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ABSTRACT

We consider the problem of forecasting the total cost of claims in excess-of-loss
reinsurance. The number of claims reported to the direct insurer is assumed to
follow a Poisson law, and the claim severities are modelled by a Pareto
distribution. The Poisson frequency as well as the Pareto parameter will be
considered as random parameters in a Bayesian setting. We derive the class of
conjugate joint prior distributions, which turn out to specify a (prior) depen-
dence between the two parameters. The use of conjugate priors facilitates the
mathematical analysis, and it also makes it easy to interpret the parameters of
the prior distribution.
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1. INTRODUCTION

Consider an excess-of-loss reinsurance cover for the layer (b — a) in excess of a.
That is, of a claim y exceeding the priority a, the reinsurer pays the exceeding
amount (y — a), limited to the maximum (b — a). The reinsurer receives infor-
mation about all claims exceeding some level c, say, during a fixed exposure
period [0, T], and the problem is to predict next years total cost of claims.

Often the reinsurer has only very sparing information about a particular
contract, and may therefore want to consider also information from other
similar contracts. This can be done in a formalized manner using the Bayesian
paradigm. Of recent research in this direction we mention JEWELL (1990) who
inspired by PATRIK and MASHITZ (1989) analyses a Bayesian model with
independent prior information about the claims frequency and the severities,
and suggests a linearlized Bayesian forecast for the total excess-of-loss claims
cost. The analysis is continued in JEWELL (1991) by showing in graphical detail
the effect of using different types of data information in the prediction.
RYTGAARD (1990) considers a compound Poisson model with Pareto distri-
buted claim amounts, but with prior information only on the severity parameter.

In this paper we consider a compound Poisson model with Pareto distributed
claim amounts. We assume that prior information is available about the claims
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frequency as well a the severities, and present a Bayesian full-distributional
analysis using conjugate priors. The use of conjugate priors makes the updating
an easy matter, and also makes it easy to interpret the prior information in
relation to the likelihood information. We derive the (non-linearlized) Bayesian
forecast for the total excess-of-loss claims cost, and also the corresponding
predicted moments of 2. and 3. order.

Random variables and their outcomes are denoted by upper and lower case
letters, respectively. We use ordinary italics for observed or observable random
quantities, and greek letters for unknown random parameters in a Bayesian
setting. The shorthand p{x) is used to denote the probability density function
for a random variable X. Likewise, p(x\z) denotes the conditional density for X
given Z = z.

2. THE MODEL

Let N(t) denote the number of claims reported to the direct insurer during
[0, t] and let Yx, Y2, ... denote the corresponding claim amounts. Consider the
following model.

• Assume that {N (0)«> o ls a time-homogeneous Poisson process with inten-
sity X, and that Yy, Y2, ... are stochastically independent of {N(t)}t>0 and
mutually independent with common distribution Fsy/, where

(2-1) F,t¥(y)=l-(s/yy, y>s,

denotes the cumulative distribution function for the Pareto distribution
with parmeters (s, y/).

For u > s, let
N(t)

(2.2) Nu(t)= £ I{Yt>u)

denote the number of claims exceeding the level u during [0, t]. It appears from
(2.2) that {Nu(t)},^0 is a random thinning of the original claim number process,
and is therefore itself a (time-homogeneous) Poisson process with intensity

(2.3) Xu = XP(Yi>u) = k(slu)*, u>s.

Note that Xu depends on s as well as i//, which has been suppressed in the
notation. Note also the relation

(2.4) Xv = Xu(u/v)¥, u,v>s,

between the intensities corresponding to claim numbers exceeding different
levels u and v. The claim amounts exceeding u are labeled in consecutive order,
and are denoted by YUti, /= 1, ..., Nu(t). It is a well-known property of the
Pareto distribution that these claim amounts are again Pareto distributed, with
parameters (u, y/).
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Consider an excess-of-loss cover for the layer b — ain excess of a. For a claim
Yai exceeding the priority a, the reinsurer will cover the amount

(2.5) i = mm(Yai,b)-a.

Since Ya ,• is Pareto distributed with parameters (a, y/), it follows that Z, has
cumulative distribution function

0 < z < b-a

z>b-a
(2.6) Hv{z) --

where Fay/ is given by (2.1). With
Na(t)

X{t)= X Z,
(=1

denoting the reinsurer's total claims cost during [0, t], it then follows that
{X(t)},>0 is a compound Poisson process with intensity Xa and severity
distribution Hw.

The parameters (A, y/) are unknown, and will be regarded as outcomes of
random parameters (A, W) in a Bayesian setting. Strictly speaking, this means
that the model assumptions stated above hold true conditionally given
(A, W) = (X, y/). In accordance with (2.3) we also define the random parameter

(2.7) Au = A(sju)w, u>s.

Whenever convenient, we may condition on (A, W) or (Au, W) for arbitrary
u, since there is a 1 *-* 1 correspondence between the two sets of variables. For
notational convenience, we also let &u = (A u, *F).

At time T we wish to predict the reinsurer's total claims cost for the next
year,

X= X(T+l)-X(T),

which is conditionally compound Poisson distributed, given ©a = Sa, with
Poisson parameter ka and severity distribution H¥. Let 3 denote the observed
data at time T. Ideally we would want the conditional distribution of X given
3. Since the Poisson process has independent increments, it follows that X is
conditionally independent of 3, and hence that

(2.8)

The compound Poisson distribution p(x\9a) may be calculated recursively
using Panjer's (1981) algorithm, if we make a discrete approximation to the
severity distribution Hv. The conditional distributionp(x\&) may therefore (in
principle) be approximated numerically from (2.8), using a discrete approxima-
tion to p(9a\&). This is very time-consuming, however, and more realistically
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one may settle for some moments of the conditional distribution (2.8),

(2.9) E (Xk\3) = j" E (Xk\Sa) p {$a\3) dSa.

The conditional moments E(Xk\9a) appearing in (2.9) may be calculated
recursively (see GOOVAERTS et al. (1984), p. 12) as

k 7 1

(2.10) E(Xk\9a) = laY4 ~ Uy(v )E( J r* -> | a f l ) , £ = 1 , 2 , . . . ,

where

(2.11) fik(¥) = E[Zk\9a) = E[Zk\y,], k=\,2,...,

denotes the fc'th moment of the reinsurer's payment in respect of a single claim
when W = y/ is fixed. It is demonstrated in the Appendix (formula (A.2)) that

c a n be written as

C2..2, * £ '

With a discrete approximation to the posterior distribution p(9a\3), we may
then calculate E(Xk\&) numerically from (2.9) using (2.10) and (2.12).

While the conditional moments around the origin are given by the recursive
expression (2.10), we may express the central moments up to 3th order in a
very convenient form. In fact, with

(2.13) el(9a) = E(X\8a) = lafil(v)

denoting the expected total claims cost in the case of known parameters, it is
well-known that

(2.14) ' elc(9a) = E[(X-ei(9a))
k\9a] = Aatik(¥),

for k = 2 and k = 3. Using a conjugate (j°mt) prior distribution for
®a

 = {Aa, v)> which is derived in Section 3, it is an easy matter to calculate the
expectation of (2.13) and (2.14), and therefore also the predicted moments
E(ek(0a)\3).

While

(2.15)

according to (2.9) and (2.13), the reader should be aware that

for k = 2 and k = 3. In fact, for k = 2 it holds that

(2.16) Var (X\3) = Var
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where we have made use of the fact that X is conditionally independent of 3.
Formula (2.16) shows that Var {X\.3>) is composed of the average variation in
case of known parameters, E[e2(6>J|i^], and the term Var [ei(0a)\3] due to
(remaining) uncertainty about 0a. As the amount of data increases, the
posterior distribution p(9a\3) will concentrate its mass around the true
parameter &a. In this case, the term \ar[e](0a)\l¥] will vanish, and

3. CONJUGATE PRIORS

The reinsurer is assumed to receive information about all claims exceeding a
fixed limit c > s; the data capture level. Thus, the observed data at time T
are

Strictly speaking, the reinsurer would also know the occurence times of the
claims. However, under the model assumptions NC(T) is a sufficient statistic.
For fixed (A, W) = (k, y/), the number of claims NC{T) is Poisson distributed
with mean Tkc, where kc is given by (2.3), and the claim amounts Yci are
identically Pareto distributed with parameters (c, y/). The likelihood function is
therefore given by,

(3.1) /{kc

n\

where oc means "is proportional to as a function of (kc, y/)", and
n

(3.2) z = V ln(j , /C) .

Recall that the gamma distribution with shape parameter y and inverse scale
parameter 3 has probability density function

(3.3) g (x) = JL.xr-ie-
s', S>0_

r(y)
The term appearing within the first bracket in (3.1) is recognized as the

essential part of a gamma density for Ac with shape parameter («+l) and
inverse scale parameter T. The second bracket contains the essential part of a
gamma density for W with shape parameter («+ 1) and inverse scale parameter
z. This observation suggests that we should consider prior distributions for
{A c, *F), where A c and V are independently gamma distributed. That is,

(3.4) {P(kc, ¥) = 0 v > t ( A c ) gh((yt)\v, z,y,C>0}.

By virtue of (2.3), the class (3.4) induces a class of joint prior distributions for
the basic parameters (A, *F). When Ac is gamma distributed with parameters
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(v, x), it follows that A = Ac(c/s)'F, for fixed W = y/, is gamma distributed with
parameters (v, x{slc)v). Thus, the class of joint prior distributions for {A, *F),
induced by (3.4), is given by

(3.5) {p{X, V) = gvM,ley{k\v) gr,c(v)\v, x,y,C>0}.

The posterior distribution corresponding to a prior from (3.4) (or (3.5)) is
obtained upon multiplying p{Xc,y/) by the likelihood function (3.1), and
normalizing to obtain a probability density function. Thus,

which gives a new member of the class (3.4) with parameters being updated
according to the following rule:

prior v x y (
(3.6)

posterior v + n x+T y + n £, + z
This shows that (3.4) is a conjugate class of priors for (Ac, *F), and (3.5) is

consequently also a conjugate class of priors for (A, W). It appears from (3.6)
that the three parameter family of prior distributions obtained from (3.4) by
letting y = v is also closed under sampling, and would therefore also qualify as
a conjugate class of priors. The updating rule (3.6) also shows that the prior
parameters can be given a natural interpretation. The prior knowledge
corresponding to (v, x, y, 0 can be viewed as the information obtained by
observing a similar contract during x years, with v and/or y being the observed
number of claims exceeding the data capture level c, and ( being the
corresponding value of the statistic (3.2). If one insists on this interpretation,
the parameters v and y should in fact be taken equal.

Note that A c and *P are stochastically independent prior as well as posterior
to data, whereas A and 5P are stochastically dependent, according to (3.5). The
(marginal) distribution of the basic Poisson rate A depends in a complicated
manner on all the parameters (v, x, y, 0 . This is in contrast to Jewell's (1990)
model, in which the prior information is expressed in terms of A and the
severity parameter. In that model the two parameters are independent prior to
data, but, posterior dependent due to the shape of the likelihood function (3.1).
In this author's opinion it seems more reasonable that the reinsurer should
express his prior opinion in terms of the rate of observed claim numbers Nc(t),
rather than N(t) which will never be observed.

4. PREDICTING THE FUTURE CLAIMS COST

We wish to calculate the posterior expectation at time T of quantities like
(2.13) and (2.14). If the prior distribution is taken from the conjugate class
(3.4), if suffices to calculate Eek(&a), where expectation refers to a. generic
member of the class (3.4). The posterior expectations are then obtained by
inserting the updated parameters (3.6) for (v, x, y, 0 . Thus, assume that Ac and
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W are independently gamma distributed with parameters (v, T) and (y, Q,
respectively.

From (2.13), (2.14) and (2.4) we first note that

(4.1) Eek(0a) = E[Aafik(V)] = E[Ac(c/af

since Ac is independent of W with expectation v\x. For calculating the
expectation (4.1), it is convenient to use the expression (see (A.7) in the
Appendix)

n — k |

" ~ \{-\)i
¥
igk(n-i),(4.2) fik(y/) = bak ^ P(n>>

n = k

where

(4.3) />(«) = e"h (" f l ) , n = 0, 1 , . . . ,
n!

denotes the Poisson probabilities corresponding to the parameter In (bja),
and

Z \ k

j=o \j

With (4.2) inserted into in (4.1), it appears that we need to calculate
expectations of the form E{*Pme~sW). When W is gamma distributed with
parameters (y, (), it holds that

(4.5)

and we arrive at the expression,

(4.6) Eek(0a) = — Y p(n) . .

The predicted moments E(ek(@a)\J0), and in particular the predicted future
claims cost E(X\3) = E(ex (&a)\&), are now obtained by inserting the updated
parameters (3.6) into (4.6).

One may also want to calculate separate estimates for the expected number
of claims in excess of a, and the average reinsurance compensation for the layer
b — a in excess of a. The expected number of claims exceeding the priority a is

yy

(4.7) E[Aa] = -E[(c/a)'F] = -
r (C + ln(fl/c))y
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because of (4.5). From (4.2) and (4.5) we also obtain the average reinsurance
compensation,

(4.8)
n = k ( = 0

The expressions (4.6) and (4.8) involve an infinite sum. In practice, the first
(approximately) 10 terms will give a sufficient degree of accuracy. It would of
course be tempting to use the updated parameters (3.6) to obtain a posterior
estimate of W,

y + n

C + z

and then base the quotations on H\^P). However, it is shown in the Appendix
(formula (A.8)) that the function fik(w) a re strictly convex, which according to
Jensen's inequality implies that

This less sophisticated approach will thus lead to an underestimation of the
expected future claims cost.

It is interesting to rewrite (4.1) as

(4.9) Eek(0a) = -
x

= - {Cov [(da)w, ^ (V)] + E [(da)w E nk (V)}
x

= -Cov[(da)'!',nk(
lP)] + EAaEnk(

}F).
x

It is shown in the Appendix (formula (A.8)) that f<ik(y/) is strictly decreasing.
The covariance appearing in (4.9) is therefore positive if the function (c/a)'1' is
decreasing, and negative if it is increasing. This shows that

(4.10)

In particular, if the total claims cost X is predicted by predicting the claims
frequency Aa and the average compensation nx(*F) separately, one will
underestimate the true expected claims cost if the priority a exceeds the data
capture level c, and overestimate otherwise. In practice one would presumably
in most cases have a> c.
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2.495
2.120
2.095
1.700
1.650

1.985
1.810
1.625
—

3.215
2.105
1.765
1.715
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5. AN EXAMPLE

The data presented in Table 1 are taken from RYTGAARD (1990). The reinsurer
has access to information about all claims exceeding c = 1.5 million during a
period of T = 5 years.

TABLE 1

CLAIMS EXCEEDING C = 1.5 MILLION DURING T = 5 YEARS

Year no.

19.180
1.915
1.790
1.755

The observed average number of claims pr. year is 3.2 and the statistic z
in (3.2) equals 6.48 in this case. We assume that *F is gamma distributed
with mean V/T = 2 and a coefficient of variation equal to 1/yv = 0.3, and
that Ac (with c = 1.5 million) is gamma distributed with mean y/C = 3
and also a coefficient of variation equal to l/yfy = 0.3. This specifies a
(joint) conjugate prior distribution from the class (3.4), with parameters
(v, T, 7,Q = (11.1, 3.7, 11.1, 5.6). This prior corresponds to the information
obtained by observing a similar contract which gives rise to v = y = 11.1 claims
in excess of 1.5 million during a period of T = 3.7 years. The corresponding
value of the statistic in (3.2) is £ = 5.6. From (3.6) we obtain the updated
parameters (v, T, 7, C) = (27.1, 8.7, 27.1, 12.1), Thus, posterior to data, we
expect 27.1/8.7 = 3.1 claims pr. year in excess of 1.5 million, and the posterior
expectation of *¥ equals 27.1/12.1 = 2.24. The updated coefficient of variation

is 1/V
/27T = 0.19.

The prior and posterior distribution for (Aa, *F) are shown in Figure 1 for
a = c = 1.5 million, and in Figures 2 and 3 for a = 0.8 and a — 2.2 million,
respectively. Since (c/a)v is increasing for a < c, it follows that Aa = Ac(c/a)'p

is positively correlated with V for a < c, in accordance with Figure 2. Similarly,
A a and W are negatively correlated for a > c, which is confirmed by
Figure 3.

Table 2 shows the predicted total claims cost prior and posterior to data for
the layer 5 million in excess of a = 0.8, 1.5, 2.2 million, respectively, E e ^ S J
and E[e,(6>a)|j^], and also the corresponding moments of 2nd and 3th order.
In Table 2 we have also calculated the first 3 moments of X (prior and
posterior to data), by integrating the conditional moments (2.10) with respect
to a discrete approximation to the prior and posterior distributions. In
each case the approximation involves 60x60 vales of {ka,yj), and there-
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Prior distribution
a= 1.5 million

Posterior distribution
a= 1.5 million

FIGURE 1. Prior and posterior distributions for (yla, ¥*); a = 1.5 million.
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Prior distribution
a= 0.8 million

Posterior distribution
a= 0.8 million

FIGURE 2. Prior and posterior distributions for (A a, f); a = 0.8 million.
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Prior distribution
a= 2.2 million

Posterior distribution
a= 2.2 million

FIGURE 3. Prior and posterior distributions for (/4O, !P); a = 2.2 million.
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TABLE 2

PREDICTED MOMENTS FOR THE LAYER 5 MILLION IN EXCESS OF a MILLION,

ACCORDING TO (4.6) AND (2.9), (2.10)

Priority a

0.8 million
1.5 million
2.2 million

0.8 million
1.5 million
2.2 million

0.8 million
1.5 million
2.2 million

Ee,(0a)

7.63
3.75
2.45

Ee2(0a)

16.70
11.05
8.26

Ee3(0J

59.37
43.86
34.61

7.69
3.26
1.92

E(«2(ejW

14.27
8.45
5.83

E(«3(»JW

46.02
31.28
23.13

EX

7.50
3.72
2.44

Var X

21.39
13.55
10.16

E(I-EI)3

105.67
83.50
64.49

E(xm

7.66
3.26
1.92

Var (X\3)

15.47
8.92
6.26

E[(x-E(x\m)i\m

61.04
43.55
31.61

fore the computation of 3600 conditional moments. Except for inaccuracies
due to the discretization, is should hold true that Ee1(6>a) = EAr and
E[<?i (0a)\.^] = E(X\3), according to (2.15). For the second order moments we
note that Var X> Ee2(0a) and Var (X\^) > E[e2(0a)\3], according to (2.16),
and, as noted at the end of Section 2, Var (X\3) « E[e2(0a)\&\ as the amount
of data increases.

In Table 3 we have calculated the expected number of excess-of-loss claims
(4.7), and the expected reinsurance compensation (4.8) in respect of a single
claim, prior and posterior to data. These are shown together with the estimate
EAa EfixCF), and E e ^ ^ J from Table 2, with expectation taken prior and
posterior to data. A comparison of the estimates Eei(0a) and EAaE/i^V)
(prior and posterior to data) confirms the relation (4.10), and indicates that
EAa Eft^y*) significantly overestimates the future claims cost when a < c. In

TABLE 3

EXPECTED NUMBER OF CLAIMS IN EXCESS OF a MILLION, ACCORDING TO (4.7). EXPECTED EXCESS-

OF-LOSS COMPENSATION FOR THE LAYER 5 MILLION IN EXCESS OF a MILLION, ACCORDING TO (4.8)

Priority a

0.8 million
1.5 million
2.2 million

0.8 million
1.5 million
2.2 million

EAa

11.39
3.00
1.43

8.91
3.75
2.31

E(Aa\.:

E(AJ3)

13.33
3.12
1.33

^>)E(fii(^)\^>

8.27
3.26
1.86

EMl(f)

0.78
1.25
1.62

) Key{0a)

7.63
3.75
2.45

0.62
1.05
1.40

E(«,(W

7.69
3.26
1.92

https://doi.org/10.2143/AST.23.1.2005102 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005102


90 OLE HESSELAGER

this case, by 16% based on the prior distribution, and by 7.5% based on the
posterior distribution. For a> c, the effect is less marked; in this case an
underestimation by 6.1% and 3.8% in the case of prior and posterior
distributions, respectively.

Since the posterior mean of W, 2.24, is greater than the prior mean, 2, we
expect that the distribution of single claim amounts is less heavy-tailed after
having seen the data. This explains why the expected excess-of-loss compensa-
tion EjuiCF) shows a decrease when moving from prior to posterior distribu-
tions. For a = c = 1.5 million the expected rate of claims in excess of a is only
affected slightly by the data (from 3.00 to 3.12). Since EAa = EAcE(cla)'i',
and the posterior estimate of *P exceeds the prior estimate, we should expect
the posterior estimate of A a to exceed the corresponding prior estimate when
c > a. Conversely, of course, when c < a. This is confirmed by the result in
Table 3.
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A . APPENDIX

91

Consider Z, defined in (2.5), with cumulative distribution function Hv from
(2.6). The non-central moments fi/ciw) ~ E[Z*|^] can be calculated as follows,

f
v a

= if/a1

k

a 7T=~0 \ j

k

j

dy + {b-a)k(alby

¥~J

(A.D

(A.2)
k-l

= kak

7 = 0

i k - 1
( -

An alternative expression for fik (y/), which is more convenient for calculat-
ing posterior expectations, is obtained by expanding the exponential term
(ajby' appearing in (A.I),

( A . 3 )

n=o

= (b/a)
n = 0 ( = 0 \ I

where

(A.4)

denotes the Poisson probabilities corresponding to the parameter In (b/a). By
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inserting (A.3) into (A.I) we obtain the expression

(A.5) nk(v) = bak~xYJ / > ( » + l ) £ ( " ] ( - l ) V I (
«=o 1=0 \ i I 7=0 \ ;

Finally, let

(A.6) 9k(a
j=° \ J

Since gk(a) = 0 for a = 0, ..., k— 1, we may change the range of summation
in (A.5) to n — k— 1 , . . . , oo and i = 0, ..., n — k+ 1, and so we may write

oo n-k I .

(A.7) / /^ ) = bak~l X ( ) S r ~

The moments Hk(w), regarded as functions of y/, are strictly decreasing and
convex. We shall prove that

dm

(A.8) ( - 1 ) " fik(v)>0, k = 1 , 2 , . . .

= f
J a

This is seen by writing

(A.9)

where

for a < b. By differentiating (A.9) we obtain that

hk(y)(l/y)(a/yy[l

and it follows by induction that

dm r°°
(A.10) Mk(v)= hk(y)(l/y) (In (aly)r~](a/yr[m+¥ In (y/a)]dy

dm }
}

By a change of variable we may rewrite (A. 10) as

d
^(V) = (-I)m

m Jof
Jo
r(m) Cx

—— hk{aez)(y/z-m)gm^(z)dz,
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where gm,v{z) is the gamma density (3.3). Since hk{aez) is an increasing
function, it follows that E[hk{aez) (y/Z-m)] > E(hk(aez))E[y/Z-m], and
E[y/Z—m] = (y/(m/t//) — m) = 0, when Z is gamma distributed with parame-
ters (m,y/). This, together with (A.ll), verifies (A.8).
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