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Stable Parabolic Bundles over Elliptic Surfaces
and over Riemann Surfaces

Christian Gantz and Brian Steer

Abstract. We show that the use of orbifold bundles enables some questions to be reduced to the case of flat
bundles. The identification of moduli spaces of certain parabolic bundles over elliptic surfaces is achieved
using this method.

1 Introduction

If q : Y → Σ is an elliptic fibration ([27] and Section 2) the procedure of pulling back an
orbifold or V-bundle fromΣ induces a correspondence between the moduli space of stable
bundles E ′ → Y with c(E ′) = 1+c1(E ′)+c2(E ′) ∈ q∗H∗([Σ]) and that of stable V-bundles
over Σ (Theorem 3.4). This has been shown by S. Bauer using algebraic geometry [3] and
the purpose of this paper is to point out how the use of orbifold structures enables one to
twist by a line V-bundle and so reduce to the flat case where the matter is taken care of by
the (hard) theorems of S. K. Donaldson and of M. S. Narasimhan and C. S. Seshadri.

The result (and proof) extends to parabolic bundles. This is shown in Section 4 and
Sections 5 and 6 show, using work of S. Bauer and P. B. Kronheimer and T. S. Mrowka, that
the moduli spaces are complex manifolds which admit Kähler forms and determinant line
bundles which coincide under the correspondence; a result certainly expected and “well-
known” if not, it seems, in print. The paper outlines parts of [14] and the authors thank
S. Bauer, P. B. Kronheimer and T. Peternell for helpful remarks.

2 Elliptic surfaces

Throughout, let q : Y → Σ be an elliptic surface, i.e., Y is a compact complex surface, Σ
a compact Riemann surface and q−1(σ) an elliptic curve for generic, i.e., all but finitely
many, σ ∈ Σ [13], [2]. We assume that any non-generic fibre is either a rational curve
of multiplicity one with one self-intersection (called a singular fibre) or a multiple elliptic
curve and furthermore that there is at least one singular fibre. (Moishezon shows that all
elliptic surfaces are deformation equivalent to these [21].)

Theorem 2.1 ([27], [9]) If U0 ⊆ Σ is a ball and π−1(U0) contains all singular fibres but no
multiple elliptic curves then π−1(U0) is simply connected.
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Bundles over Elliptic Surfaces 175

If Yσ = q−1(σ) has multiplicity m > 1, let Ũ and B be discs in C, φ : B → U a chart
with U ⊆ Σ, φ(0) = σ and construct a uniformization of U by

Ũ
zm

−→ B
φ
−→ U

where 〈η = e2πi/m〉 = Zm ⊆ C acts on Ũ in the standard way. We do this for all multiple
points and then considerΣ as an orbifold. Here it suffices to think of orbifolds as manifolds
together with local coverings branched along some co-dimension one submanifold. An
orbifold bundle or V-bundle over U is an equivariant bundle

(Ũ × Cr,Zm)→ (Ũ ,Zm),

where η(ũ, v1, . . . , vr) = (ηũ, ηa1 v1, . . . , η
ar vr)

for isotropies 1 ≤ ai ≤ m. A V-bundle over Σ consists of such local bundles and ordinary
ones over non-multiple points which patch together. Connections in V-bundles are locally
invariant ones which patch together.

Theorem 2.2 (Seifert, [12]) Smooth V-bundles over Σ are classified by rank, degree (which
is rational) and isotropies.

For any y ∈ Yσ in a fibre of multiplicity m we can choose coordinates (z1, z2) on U ′ 	 y
such that φ−1 ◦ q(z1, z2) = zm

2 . Hence φ−1 ◦ q lifts locally to a regular map

m
√
φ−1 ◦ q = z2 : U ′ → Ũ

uniquely up to the action of Zm. Now q is a map of orbifolds. Because it is now regu-
lar away from finitely many points, Theorem 2.1 implies that q∗ : π1(Y ) → πV

1 (Σ) is an
isomorphism, where the orbifold fundamental group πV

1 (Σ) is an extension of π1(Σ) by
unipotent elements corresponding to the multiple points. The correspondence between
representations of the fundamental group and flat bundles extends to orbifolds. So the flat
bundles over Y correspond to the flat V-bundles over Σ. It also follows that the first Betti
number of Y is even and, by [20], that Y is Kähler.

A divisor onΣ is a finite sum D =
∑

i∈I σini/mi where ni ∈ Z and mi is the multiplicity
of σi ∈ Σ. The vertical divisors on Y are precisely the pull-backs of divisors on Σ. Hence,
[24], the line bundles O(D ′) over Y with vertical divisor correspond to the line V-bundles
over Σ.

3 V-Bundles

Let P0 ∈ Σ be generic with respect to q, let P ′0 = q−1(P0) and let m0 be a positive integer.
We form the orbifolds ΣV = (Σ, P0,m0) and YV = (Y, P ′0,m0) by adding local coverings,
branched along P0 and P ′0:

π : Ũ → B

z �→ zm0
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where φ : B → U is a chart centered at P0 and, for a chart φ ′ : V × B → U ′ of Y , where V
is a disc and φ ′(V × {0}) = P ′0 ∩U ′, we take

V × Ũ → V × B

(z1, z2) �→ (z1, z
m0
2 ).

The group Zm0 acts both on Ũ and on V × Ũ . A V-bundle over Σ is also a V-bundle over
ΣV and similarly for YV . To speak about degrees and anti-self-duality we need an orbifold
Kähler form on YV , i.e., a positive, closed (1, 1)-form on Y \ P ′0 which extend smoothly to a
positive form on the local coverings.

Proposition 3.1 ([17, Appendix 2]) For each Kähler form ω ′ on Y there exists an orbifold
Kähler form ω ′V on YV such that [ω ′V ] = [ω ′] ∈ H2(Y,R).

Proposition 3.2 If E ′ → Y is stable then so is E ′ → YV , i.e., for all F ′ → YV with
rank F ′ < rank E ′ and holomorphic f : F ′ → E ′, injective over some point, we have
degV F ′/ rank F ′ < deg E ′/ rank E ′; similarly for bundles over Σ.

Proof There are trivialising sections si : V × Ũ → F ′|V×Ũ , i = 1, . . . , r ′ = rank F ′, with
η ◦ si = η

a(i)si(z1, ηz2) for a(i) ∈ {1, . . . ,m0}. Similarly trivialising E ′|V×Ũ , with trivial
isotropies, write f j : F ′|V×Ũ → C for the j-th component of f . Then

f j
(

si(z1, ηz2)
)
= η−a(i) f j

(
η ◦ si(z1, z2)

)
= η−a(i) f j si(z1, z2)

since f is locally equivariant. Hence, f j ◦ si : V ×Ũ → C vanishes to order at least m0−a(i)
along V × {0}. We define the sheaf F ′∞|U ′ to consist of sections

s =
r ′∑

i=1

giz
a(i)−m0
2 si ∈ Ω

0(F ′|V×Ũ )

where gi : V × Ũ → C are holomorphic and invariant, i.e., holomorphic functions on U ′.
Hence F ′∞|U ′ is a genuine vector bundle over U ′. It can be glued into F ′|Y\P ′0

to form a
global genuine bundle F ′∞ → Y . Clearly, f induces a holomorphic map f∞ : F ′∞ → E ′.
Unless F ′ had trivial isotropies, f is injective over some point in Y \ P ′0 and hence f∞ is.
Also,

deg F ′∞ = degV F ′ + 〈ω ′V , P
′
0〉

m0∑
i=1

(
m0 − a(i)

)
≥ degV F ′.

Lemma 3.3 If E ′ → YV has c2(E ′)− 1
2 c2

1(E ′) = 0 then any ASD connection is flat.

Proof 0 = 〈8π2
(
c2(E ′)− 1

2 c2
1(E ′)

)
,YV 〉 =

∫
YV

Tr(F2) = ‖F−‖2 − ‖F+‖2.
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Theorem 3.4

(i) For arbitrary fixed Kähler form ω ′ on Y , pulling back gives a correspondence between
stable V-bundles E→ Σ and those stable bundles E ′ → Y with c(E ′) ∈ q∗H∗(Σ,Q).

(ii) If P = (P1, . . . , Pn) ⊂ Σ are generic, P ′ = q−1(P) and (m1, . . . ,mn) ∈ Zn
>0 and if ΣV

and YV denote the corresponding orbifolds then the stable V-bundles E→ ΣV corresponds
to the stable V-bundles E ′ → YV with c(E ′) ∈ q∗H∗(Σ,Q).

Hence, stability of E ′ is independent of the choice of ω ′ if c(E ′) ∈ q∗H∗(Σ,Q). Part (i)
of this theorem has been shown, under some conditions on ω ′ and with the additional
condition det E ′ ∈ q∗PicV (Σ), by Bauer [3].

Proof (i) Let E ′ → Y be stable with respect to ω ′ and suppose that c2(E ′) = 0 and
c1(E ′) = q∗θ for some θ ∈ H2(Σ,Q). Choose l ∈ Z and m0 ∈ Z>0 such that rl

m0
=

〈θ,Σ〉 and construct ΣV = (Σ, P0,m0) and YV = (Y, P ′0,m0) as before. Consider the
holomorphic line V-bundles L = [− l

m0
P0]→ ΣV and L ′ = q∗L = [− l

m0
P ′0]→ YV .

By Proposition 3.2, E ′⊗L ′ is stable. Now m(σ)〈Yσ, ω ′〉 = κ is constant, where m(σ) is
the multiplicity of Yσ ⊆ Y . So Poincaré duality implies that

degV (E ′ ⊗ L ′) = 〈
(
c1(E ′) + rc1(L ′)

)
∪ ω ′,Y 〉 =

rl

m0
κ− r

l

m0
κ = 0.

After Donaldson [10], and generalisations [17], [26], E ′ ⊗L ′ admits a unique irreducible,
hermitian ASD connection. Now c(E ′ ⊗ L ′) ∈ q∗H∗(Σ) and by Lemma 3.3 this ASD
connection is flat.

The map q∗ : πV
1 (YV ) → πV

1 (Σ) is again an isomorphism by Theorem 2.1. Hence
E ′ ⊗ L ′ = q∗F for unique flat, irreducible F → ΣV which is stable, by the theorem of
Narasimhan & Seshadri [23], and generalisations [12], [8]. Since E ′ has trivial isotropies
along P ′0, so has E over P0 and is therefore a V-bundle over Σ.

(ii) The proof is entirely similar.

4 Parabolic Bundles

Let P = {P1, . . . , Pn} ⊂ Σ be generic and P ′ = {P ′j = q−1(P j )} j=1,...,n ⊆ Y . A weighted
bundle E ′ → (Y, P ′) is a bundle E ′ → Y with proper filtrations and weights

E ′|P ′j = E ′j,1 ⊃ E ′j,2 ⊃ · · · ⊃ E ′j,l j
�= 0,

0 ≤ α ′j,1 < α
′
j,2 < · · · < α

′
j,l j
< 1

for j = 1, . . . , n. We call µ ′j,k = rank(E ′j,k/E
′
j,k+1) the multiplicity of α ′j,k. Let α ′j =

diag(α ′j,k) be the diagonal matrix of rank r with entries α ′j,k with multiplicities. If bundle
and filtrations are holomorphic then we speak of a parabolic bundle. For E → (Σ, P) the
{E j,k} are filtrations of E|P j with weights {α j,k} and multiplicities {µ j,k}. Thinking of
vectors in E|P as having the obvious weights (+∞ the weight of zero vectors), a morphism
is a bundle map never decreasing weights.
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When we use bundle operators (like ci , det or deg) on a weighted bundle E we mean
them to be applied to the underlying bundle |E|. By definition,

par c1(E ′) = c1(E ′) +
n∑

j=1

Tr(α ′j) PD(P ′j ) ∈ H2(Y,R).(*)

Similarly par c1(E) ∈ H2(Σ,R). Set par deg E = 〈par c1(E),Σ〉 ∈ R and for given ω ′ let
par deg E ′ = 〈par c1(E ′) ∪ ω ′,Y 〉 ∈ R. Since P · P = 0 in the group H4(Y,R) we have

par c2(E ′) =
1

2
par c2

1(E ′) +

(
c2(E ′)−

1

2
c2

1(E ′)

)

−
n∑

j=1

l j∑
k=1

α ′j,k PD
(
deg(E ′j,k/E

′
j,k+1)
)
.

(**)

Definition 4.1 A parabolic bundle E ′ → (Y, P ′) is called stable if, for all non-zero para-
bolic maps F ′ → E ′ injective over some point and with rank F ′ < rank E ′, we have
par deg F ′/ rank F ′ < par deg E ′/ rank E ′. Similarly for E→ (Σ, P ′).

Theorem 4.2 Pulling back induces a correspondence between stable parabolic V-bundles
E→ (Σ, P) and those stable parabolic bundles E ′ → (Y, P ′) with par c(E ′) = 1+par c1(E ′)+
par c2(E ′) ∈ q∗H∗(Σ,R).

We recover (i) of Theorem 3.4 if there is no parabolic structure.

Definition 4.3 A weighted hermitian metric h ′ on E ′ → (Y, P ′) is a metric on E ′|Y−P ′

such that for any y ∈ P ′j and coordinate z which is normal to P ′j there exist smooth trivi-

alising sections near y, respecting the parabolic filtration of E ′|P ′j , such that h = |z|2α
′
j as

hermitian matrix.

The weighted metric h ′ induces a Chern connection on E ′|Y\P ′ , with ∂-part extending
smoothly over P ′ only if α vanishes. A weighted connection is reducible if the weighted
bundle decomposes invariantly under the connection.

Theorem 4.4 ([6], [10], [22], [26]) A degree zero parabolic bundle over a Kähler surface is
stable if and only if it admits a unique irreducible weighted ASD metric.

Theorem 4.5 ([19], [5], [23], [24]) A parabolic V -bundle E over a compact orbifold curve
Σ, parabolic only on a set P = {p1, . . . , pn} of generic points, is stable if and only if it admits
an irreducible weighted Yang-Mills metric; that is, an irreducible projectively flat weighted
metric.

To define what is meant by Yang-Mills a Kähler (orbifold) metric has to be taken on Σ,
but the assertion holds for any choice. It is straightforward to see that if par deg E = 0 such
a metric determines an irreducible representation of πV

1 (Σ−P) into SU(n)- and conversely
an irreducible representation determines a stable bundle of parabolic degree 0.
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Lemma 4.6

(i) [14], [22] If par c2(E ′)− 1
2 par c2

1(E ′) = 0 for the parabolic bundle E ′ → (Y, P ′) then
any ASD connection is flat.

(ii) [19], [14] A flat hermitian bundle over Y \ P ′ (respectively Σ \ P) extends uniquely to
a parabolic hermitian bundle over Y (respectively Σ).

(iii) [14] Let P0 ∈ Σ \ P be generic and P ′0 = q−1(P0). If E ′ → (Y, P ′) is stable parabolic
then so is E ′ → (Y, P ′ ∪ P ′0). Similarly in the case of bundles over Σ.

(iv) q∗ : π1(Y \ P ′)→ πV
1 (Σ \ P) is an isomorphism.

Parts (i), (iii) and (iv) are proved as for V-bundles, and (ii) is not very difficult. Theo-
rem 4.2 is now proved along the same lines as Theorem 3.4.

5 Moduli Spaces

Let E be a stable parabolic V-bundle over (Σ, P) or a stable V-bundle over ΣV =
(Σ, P,m1, . . . ,mn). Let T be the V-bundle underlying Par End0E if E is parabolic (i.e.,
forget the weights). If E is a V-bundle then transform its V-structure at the points P into a
parabolic structure first [12]. Let E ′ = q∗E and T ′ = q∗T. Now T and T ′ are holomorphic
(V-)bundles. We have the deformation complexes of smooth sections

Ω0
Σ(T)

∂T−−−−→ Ω0,1
Σ (T)

∂T−−−−→ 0


q∗



Ω0

Y (T ′)
∂T ′−−−−→ Ω0,1

Y (T ′)
∂T ′−−−−→ Ω0,2

Y (T ′).

Let D be a divisor on Σ with O(D) = det E, E the underlying smooth (weighted) V-
bundle of E and M(E,D) the space of stable structures on E with determinant O(D). Sim-
ilarly, define M(E ′,D ′) for E ′ = q∗E and D ′ = q∗D. Applying the extension of standard
deformation theory to parabolic bundles makes M(E ′,D ′) into a Hausdorff complex space
[17, Proposition 8.23], [22], with a description near E ′ given by the zero set of a holomor-
phic map

H0,1
∂̄

(Y,T ′)→ H0,2
∂̄

(Y,T ′).

Because H0,2(Σ,T) = 0, M(E,D) is a complex manifold with a chart near E given by
H0,1
∂̄

(Σ,T). Also, M(E,D) is connected and we let ME ′(E ′,D ′) be the connected compo-
nent of E ′.

Theorem 5.1 q∗ : M(E,D)→ME ′(E ′,D ′) is an isomorphism of complex manifolds.

Proof Bauer’s theorem [3, Cor. 1.6] generalises and q∗ : H0,1
∂̄

(Σ,T) → H0,1
∂̄

(Y,T ′) is an
isomorphism [14]. Theorem 4.2 or Theorem 3.4 finishes the proof.

Proposition 5.2 A smooth line V-bundle π : L → Σ is trivial if π ′ : L ′ = q∗L → Y is
trivial.
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Proof Write SL for the circle bundle associated to the complex line bundle L and let q ′ :
SL ′ → SL for the induced map of circle bundles. We have

0 −−−−→ K ′ −−−−→ π1(SL ′)
π ′∗−−−−→ π1(Y ) −−−−→ 0
 
q̂


q ′∗


q∗



0 −−−−→ K −−−−→ πV

1 (SL)
π∗−−−−→ πV

1 (Σ) −−−−→ 0,

where K = 〈k〉, K ′ = 〈k ′〉 for generic fibres k = q̂(k ′) of SL and k ′ of SL ′. Since q∗ is an
isomorphism and the rows exact, q ′∗ is an isomorphism if q̂ is one.

Assume there is a V-homotopy H : [0, 1] × [0, 1] → SL with boundary kn; that is, a
continuous family ht ∈ ΩV (SL), 0 ≤ t ≤ 1, where ΩV (SL) is the orbifold loop space
[12, p. 50] and ht (s) = H(t, s). Since q is regular away from finitely many points, there
exists H ′ : [0, 1] × [0, 1] → Y lifting π ◦ H. Hence there exists H̃ : [0, 1] × [0, 1] → SL ′

lifting H and H ′. If k ∈ S(Lx) then ∂H ′ = π ′ ◦ ∂H̃ ⊆ Yx and ∂H = q ′ ◦ ∂H̃ = kn.
We may suppose that x ∈ U0, where U0 is as in Theorem 2.1, and we are working on
SL ′ |q−1(U0) = S1×q−1(U0). We can lift some homotopy in q−1(U0) with boundary ∂H ′ to
one contracting ∂H̃ into one fibre of SL ′. This must be (k ′)n. Hence q ′∗ is an isomorphism.

Seifert proved that

πV
1 (SL) = 〈a j , b j , gi, k : [a j , k] = [b j , k] = [gi , k] = 1 = gmi

i kβi = k−b
g∏
1

[a j , b j]
n∏
1

gi〉,

for genus g and mi the multiplicity of σi . The isotropy βi mod mi at σi and deg L =
b +
∑n

1 βi/mi are independent of the choices of lifts gi , a j and b j of the generators of
πV

1 (Σ). Since SL ′ is trivial, there are lifts such that all βi and b are zero. By Theorem 2.2, L
is trivial.

Recall the definitions (*) and (**) of par ci(E∗) in Section 4.

Theorem 5.3 If E ′ → (Y, P ′) is weighted, if par c(E ′) ∈ q∗H∗(Σ,R) and if the set M(E ′)
of stable structures is non-empty then there exists a unique line V-bundle L → Σ with q∗L =
det E ′ = det |E ′|. Conversely, E ′ is determined by its parabolic weights and L. Hence, for
weighted E → Σ we have q∗E = E ′ if and only if the weights coincide and L = det E. So
M(E ′) �

⊔
E M(E) where the union is over such E.

Proof By Theorem 4.2, there exists a weighted E with q∗(E) = E ′. Hence L = det E, which
is unique by Proposition 5.2. Now, |E ′| is determined by L since c2(|E ′|) = 0. The parabolic
filtrations of E ′ = q∗(E) are by trivial bundles. Two different such filtrations of |E ′|P ′j are

related by a map P ′j → Sl(r,C) which can be extended to an isomorphism of |E ′| being the
identity outside a tubular neighbourhood of P ′j since Sl(r,C) is simply connected.
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6 Determinant Line Bundles

Now let E → ΣV = (Σ, P,m1, . . . ,mn) be a stable V-bundle of rank r. As in the genuine
case, we have a Kähler form ΩV on M(E,D) induced by

Ω̃V (a, b) =
1

4π2

∫
ΣV

Tr{a∗b− b∗a}

for a, b ∈ Ω0,1
ΣV

(End0 E). Here, the adjoint is with respect to a metric h on E and conjugation
on forms. Let m denote the least common multiple of the orders of all marked points in
ΣV . Choose ω ′V on YV = (Y, P ′,m1, . . . ,mn) such that

∫
Yσ
ω ′V = m for generic σ ∈ Σ. We

have the Kähler form Ω ′V on ME ′(E ′,D ′) induced by

Ω̃ ′V (a ′, b ′) =
1

4π2

∫
YV

Tr{(a ′)∗
′

b ′ − (b ′)∗
′

a ′} ∧ ω ′V

for a ′, b ′ ∈ Ω0,1
YV

(End0 E ′) where adjoints are here with respect to h ′ = q∗h. If Y has
no orbifold structure and if ω ′ is Poincaré dual to an imbedded Riemann surface then
Donaldson & Kronheimer construct a line bundle L ′DK → ME ′(E ′,D ′) with Chern form
rΩ ′V [11, p. 252].

Theorem 6.1

(i) Ω ′V = mq∗ΩV .
(ii) There exists a hermitian holomorphic line bundle L ′ → ME ′(E ′,D ′) with Chern form

rΩ ′V .
(iii) The bundle L ′ = L ′DK if M(E,D) is simply connected and if both T and ω ′ are as above.

If no proper smooth subbundle of E is of equal slope then M(E,D) = ME ′(E ′,D ′) is
simply connected [12]. This generalises Atiyah & Bott’s case of coprime rank and degree.
In case (iii), ω ′ is integral and hence

∫
Yσ
ω ′V = m for generic σ. (Note that in [11], where

Y can be any projective surface, the line bundle over AY needs to be tensored r times to
descend.)

Proof (i)

Ω̃ ′V (q∗a, q∗b) =
1

4π2

∫
YV

Tr{(q∗a)∗
′

(q∗b)− (q∗b)∗
′

(q∗a)} ∧ ω ′V

=
1

4π2

∫
YV

q∗ Tr{a∗b− b∗a} ∧ ω ′V = Ω̃V (a, b)

∫
Yσ

ω ′V = mΩ̃V (a, b).

(ii) Biswas & Raghavendra and, for rank two, Konno construct a hermitian holomor-
phic line bundle L→M(E,D) with Chern form mrΩV .

(iii) If M(E,D) is simply-connected then the Chern form uniquely determines the her-
mitian holomorphic line bundle.
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