding natural frequency is (Han, Benaroya & Wei 1999)

1.875* | EI
= J—, 4.6
f 27 ml3 (4.6)

with the flexural rigidity £/ and the mass m of the oscillating system. In the present case
the mass in (4.6) is m = my + m,qy, which is the mass of the structure m, augmented by
the added mass of the surrounding fluid, m,4,. The latter can be approximated by the added
mass of a transversely oscillating rectangular plate which is mu = 0.257p,W>L for the
present blade geometry (Dong 1978). The ratio between the frequency f; and the natural
frequency of the first bending mode f;, is an important indicator of the physical cause of the
periodic motion of the blades. If the large oscillation amplitude observed in the monami
regime is due to a resonant system created by the fluid and the structures, the natural
frequency of the blades should also be almost equal to the frequency of the entire excited
system, i.e. f;/f, = 1. If, on the other hand, the blades behave like passive objects, simply
following an external periodic excitation by the fluid, their natural frequency should be
much larger than the lowest dominant frequency observed in the system, i.e. f; /f, < 1.

Using (4.6) the frequency ratio is evaluated to be f;/f, =~ 0.15 in the present case,
indicating that the dominant frequency does not result from a mechanical resonance
between the fluid and the blades. Instead, rather the blades react to the external excitation
by the fluid, e.g. by coherent structures acting on the blades at regular time intervals.
Indeed, Okamoto and Nezu (Nezu & Sanjou 2008; Okamoto & Nezu 2010a) observed
that the flow in sufficiently dense shallow canopies is dominated by sweep and ejection
events at the canopy edge. The unique feature of canopies in the monami regime is that the
blades react nearly instantaneously with large displacements to an increased momentum
transfer caused by such events while being sufficiently stiff to increase momentum transfer
in the mixing layer required to enhance sweeps and ejections. This transfer is substantially
reduced if the flexibility is too high, as illustrated in figure 2(d).

From a different point of view, since vegetation elements are capable of following the
surrounding fluid motion very well for small frequency ratios f; /f,, they can be employed
to detect or visualize coherent structures. In cases where the ratio f; /f,, does not completely
vanish, a small time delay between the excitation by the fluid and the response of the blade
may be expected. To quantify this delay for the present scenario, an additional simulation
with a single blade of the same geometry and the same material properties, but subjected to
a dynamic cross-flow, was performed. The computational domain measured 3L x H x 2L.
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FIGURE 12. Evolution of the normalized tip displacement in y-direction Ay*/L =1 — y*/L
of a single blade exposed to an imposed sinusoidal cross-flow of velocity .

At the inlet plane (x = 0) and the outlet plane (x = 3L) an oscillatory horizontal flow was
imposed (uoo, 0, 0)T with u,,/U = 0.5 + 0.25 sin(27ft). The frequency f was chosen to
be fi = 0.15f, to excite the blade at the dominant frequency encountered in the canopy
flow. As shown in figure 12, the blade responds with a slight time delay of Az#f; =~ 0.03.

This further supports the fact that the reconfiguration of the blades is a simple reaction to
an increased vertical momentum transfer, generated by sweep and ejection events. Several
researchers suggest that in canopy flows sweeps and ejections appear periodically in time
(Bailey & Stoll 2016). For the present configuration this observation can be confirmed
since the averaged spectrum of the blades is governed by periodic features, as shown in
figures 10 and 11.

4.6. Two-point correlations

To characterize coherent structures on the canopy scale which are responsible for an
organized motion of the blades a two-point correlation analysis was performed, for both
the fluid velocity as well as the reconfiguration of the blades. The spatial autocorrelation
of the streamwise fluid velocity fluctuation ' is defined as

(W (x,t)u/(x +r,1))
VW e, )2 (W (x + 7, 0)2)

based on the fields «'(x, f) and /(x + r, t), with the distance vector r = (r,, 0, .)T in the
horizontal plane accounting for the periodicity of the computational domain in x and z.
Due to averaging in time and homogeneous directions, the correlation coefficient p,, is
a function of the streamwise distance r, /L, € [—0.5, 0.5], the vertical coordinate y and
the spanwise distance r,/L, € [—0.5, 0.5]. Analogously, a correlation coefficient p. - is
defined for the fluctuation of the canopy height y*'(r) = y*(r) — (y*).

Starting with the fluid velocity, figure 13 shows that the spacing between a high-speed
(HS) streak and a neighbouring low-speed (LS) streak is approximately 2H in streamwise
direction and 0.75H in spanwise direction, identified from the minimum of p,, (7., H/2, 0)
and p,,(0, H/2, r,), respectively. These lengths also correspond the mean extent of a
single streak. The change from positive to negative values of p,, (0, H/2, r,) indicates
that HS-streaks are accompanied laterally by LS-streaks and vice versa. While the same
effect can be observed in streamwise direction, it is far less pronounced, indicating
that the extension of streaks varies more in the streamwise direction than laterally.
Consequently, a periodic pattern of alternating positive and negative correlations appears

puu(rxa Vs rz) = (47)
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FIGURE 13. Two-point correlation coefficients, o, at the channel half-height H/2 and pyx+.
(a) Correlation along ry in the streamwise direction. (b) Correlation along r, in the spanwise
direction.

for p,.(ry, H/2, r;), nearly vanishing at r,/H =3 and r,/H = 1.5. While these limits
coincide with the channel half-width and half-length here, an influence of the domain
size can be excluded by the supplementary simulation reported for the validation of the
domain size in the Appendix.

From figure 13 it is also obvious that the spatial correlation of the blade motion py« -
extends exactly over the same distance as the fluid motion p,,. Furthermore, the entire
shapes of p,, and p,.,- are even quantitatively very close. As described in §4.5, the
flexible blades react almost instantly to an increased momentum transfer caused, e.g.
by sweeps and ejections. It is observed that in regions with #’ > 0 the blades are bent
more strongly due to an increased drag, while being more erect in regions with v’ < 0.
Figure 6(a) provides an illustration. The correlation coefficient of p,, and p,- gives a
value of approximately 0.89, which further supports the strong coupling between velocity
streaks and reconfiguration of blades.

Moreover, the frequency associated with the streamwise coherence length /. and the
mean velocity at the canopy edge is (u)(y = L*)/I. ~0.6U/(4H) = 0.15U/H. This
value provides an approximation of the frequency observed at a fixed position due to
the passing streaks and is close to the dominant frequency of the structure motion,
J1 = 0.14U/H, thus supporting that the motion of the blades is predominantly dictated by
the fluid motion. Since velocity streaks prevail over a certain range in space, the blades
exhibit a reconfiguration in groups which is seen in figures 6(a) and 17 below where
the instantaneous blade deflection is coloured according to the respective normalized tip
elevation y*/L for a selected instant in time. While some groups of blades are deflected
by up to 50 % of the blade length, other groups stand up quite vertically. Analogous to the
streaks, these regions extend over a length of approximately 2H ~ 13AS, in streamwise
direction and 0.75H =~ 5AS, in spanwise direction. This corresponds to an array of
approximately 13 x 5 blades in which, statistically, a group of blades undergoes a similar,
large deformation being accompanied laterally by a group of more erect blades and vice
versa.

The relation between velocity streaks and the reconfiguration of blades found here,
agrees with experimental observations of Ghisalberti and Nepf (Ghisalberti & Nepf 2002,
2005). They noticed that a waving of blades is clearly confined to longitudinal ‘monami
channels’ (termed ‘velocity streaks’ here), where the blade motion in one channel is out
of phase with the motion in the adjacent channels. It was also found in Ghisalberti & Nepf
(2005) that these flow structures persist even when the flexible blades are replaced by rigid
vegetation elements.
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FIGURE 14. Different models of vortices responsible for the monami phenomenon.
(a) Common model of a two-dimensional Kelvin—-Helmholtz vortex generated in the mixing layer
at the canopy edge, after (Nepf 2012). (b) Dual-hairpin eddy model proposed in (Finnigan et al.
2009; Patton & Finnigan 2012) for terrestrial canopies with ‘head-up’ (HU) and ‘head-down’
(HD) hairpin vortices aligned in the streamwise direction. Due to the counter-rotating legs of the
hairpins the HU-vortex generates an ejection (broad blue arrow), while the HD-hairpin generates
a sweep (broad red arrow). The smaller arrows indicate the motion of the hairpin vortices.

4.7. Coherent structures

As demonstrated in the previous section the monami phenomenon, observed for the present
set of parameters, is characterized by an organized large-amplitude oscillation of groups
of blades at different locations in the channel related to the presence of coherent flow
structures on canopy scale. These dominate the vertical transport of momentum so that
their downstream advection causes the wavy motion of the canopy (Ghisalberti & Nepf
2002; Okamoto & Nezu 2010a). However, the exact nature of coherent structures and
vortices in canopy flows is still not fully understood in the literature. The most common
model of coherent structures is based on the existence of a straight horizontal KH-vortex
generated at the canopy edge by a mechanism similar to the KH-instability in the mixing
layer (Nezu & Sanjou 2008; Okamoto & Nezu 2010a; Nepf 2012). On the other hand,
as recently shown in the stability analysis of Singh et al. (2016), the hydrodynamic
instability in the monami regime seems to differ from the traditional KH-instability due
to the presence of vegetation elements, responsible for a second instability mechanism.
In the range of vegetation densities encountered in laboratory scale experiments of
aquatic canopy flows, the two modes are reported to be indistinguishable from one
another. The KH-model alone usually provides only a two-dimensional explanation of
dominant coherent structures, but does not consider the three-dimensional features to
be expected in turbulent canopy flows. Indeed, as suggested by Nezu & Sanjou (2008)
for aquatic canopies and by Finnigan (2000) and Finnigan, Shaw & Patton (2009) for
terrestrial canopies, the turbulence in canopy flows is rather dominated by a complicated
three-dimensional large-scale motion of the fluid with sweeps, ejections and roller vortices
as the dominant contributions at the canopy edge. For terrestrial canopies Finnigan et al.
(2009) deduced eddy structures by means of conditional averaging of the flow field using
pressure maxima near the canopy top as a trigger to identify the location of the structures.
These authors proposed a dual-hairpin eddy structure composed of a ‘head-up’ (HU) and a
‘head-down’ (HD) hairpin vortex (figure 14b). In between the counter-rotating legs of the
corresponding hairpin, an ejection and a sweep are generated (figure 6 in Finnigan ef al.
2009).

With this information in mind the present data are now analysed to obtain a better
understanding of this issue. Similarly to the strategy of Finnigan et al. (2009) conditional
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averaging of the fluid fields was performed, computing the quantity

W) = — 3 uetr1), 4.8)

|C| (xc,1)€C

where r = x — x, denotes the location relative to the trigger location x. at the
corresponding time 7. This tupel (x., 7.) is an element of the set

C={(xc,t) € 2. x T, | Fxe,te) < Fn AVx € 2p(x.) : Fxe, 1) < F(x, 1)}
with Qz(x.) = {x € 2, | lx —x.|| <R} 4.9)

defining all locations x,. € £2,, = {x € £2 | y =0} at times ¢, € T, fulfilling a certain
condition F(x., t.) < Fy, with a predefined threshold F;, while also providing a local
minimum of F within a predefined radius R. The condition F is adapted to the desired kind
of events. In the work of Finnigan et al. (2009) this was a pressure maximum, for example.
The threshold F;;, ensures the identification of regions of significantly low F, possibly
comprising a multitude of locations around the respective local minima of interest. The
radius R defines the approximate spatial extent of an event to be detected. In the present
context, the value R = 0.75H was chosen, according to the extent of dominant structures
obtained from the two-point correlations p,, and p,+,-. The total number of events detected
in the domain £2 over the time interval T, is given by the cardinality of C, denoted |C|.
Conditional averaging was performed for both data sets simultaneously by means of the
same condition. As a consequence, only locations x, € £2 are permitted that coincide with
the fixation point ¢, of a structure. As a result the associated conditional average for the
array of blades x,(Z, t) is given by

1
(X)esl@) = 17 Y Xen(Zt), (4.10)

(xc.t.)eC

when s, is the index of the structure anchored at x.. In this work, the local deflection of
the blades was used to define the averaging condition. Specifically, this was y*(x., t.) <
0.55L, substantially smaller than the average reconfiguration height L* = 0.8L, which
yielded |C| = 2970 events.

The result of the conditional averaging is shown in figure 15 in various complementary
ways. Panel (a) displays contour plots of the streamwise velocity component (u). far from
the trigger point, thus illustrating the decay of any perturbation at this distance. In the
same graph an iso-surface of the A, criterion (Jeong & Hussain 1995) is shown, coloured
by vertical position. It is u-shaped with the bend upstream and located between the blades
while the two downstream branches reach upwards. This structure corresponds to the
HD-hairpin seen in figure 14(b) and is approximately 3AS, wide. It features a strong
and pronounced sweep at and behind the lower end between the two counter-rotating
legs. This is illustrated by the streamlines of (u). in the centre plane through the trigger
point in figure 15(b) and yields a global minimum of the conditionally averaged Reynolds
shear stress (u/'v')./U? above the blade of highest deflection. The HD-hairpin and the
related deflections in figure 15 demonstrate the strong correlation between a sweep
and an increased reconfiguration of the blades, observed in the previous sections. This
observation is backed by a test with the condition on the blades being replaced by
a condition on the existence of a sweep, i.e. u' > 0, v' <0, /'v'/U* < —0.16 in the
horizontal plane y/L = 0.65. The result obtained for (). and (x),. was almost unchanged.
The pronounced sweep is also highlighted by the iso-surface of (1')./U = 0.18 visualized
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FIGURE 15. Conditionally averaged fluid field (u)./U and an iso-surface of
(W) =—1.5 s~2. The blades are coloured according to their reconfiguration.

in figure 15(a,b). It is obvious that the space between the branches of the HD-hairpin is
filled with high-speed fluid. A corresponding surface of negative conditionally averaged
fluctuations is not seen in this graph. For this reason an iso-surface of half this value
is included in figure 15(c) showing that sideways from the HD hairpin two LS-streaks
are present in the conditionally averaged flow, which is in agreement with the spanwise
correlation of u reported in figure 13(b). Finally note that in contrast to the observations of
Finnigan et al. (2009) the dual hairpin depicted in figure 14(b) was not observed, but only
the HD-hairpin.

Figure 16 shows instantaneous eddy structures for an arbitrary instant in time, visualized
by iso-surfaces of negative pressure fluctuation. A number of well-separated eddies are
observed reaching from the interior of the canopy far into the free-flow region. As these are
features of the instantaneous flow field, they have an irregular appearance. Furthermore,
they do not seem to have the shape of HD-hairpins as shown in figures 14(b) and 15.
Instead, KH-like eddies of different intensity seem to be formed in the mixing layer,
especially in regions of large blade deflection, as suggested by the KH-model described
above. One example of a strongly pronounced KH-vortex is shown in figure 17(a).
These regions of large blade deflection generally appear in conjunction with longer
HS-streaks (#' > 0), resulting in a distinct conditionally averaged HS-streak ({(«'). > 0) in
figure 15(a). The two-point correlations presented in § 4.6 demonstrate that HS-streaks are
bound laterally by LS-streaks (' < 0) observed also in visualizations of the instantaneous
flow, such as the situation shown in figure 17(b). A deeper analysis of the data reveals that
hairpin-like vortices are generated on top of LS-streaks (figure 175). This relation between
LS-streaks and hairpins is a feature known from turbulence over smooth walls (Theodorsen
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FIGURE 16. Coherent vortex structures visualized by pressure iso-surfaces at a value
P/ (0.5 orU 2) = —0.4. The iso-surfaces are coloured by the vertical position y/H. The instant
in time is the same as in figure 6.

1955; Adrian 2007). Furthermore, these are frequently linked to the spanwise KH-vortices
below the high-speed streaks as illustrated by the example indicated with an arrow,
designated as a Kelvin—Helmholtz/hairpin (KH/HP) vortex, here. Yet this KH/HP-vortex
is not reproduced by A, in figure 15(a), nor are the neighbouring LS-streaks immediately
visible, until revealed by halving the threshold value for negative (u'). in figure 15(c).
While HS- and LS-streaks are similarly intense (figure 170), the averaging process reduces
the intensity of the LS-streaks. This is hardly surprising, since any asymmetry in the
instantaneous flow surrounding an event is not addressed by the averaging procedure.
Consequently, asymmetry of the instantaneous vortices (figure 17b) is lost as well,
resulting in the symmetric HD-hairpin in figure 15.

Seeking a conditional mean that is more representative of the structures in the
instantaneous flow, the averaging procedure is now expanded to account for asymmetry
in the surrounding of an event,

(o) = — Y M-ux.+M-r1,), (4.11)
|C| (xc,1)eC

where the matrix M = diag(1, 1, 1) or diag(1, 1, —1) serves to negate the z-components
of u and r depending on the detected asymmetry. Motivated by the strong relation between
the KH/HP-structure and LS/HS-streaks, this predominant direction was designed as the
spanwise direction in which the stronger LS-streak is located. Therefore, for a given
event the first moment (z — z.) #’ was integrated in a surrounding volume and the sign of
this integral was evaluated. This surrounding volume was constructed as a box spanning
x —x. <H, 055L<y<H, |z—z/|<0.75H, which statistically embraces an
LS/HS-streak pair.
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FIGURE 17. Instantaneous coherent vortex structures observed in the mixing layer zone and
the log-layer zone. (a) Iso-surface of pressure fluctuations p’/ (0.5 orU 2) = —0.4 highlighting a
KH-vortex and smaller vortices at the blade tips. The velocity fluctuation magnitude is mapped
onto a z-normal plane, with arrows indicating the direction of the in-plane component of #’.
(b) HS-streaks (red) and LS-streaks (blue) visualized by u//U > 0.3 and u'/U < —0.3,
respectively. HP-vortices are visualized with iso-surfaces of pressure fluctuations, as in (a). The
instant in time is the same as in figure 6.

With this definition, the conditional average in figure 18 not only features a clear
HS-streak at the location of the event, but also an equally pronounced LS-streak on
one side. The vortical structure is highly unsymmetric with the one leg between the two
streaks reaching up into the outer flow, bearing some resemblance of the KH/HP-vortex in
figure 17(b). The HP-components of the KH/HP-structures situated above the low-speed
streaks are not captured by the conditional averaging. While the KH-part follows the
event condition well, any instantaneous HP-component is further away from the event.
Its (streamwise) position relative to the event is thus more variable and likely averaged out
as a consequence.

The symmetric conditionally averaged structure in figure 15 is visualized by means of a
A, iso-surface with 1, = A, ({¢').) calculated from the conditionally averaged perturbation
velocity field as done by Finnigan et al. (2009). Unlike (u)., the average (u'). effectively
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FIGURE 18. Asymmetrically conditionally averaged fluid field (u)./U and an iso-surface of
A2((u)) = —1.5 s~ 2. The blades are coloured according to their reconfiguration.

removes the mean vorticity d(u)/dy, which — as Bailey & Stoll (2016) pointed out — can
prevent structures from being detected or can introduce spurious ones. In figure 18, 4, =
A>((u).) is based on the conditionally averaged velocity field to avoid this issue.

5. Proposed model of coherent structures

Following the same simple three-zone model (Poggi et al. 2004; Ghisalberti & Nepf
2006; Sanjou 2016) introduced in the discussion of mean profiles (figure 8 above),
characteristic coherent structures can be identified for each of these layers. It can, therefore,
be suspected that the nature of coherent structures in canopies emerges from the interaction
of these characteristic structures.

The flow in the emergent zone is dominated by wakes of individual vegetation elements.
These are characterized by small-scale vortices on plant scale which have a destabilizing
impact on the mixing layer above. Furthermore, as observed in rough channel flows
(Acarlar & Smith 1987), the vortex shedding from single roughness elements can also
support the generation of hairpin vortices. Nonetheless, the interaction with the mixing
layer is limited due to the comparably small vertical transfer of momentum (Ghisalberti &
Nepf 2002).

For sufficiently dense canopies a pronounced shear layer in the upper region of the
canopy is generated by the drag of vegetation elements (Nepf 2012). Here, the flow is
prone to instabilities of KH type and turbulent fluctuations evolve to form large-scale
KH-vortices, as shown in figure 17(a). At the leading edge of the eddy high momentum
fluid is transferred from the free-flow zone towards the canopy, whereas at the trailing edge
low momentum fluid is transferred upwards (Shvidchenko & Pender 2001). KH-vortices
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FIGURE 19. Model system of coherent structures on canopy scale. (a¢) A group of blades
(depicted as a single column here) is strongly reconfigured in a HS-streak region, where
the flow is prone to instabilities and turbulent fluctuations, evolving to form KH-vortices.
A HS-streak is accompanied laterally by LS-streak regions. These are populated by HP-vortices
which pump fluid away from the canopy edge. (b) Merging of KH-vortex and HP-vortex to
a Kelvin—Helmbholtz/hairpin vortex. An instantaneous snapshot of a selected KH/HP-vortex is
shown in figure 20(a).

are advected in streamwise direction and, by interaction with other turbulent fluctuations,
evolve to form large-scale coherent structures. This is an essential precondition to trigger
the monami phenomenon (Raupach er al. 1996; Okamoto & Nezu 2010a; Singh et al.
2016), causing large reconfiguration of the blades underneath (Nepf 2012). Conditional
averaging revealed that regions of large blade deflection are generally accompanied by an
increased streamwise velocity ©' > 0 at the canopy edge (figure 19a). Laterally adjacent
regions of lower velocity ' < 0 contain statistically less reconfigured blades compared to
the mean blade deflection.

In the log-layer zone above the mixing layer, the fluid behaves similarly to a classical
boundary layer without vegetation (Nezu & Sanjou 2008). In boundary layers of smooth
channels the flow is characterized by alternating streaky regions of high velocity
(HS-streaks) and low velocity (LS-streaks) where sweeps and ejections are dominant
turbulent mechanisms. As a common basic structure, hairpin vortices of various sizes, ages
and aspect ratios coexist, occurring as clusters aligned in the streamwise direction (Adrian
2007; Detert 2008). The clusters transport fluid away from the channel bottom (ejection),
consequently accumulating low-speed fluid between them (LS-streak, figure 19a), often
referred to as multiple ejection bursts (Tardu 2002; Detert 2008). The present simulation
clearly shows such bursts on top of the canopy indicating the similarity with coherent
structures in boundary layers (figure 170).

While each of the above mentioned flow features are known as the signatures of the
corresponding zones, all these turbulent structures are not hindered from spanning beyond
the limits of the corresponding layers. They can be expected to overlap and interact in a
transition zone. Especially HS-streaks and LS-streaks reach from the mixing layer far up
into the free-flow, hence they are dominant contributions in both zones. While the flow in
the mixing layer tends to form KH-vortices in HS-streak regions, clusters of hairpins can
be observed on top of LS-streaks in the log-layer zone. In the transition zone these vortical
structures are seen to interact with each other. Since KH-vortices and hairpins exhibit the
same sense of rotation, they are able to merge to form KH/HP-vortices, as illustrated in
figure 19(b). This type of vortex appears to be a unique turbulent structure in sufficiently
dense shallow canopy flows and is notably not present in boundary layers over smooth
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FIGURE 20. KH/HP-vortex. (a) Instantancous KH/HP-vortex visualized by pressure
iso-surfaces at a value of p'/ (0.5 of UZ) = —0.4 in the indicated region. Volumes of
positive and negative velocity fluctuations «’ = +0.4U are rendered in shades of red and blue,
respectively. (b) Schematic illustration of KH/HP-vortex, dyed in grey on top of the canopy
edge, inclined in streamwise direction. The small red and blue arrows indicate the direction of
rotation. The lower ‘head’ of the vortex (KH part framed in red) accelerates the fluid and causes
a vertical momentum transfer (broad red arrow) into the canopy region. At the same time fluid
is decelerated by the upper ‘head’ (HP part framed in blue), which in addition pumps fluid away
from the canopy edge (broad blue arrow).

walls due to the absence of the KH-vortices (Adrian 2007). One selected instantaneous
KH/HP-vortex is shown in figure 20(a). It is likely that the merging of these two vortices
increases the intensity of the associated HS-streak resulting in the formation of remarkably
strong sweeps. This in turn leads to a particularly pronounced reconfiguration of the
canopy with deflections of single blades down to y*/L = 0.4 (figure 10a).

The shape of the discovered KH/HP-vortices calls for a reinterpretation of the
conditionally averaged structure, held responsible for the monami. Similar to the
observations of Finnigan et al. (2009), a symmetric HD-hairpin vortex was obtained
(figures 14b and 15). However, the HU-component is not present, and neither was such
a combination of streamwise-aligned HD-hairpins and HU-hairpins observed in the
instantaneous flow fields. Instead, it appears that instantaneous eddies are shaped more like
KH-vortices, spanwise-shifted combinations of HD/HU hairpins, and KH/HP-vortices,
of which the latter cause exceptionally strong reconfiguration of the blades. Yet these
instantaneous structures can be reconciled with the symmetric shape of the conditionally
averaged structure, bearing in mind that this conditional average does not distinguish
between differently directed ‘one-legged” KH/HP-eddies. Both directions are equally
probable and the conditional mean is symmetric. Consequently, asymmetric averaging
does reveal a one-legged structure (figure 18).

6. Conclusions

In the present paper the flow over and through an artificial aquatic canopy was simulated,
according to an experimental set-up of Okamoto & Nezu (2010a). The simulation was
performed with 800 regularly arranged strip-shaped blades, each modelled as a Cosserat
rod, discretized with 30 elements, and coupled to the fluid in the framework of an LES.
With this approach highly resolved instantaneous and averaged data were obtained. Very
good agreement with the experimental data was found for the mean velocity profile and
the Reynolds stresses. Moreover, the organized wave-like motion of the model plants in
the monami regime was captured very well. The data obtained from the simulation were


https://doi.org/10.1017/jfm.2020.858

https://doi.org/10.1017/jfm.2020.858 Published online by Cambridge University Press

Fluid—structure interaction in an abstracted aquatic canopy 916 A43-31

analysed to gain fundamental information on the three-dimensional nature of coherent
vortex structures in the flow over and through this dense aquatic canopy. These new
insights contribute to an enhanced understanding of the flow-biota interaction in canopy
flows, such as the mechanism behind the monami phenomenon.

It was observed that in the present type of canopy flow, the nature of coherent
structures appears as a superposition of common turbulent features and mechanisms.
They range from turbulent wakes of the vegetation elements in the emergent zone,
over Kelvin—Helmholtz vortices generated in the mixing layer zone, to velocity streaks
and hairpins in the free-flow zone above the canopy. As it turned out, the interaction
between these zones generates unique turbulent structures which do not occur in
regular mixing layers and boundary layers. Of particular importance here is the merge
of Kelvin—Helmholtz vortices at the canopy edge and hairpins located on top of
the low-speed streaks in the free-flow region, resulting in a novel structure termed
Kelvin—Helmholtz/hairpin (KH/HP) vortex. Since both vortices exhibit the same sense
of rotation, their pairing promotes the formation of particularly strong sweeps, which
in turn lead to large reconfigurations of the model plants. This appears to be a key
mechanism driving the wavy motion of the canopy in the monami regime. To extract
statistically significant information, conditional averaging of the flow field was performed,
using locally increased blade deflections as a trigger to identify pronounced coherent
structures. This revealed a symmetric ‘head-down’ hairpin vortex above the most deflected
blade. It is accompanied by a strong sweep between its counter-rotating legs which
supports the strong correlation between sweeps and local reconfigurations of the canopy.
Extending the conditional averaging technique by a switch accounting for asymmetry in
spanwise direction, features of the asymmetric KH/HP-vortex were also identified in the
conditionally averaged data.

While the observed phenomenon is tightly linked to the occurrence of a monami, further
studies should be conducted to investigate the dependence of this feature on the flow
parameters like Cauchy number, submergence, etc.

Acknowledgements

This work was funded by the French-German project ESCaFlex via the DFG grant
634058. The computations were performed on a Bull Cluster at the Center for Information
Services and High Performance Computing (ZIH) at TU Dresden.

Declaration of interests

The authors report no conflict of interest.

Appendix. Validation of numerical parameters

The numerical parameters listed in table 3 were selected after a series of sensitivity
analyses, performed for the mean velocity profile (u) and the Reynolds stress (x'v’). To
validate the suitability of the grid employed, a grid refinement study was performed
coarsening the grid described above by a factor of 2 in all directions and by a factor
of 4. The results are presented in figure 21. It is obvious that the data from the second
finest and finest grid are very close, and the same holds for the other Reynolds stresses
(not reproduced here). This demonstrates that the finest grid, employed for the main study
below, provides reliable results. The resolution with W/Ax = 12.8 grid cells over the
blade width was also found acceptable in a separate study considering a single blade under
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FIGURE 21. Grid refinement study with three different grids obtained from coarsening the basic
grid by factors of 2 and 4 with all other parameters unchanged. (a¢) Mean velocity, (b) resolved
turbulent shear stress. The horizontal line corresponds to the average reconfigured canopy height
L*/L = 0.8. Data reproduced from Tschisgale & Frohlich (2020).
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FIGURE 22. Validation of the domain size by two additional simulations with doubled and
halved extensions in the streamwise and spanwise directions. (¢) Mean velocity, (b) resolved
turbulent shear stress. The horizontal line corresponds to the average reconfigured canopy height
(L*)/L =0.8.

similar conditions (Tschisgale & Frohlich 2020), which is a harsher test case due to the
absence of shielding.

In a separate simulation the time step was reduced from CFL = 0.5 to CFL =
0.2 without discernible impact. Hence, CFL = 0.5 was used in the main simulation.
The influence of the domain size was studied in a second test by doubling and halving the
streamwise and the spanwise extents of the domain. For reasons of cost these simulations
were conducted with the second finest resolution, using the same step size Ax = Ay = Az
in all the three computations. As shown in figure 22, these variations in domain size do
not change the results. This backs the choice of the final domain size 6H x H x 3H.
Further support is provided by the spatial correlations computed a posteriori from the
simulation results which are reported in § 4.6. Another series of tests was conducted with
the reference geometry (table 1) and the reference discretization (table 3) only varying the
Smagorinsky constant C,. The value C; = 0.15 was employed together with half of this
value and twice this value. Since this constant appears with its square in the expression
for the subgrid-scale viscosity doubling the value results in about fourfold dissipation. As
demonstrated in figure 23 the results obtained practically coincide, so that C; = 0.15 was
retained, as used in other simulations of canopy flows (Okamoto & Nezu 2010b; Li & Xie
2011; Gac 2014). For this value the subfilter activity vye,/(Vses + Vy) (Geurts & Frohlich
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FIGURE 23. Validation of the choice of the Smagorinsky constant in the SGS model. (a) Mean
velocity, (b) resolved turbulent shear stress. The horizontal line corresponds to the average
reconfigured canopy height (L*) /L = 0.8.
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FIGURE 24. Instantaneous values of the subfilter activity, vygs/(Vsgs + Vr), in the planes x =
0.5Ly, 7~ 0.5L; and y = L*. These positions are indicated by the black dashed lines. Same
instant in time as in figure 6.

2002) exhibits maximum instantaneous values of 0.9 located in the mixing layer around
y/H =~ 0.2. Yet, these values are limited to the vicinity of the structures, as visualized
in figure 24. The average over x and z is around 0.3 in the mixing layer and smaller above
and below.

Another parameter of the discretization is the number of elements N, per blade structure.
A value of N, = 30 is used here based on the experience made in a separate validation
study where a single blade under similar conditions was found to be well resolved for N, =
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20 (Tschisgale & Frohlich 2020). The present simulation revealed that in the situation
investigated the blades deform in mode 1. Separate tests show that even with N, = 10 this
mode is well represented, thus providing another a posteriori confirmation.

With these extensive tests it was verified that the numerical parameters assembled in
table 3 are appropriate to generate reliable results.
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