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INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY

E. ASADI∗ and J. A. SANDERS
Department of Mathematics, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands

Abstract. Quaternionic vector mKDV equations are derived from the Cartan
structure equation in the symmetric space ��n = Sp(n + 1)/Sp(1) × Sp(n). The deriva-
tion of the soliton hierarchy utilizes a moving parallel frame and a Cartan connection
1-form ω related to the Cartan geometry on ��n modelled on (spn+1, sp1 × spn).
The integrability structure is shown to be geometrically encoded by a Poisson–
Nijenhuis structure and a symplectic operator.

1. Introduction. Many of the equations and systems which now are called
integrable have been known in differential geometry. One of them is the famous
sine-Gordon equation (SG), which was derived to describe surfaces with constant
negative Gaussian curvature. Another one is the Liouville equation describing minimal
surfaces in three-dimensional Euclidean space. For physicists, the prototype examples
of integrable systems are the Korteweg-De Vries equation (KDV) and the nonlinear
Schrödinger (NLS) equation.

The connection between geometry and integrable systems was clarified by
Hasimoto [6] in 1972. He found the transformation between the equations governing
the curvature and torsion of a thin vortex filament (FM) moving in an incompressible
inviscid fluid and the NLS equation. The equation FM can be modelled as

γt = γs × γss

in which γ (s, t) is a curve evolving in three-dimensional space �3. In fact Hasimoto
constructed the complex function ψ = κ exp(i

∫ s
0 τds) of the curvature and torsion of

the curve γ, and showed that if the curve evolves according to the FM equation, then
ψ solves the cubic NLS equation

iψt + ψss + 1
2
|ψ |2ψ = 0.

Doliwa and Santini [4] showed that certain elementary geometric properties of
the motion of a curve select the hierarchy of integrable dynamics. The motion should
be non-stretching and occur in a N-dimensional sphere of radius R and the dynamics
independent of the radius of the sphere. This gives a simple geometric meaning to
the Hasimoto transformation: the Hasimoto transformation is (induced by) a gauge
transformation from the Frenêt frame to the parallel or natural frame.

Generalizing Doliwa and Santini’s approach, Sanders, Wang and Beffa [11] showed
that motion of a curve in a three-dimensional Riemannian manifold with constant
curvature follows an arc-length preserving geometric evolution and the evolution of
its curvature and torsion is always a Hamiltonian flow.

∗We thank NWO (Netherlands Organization for Scientific Research) for financial support of the project
Geometry and classification of integrable systems.

https://doi.org/10.1017/S0017089508004746 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004746


6 E. ASADI AND J. A. SANDERS

Given the Cartan connection 1-form ω defined on the geometric flow γ on a
Riemannian manifold, a gauge transformation on ω yields the new connection

ω̃ = Ad(h−1)ω + h−1dh.

Hence the Frenêt frame encoded in Cartan connection matrix ω(γs) would transform
to ω̃(γs).

Cartan’s Lemma associates the Lie algebra valued 1-form, the Cartan connection,
to the Levi-Civita connection defined on a Riemannian manifold, so that having a
frame on the curve embedded in the Riemannian manifold is equivalent to specifying
the Cartan connection applied on the γs. Indeed Sanders and Wang [13, 14] showed
that choosing a natural frame and having the Cartan connection specified according
to the natural frame, the Cartan structure equation leads to the recursion equation
of integrable equation. In this way they found the Hamiltonian operator out of the
curvature part and the symplectic operator resulted from solving the free torsion tensor.
Moreover, the flow given by the trivial symmetry, yields the vector mKDV evolution
equation.

The present paper results from a generalization of the Riemannian to the sym-
plectic case. The research was done by the first author, supported by NWO, under
supervision of the second and published in [3].

We obtain the geometric operators such as Hamiltonian, symplectic and Nijenhuis
operators of the soliton equation encoded as

ût = ĤÎm̂0 + Âm̂0,

arising from Cartan structure equation in symplectic geometry which is encoded as
a Riemannian symmetric space ��n = Sp(n + 1)/Sp(1) × Sp(n). These operators will
be given also in terms of the Lie bracket, Killing form and projections of underlying
Lie algebras. More precisely, we prove that the operators Ĥ and ÂĤ determine the
Poisson–Nijenhuis structure [10]. Also the conjugation Â−1∗ÎÂ−1 of the antisymmetric
operator Î by the Nijenhuis operator Â will be a symplectic operator. Furthermore, the
operator R̂ = ĤÎÂ−1 will be a recursion operator transforming the symmetry of the
soliton equation to another symmetry. The soliton evolution equation can be found
by applying the recursion operator R̂ to the trivial symmetry.

The outline of the paper is as follows. In the next section we explore the basic set
up for the Cartan geometry and in particular for the reduction Cartan geometry as
well as the homgeneous symmetric space. In Section 3, we study the integrability in
Euclidean geometry in a way that generalizes to symplectic geometry in Section 4. In
Section 5 we express the evolution equation of the differential invariants encoded in
the Cartan matrix in terms of Lie algebraic object as we did in Euclidean geometry.
In Section 6, we discuss the Hamiltonian, symplectic and Nijenhuis operators. We will
give details of the proof of some of the assertions. The reader can find the missing
details in [3].

2. Geometric preliminaries.

2.1. Cartan geometry. We generalize the idea of classical Cartan connection.
The content of this section can be found in [15]. As in Euclidean space there is a
natural way to parallel translate and compare vectors at different points, likewise in
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a general manifold a choice of a connection prescribes a way of translating tangent
vectors ‘parallel to themselves’ and to intrinsically define a directional derivative.

In the case of a principal bundle P with structure group G over a manifold M, we
explain the rule of a connection when thinking of lifting a vector field v ∈ TM to a
vector field ṽ ∈ TP in a unique way. For each p ∈ P, let Gp be the vector subspace of TpP
consisting of all the vectors tangent to the vertical fibre. That is Gp = ker(dπ (p)) ⊂ TpP
in which dπ (p) : TpP → TπpM.

The lifting of v will be unique if we require ṽ(p) to lie in a subspace of TpP
complementary to Gp. A smooth and G-invariant choice of such a complementary
subspace is called a Ehresmann connection on P. This leads to the following definition.

DEFINITION 1. A connection on a principal bundle P is a smooth assignment of a
subspace Hp ⊂ TpP, for each p ∈ P such that:

(1) TpP = Gp ⊕ Hp,

(2) Hgp = Tp(Lg)Hp for each g ∈ G, where Lg is the left-translation in G and
consequently Tp(Lg) : TpP → TgpP.

Given a connection, the horizontal subspace Hp is mapped isomorphically by dπ

onto TπpM. Therefore the lifting of v is the unique horizontal ṽ which projects onto v.

An equivalent way of assigning a connection is by means of a Lie algebra valued 1-form
ω (Cartan connection). If X ∈ g, let X † be the vector field on P induced by the action
of the 1-parameter subgroup etX . Since the action of G maps each fibre into itself, then
X † is tangent to the vertical fibre at each point, i.e., X ∈ Gp. For each v ∈ TpP, we
define ω(v) as the unique X ∈ g such that X † is equal to the vertical component of v.

It follows that ω(v) = 0 if and only if v is horizontal.

PROPOSITION 1. A Cartan connection 1-form ω has the following properties:
(1) ω(X †) = X,

(2) L∗
gω = Adgω for each g ∈ G, in which Ad is adjoint representation of G.

The proof can be found in appendix A of [15].
Now we define the Cartan geometry based on the Ehresmann connection. Assume

here that H is a group with the Lie algebra h as subalgebra of g.

DEFINITION 2. A Cartan geometry ξ = (P, ω) on M modelled on (g, h) with group
H consist of the following data:

(1) a smooth manifold M;
(2) a principal left H bundle P over M;
(3) a g-valued 1-form ω on P satisfies the following conditions:

(a) for each point p ∈ P, the linear map ωp : TpP → g is an isomorphism;
(b) (Lh)∗ω = (Adh)ω for all h ∈ H;
(c) ω(X †) = X for all X ∈ h.

The g-valued form on P given by

	 = dω + 1
2

[ω,ω]

is called the curvature. If ρ : g → g/h is the canonical projection, then ρ∗	 is called
the torsion. If 	 takes values in the subalgebra h, we say that the geometry is torsion
free.
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DEFINITION 3. Let M be a connected manifold. Then the Cartan geometry ξ =
(P, ξ ) has constant curvature if 	p(Xp, Yp) is independent of p ∈ P whenever the vector
fields X and Y are ω-constant vector fields.

This may also be expressed by saying that the curvature function

K : P → Hom(C2(g/h), h), K(p) = 	p
(
ω−1

p (u), ω−1
p (v)

)
is constant.

DEFINITION 4. A Cartan geometry whose curvature vanishes at every point is called
flat.

Notice that while the structure equation always holds for a Lie group, meaning
that the curvature of the Maurer–Cartan form vanishes, not all Cartan geometries are
flat.

2.2. Homogeneous space, symmetric space. The material of this section is taken
from [2] and [7]. A homogeneous space of a Lie group G is any differentiable manifold
P on which G acts transitively, that is, for p1, p2 ∈ M, there is g ∈ G so that g.p1 = p2.

The subgroup

H = Hp0 = {g ∈ G : g.p0 = p0}
is called the isotropy group at p0. It is a theorem that each such P can be identified
with a coset space G/H for some subgroup H and that this H plays the rule of isotropy
group of some point.

Let g, h be the Lie algebras of G and H, respectively. Then we get canonical
isomorphism

g/h ∼= ToG/H,

due the fact that kerdπe = h where π is the projection π : G → G/H.

Now, we will consider the important special case.

DEFINITION 5. When g A homogeneous space is called reductive if there exist a
subspace m of g such that g satisfies the more stringent conditions:

g = h ⊕ m, [h, h] ⊂ h, [h,m] ⊂ m,

as an immediate consequence of the above isomorphism, if G/H is reductive, we have
the canonical isomorphism

m ∼= ToG/H.

DEFINITION 6. When g satisfies the conditions:

g = h ⊕ m, [h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h,

then g is called a symmetric algebra and G/H is a symmetric space.

If G/H is symmetric space, then the Riemannian metric is the scalar product on
m, so that the vector subspace m will be the orthogonal complement of h in the direct
sum g = h ⊕ m.

https://doi.org/10.1017/S0017089508004746 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004746


INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY 9

REMARK 1. On p. 518 of Helgason’s book [7] there is a table of symmetric spaces.
Directly beneath this table those spaces which are Hermitian are listed.

REMARK 2. The space Sp(n + 1)/Sp(n) × Sp(1) is a homogeneous space. There we
have that m = g/h in which g = sp(n + 1) and h = sp(n) × sp(1). Moreover this space
is naturally reductive space. See [2] for the pertinent definitions.

3. Integrable system in Euclidean geometry. One can start with the Euclidean
Lie algebra g = eucn(�) = on(�) � �n and h = on and assume that ω is the Cartan
connection in Euclidean geometry as a Cartan geometry. Let us denote m = g/h so
that we can decompose the Lie algebra g = h ⊕ m is direct sum of two vector space h

and m. Every element of g can be expressed as(
A b

0 0

)
, A ∈ on, b ∈ �n,

and any matrix A ∈ on satisfying A + At = 0. One finds that

[h, h] ⊂ h, [h,m] ⊂ m and [m,m] ⊂ h.

The Cartan connection applied on Dx is chosen so that ω(Dx) as an element of
subalgebra g will be moving frame matrix. If we choose the moving frame to be the
parallel moving frame, then we have that

ω(Dx) =
⎛
⎝ 0 −kt 1

k 0 0
0 0 0

⎞
⎠ .

The choice of column vector
(1

0

)
is related to the choice of Dx as first basis element

of the vector space g/h.

Now ω(Dt) will be a general element of g. Thus let it be as follows

ω(Dt) =
⎛
⎝ 0 −mt h1

m M h
0 0 0

⎞
⎠ .

Now we write down the Cartan structure equation

	(Dx, Dt) = Dxω(Dt) − Dtω(Dx) + [ω(Dt), ω(Dx)], (1)

assuming that [Dx, Dt] = 0. Also we assume that the manifold which modelled on
Euclidean geometry is flat. That gives us 	(Dx, Dt) = 0, so that Cartan structure
equation restrict to the following form:

Dxω(Dt) − Dtω(Dx) + [ω(Dt), ω(Dx)] = 0. (2)

Replacing the ω(Dx) and ω(Dt) into the Cartan structure equation above would leads
to the following equations:

h part :
{

Dxm − Dtk + Mk = 0,

DxM + kmt − mkt = 0
(3a)

g/h part :
{

Dxh1 + 〈k, h〉 = 0
Dxh − kh1 + m = 0

(3b)
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Hence we have that

Dtk = Hm, m = Ih

where

H = Dx + H1, I = −Dx − kD−1
x 〈k, .〉,

and

H1m = D−1
x (mkt − kmt)k. (4)

Here 〈. , .〉 denotes the standard inner product on �n−1, and D−1
x in (4), acts simply on

the matrix mkt − kmt ∈ on−1(�) and then the matrix D−1
x (mkt − kmt) ∈ on−1(�) act on

the vector k ∈ �n−1 as usual.
In [13], it is proved that H and I are compatible Hamiltonian and symplectic

operators, respectively and R = HI is an hereditary recursion operator. If we choose
h to be the trivial symmetry kx, then we obtain the following vector mKDV evolution
equation

kt = −k3x − 3
2

kx〈k, k〉.

One can write the geometric operators H and I in terms of the Lie bracket, Killing
form and projections as follows:

H = Dx + aduD−1
x π0adu, I = −Dx − 1

2
uD−1

x K(u, .), (5)

where u is the projection of ω(Dx) onto h and π0 is a projection defined on h = on(�) � 0
onto on−1(�) � 0, i.e.,

π0

⎛
⎝ 0 −mt 0

m M 0
0 0 0

⎞
⎠ =

⎛
⎝ 0 0t 0

0 M 0
0 0 0

⎞
⎠ .

4. Integrable system in symplectic geometry. We define the symplectic Lie group
over a quaternionic algebra by

G = Sp(n + 1) = {A ∈ GL(n + 1, �)|A∗A = I},
in which A∗

ij = Aji, Aij ∈ �. Then the Lie subgroup H = Sp(1) × Sp(n) of G will be
closed so that the pair (G, H) will define a Klein geometry. The Lie algebras of G and
H are

g = spn+1 = {A ∈ GL(n + 1, �)|A∗ + A = 0}, h = sp1 × spn.

As is known in the literature, M = G/H is then a smooth manifold. In fact M is the
quaternionic projective space ��n−1. For a comprehensive reference, see [15]. Similar
to the situation in Riemannian manifold [13], given a curve in M, we know its tangent
vectors Dx and want to compute all possible Dt. Let ω be Cartan 1-form with its values
in the Lie algebra g. We make a specific choice of ω(Dx) and leave ω(Dt) as a general
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element of g. We see that the dimension of M is equal to the dimension of g/h which
is 4n. With x taken to be the arc length, the dimension of the space of differential
invariants in ω(Dx) describing the curve must be one less than the dimension of the
manifold, that is, 4n − 1.

Now let us choose a Cartan matrix ω(Dx) similar to that of the parallel coframe
in Riemannian geometry with proper dimension counting as follows:

ω(Dx) =
⎛
⎝ 0 1 0t

−1 u −ut

0 u 0

⎞
⎠ ,

where ω(Dx) is taken as an element of sp(n + 2).

REMARK 3. Notice that u is purely imaginary, and u ∈ �n−1, following from the
fact that ω(Dx) is in sp(n + 2).

REMARK 4. Other choices of coframe tend to destroy the scalar–vector character
of the analysis and complicate matters tremendously.

Now ω(Dt) must be a typical element of g which we write as follows:

ω(Dt) =
⎛
⎝ m11 m12 −mt

1
m21 m22 −mt

2
m1 m2 M

⎞
⎠ .

Assuming that the curvature form 	 is zero on the curve flow, the Cartan structure
equation evaluated at the evolutionary vector fields Dx, Dt is as follows:

Dxω(Dt) − Dtω(Dx) + [ω(Dt), ω(Dx)] = 0.

Before we explore the Cartan structure equation, let us define some notation.
Commutators of vectors and scalars are defined by

Cum2 := 〈u, m2〉 − 〈m2, u〉, Cum22 := um22 − m22u,

where the inner product 〈· , ·〉 is the Hermitian inner product. Right multiplication
by scalar u on vector h and left multiplication by vector u on scalar h are defined,
respectively, by

Ruh = hu, Luh = uh.

On the other hand, the anti-commutators on vector and scalar quantities are defined
by

Auh = 〈u, h〉 + 〈h, u〉, Auh = uh + hu.

Now we explicitly write the components of the Cartan structure equation. Among
these equations, the four first equations are concerned with the curvature part in h and
the last three with the torsion part in m = g/h. These equations lead to evolution of
the scalar invariant u and the vector invariant u as combination of geometric operators
applied on the proper torsion variables of ω(Dt) according to the theorem below, in
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12 E. ASADI AND J. A. SANDERS

which we have defined H1, similar to that of (4) in Euclidean geometry, as the operator
acting on vectors by

H1h = (
D−1

x (hu t − uh t)
)
u, (6)

where, for instance, hu t is the outer product of a vector and a covector, that is, a matrix.
Hence, for instance, we can write Mu = H1m2 when we see in (7c) below.

Dxm11 − m12 − m21 = 0, (7a)

Dxm22 − Dtu − Cum22 + Cum2 + m12 + m21 = 0, (7b)

Dxm2 − Dtu + Rum2 + H1m2 − Lum22 + m1 = 0, (7c)

DxM − m2u t + um2
t = 0, (7d)

Dxm1 − m2 − um21 = 0, (7e)

Dxm12 + m11 − m22 + m12u − 〈m1, u〉 = 0, (7f)

Dxm21 + m11 − m22 − um21 + 〈u, m1〉 = 0. (7g)

Solving these equations we obtain

THEOREM 1. The evolution of differential invariants can be written in the form(
Dtu
Dtu

)
= HI

(
m12 + m21

m1

)
+ A

(
m12 + m21

m1

)
, (8)

where

H =
(

Dx − Cu Cu

−Lu Dx + Ru + H1

)
, A =

(
(2Dx − Cu)D−1

x 0
−LuD−1

x I

)
,

and

I =

⎛
⎜⎜⎝

1
2

Dx − 1
4 Cu − 1

4 AuD−1
x

1
2

Au
1
2

Cu + 1
2

uD−1
x Au

−1
2

LuD−1
x

1
2

Au − 1
2

Lu Dx + 1
2

LuD−1
x Au

⎞
⎟⎟⎠ .

The proof can be found in [3]. Here we emphasize the following fact. If we subtract
(7f) from (7g), we deduce that

Dx(m21 − m12) = um21 + m12u − Aum1.

Using the fact that 1
2 Au(m12 + m21) = m12u + um21 we obtain that

m21 − m12 = D−1
x

(
1
2

Au(m12 + m21) − Aum1

)
.

The left-hand side is nothing but the Killing form of two elements of the underlying
Lie algebra. Indeed

m21 − m21 = D−1
x K

⎛
⎝

⎛
⎝ 0 0 0

0 u −ut

0 u 0

⎞
⎠ ,

⎛
⎝ 0 0 0

0 m12 + m21 −mt
1

0 m1 0

⎞
⎠

⎞
⎠ . (9)
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Of course up to some constant coefficient. Now let us put
(h

h

) = A
(m12+m21

m1

)
. Then we

obtain

(
m12 + m21

m1

)
= A−1

(
h
h

)
, A−1 =

(
Dx(2Dx − Cu)−1 0
Lu(2Dx − Cu)−1 I

)
.

Hence the evolution in the theorem takes the following form:

(
Dtu
Dtu

)
= R

(
h
h

)
+

(
h
h

)
, R = HIA−1. (10)

If we make the specialization
(h

h

) = (u1
u1

)
, where u1, u1 are the derivatives of u

and u with respect to x, respectively, then we obtain the non-commutative evolution
equations:

{
ut = 1

4 u3 + 3
8 (−uu1u − uu2 + u2u) + 3

4 Cu(uu1) + 3
2 Cu(u1u) + 3

2 Cuu2

ut = u3 + 3
2 u2u + 3

4 u1
(
u1 + 1

2 u2 + 2〈u, u〉). (11)

The reduction u = 0 leads to the second version of the quaternionic non-commutative
mKDV scalar equation and the reduction u = 0 yields the quaternionic vector mKDV
equation.

5. Geometric operators expressed in the Killing form. In the method we are using,
the only tools we have are the Lie algebra and the Cartan geometry, hence we expect
to be able to write the geometric operators H and I in terms of the Lie bracket, the
Killing form and proper projections as we did in the case of Euclidean geometry, see
(5).

Let us define the projections π0 and π1 as follows:

π0

⎛
⎝ m11 0 0

0 m22 −m̄t
2

0 m2 M

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
0 0 M

⎞
⎠ ,

and

π1

⎛
⎝ m11 0 0

0 m22 −m̄t
2

0 m2 M

⎞
⎠ =

⎛
⎝ 0 0 0

0 m22 −m̄t
2

0 m2 0

⎞
⎠ .

Let û and m̂2 be the projection of ω(Dx) and ω(Dt) over the Lie subalgebra h,

respectively, as well as â and m̂1, the projections of ω(Dx) and ω(Dt) over the vector
space g/h which itself is indeed the dual orthogonal of h with respect to the Killing
form. In other words

û =
⎛
⎝ 0 0 0

0 u −ūt

0 u 0

⎞
⎠ , â =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ ,
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and

m̂2 =
⎛
⎝ m11 0 0

0 m22 −m̄t
2

0 m2 M

⎞
⎠ , m̂1 =

⎛
⎝ 0 m12 −m̄t

1
m21 0 0
m1 0 0

⎞
⎠ .

In the following lemma, we give the Lie algebraic form of the operator H1 defined
as in (6).

LEMMA 1. Using the setting above, we have that

adûD−1
x π0adûπ1m̂2 =

⎛
⎝ 0 0 0

0 0 H1m2
t

0 −H1m2 0

⎞
⎠ .

Proof. The proof just follows from computing the Lie bracket of the elements of
the Lie algebra sp(n + 2). �

Now let us define the projections ρ0 and ρ1 on the diagonal and off diagonal of
the image of π1 as follows:

ρ1

⎛
⎝ 0 0 0

0 m22 −m̄t
2

0 m2 0

⎞
⎠ =

⎛
⎝ 0 0 0

0 m22 0
0 0 0

⎞
⎠

and

ρ0

⎛
⎝ 0 0 0

0 m22 −m̄t
2

0 m2 0

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 −m̄t
2

0 m2 0

⎞
⎠ .

We give some identities which in fact are interactions of projections ρ0, ρ1 and π1.

PROPOSITION 2. For every matrix q̂ in the image of π1, we have that
1. ( 1

2ρ1 + ρ0)π1ad2
aq̂ = −q̂.

2. π1adâadûadâq̂ = −adûρ1q̂ − π1adρ0ûρ0q̂.

The following theorem describes how we can express the geometric operator in
terms of Lie algebraic notions, such as Killing form, adjoint representation and the
projections.

THEOREM 2. The evolution of the û following the Cartan structure equation on
M = G/H can be expressed as

ût = ĤÎm̂0 + Âm̂0, m̂0 = π1adâm̂1 ∈ π1h,

in which the Lie algebra form Î of geometric operator I and Â of the operator A appears
as

Ĥ = Dx − π1adû − adûD−1
x π0adû,

Î = −1
2

ûD−1
x K(û, .) −

(
1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)adâπ1

(
1
2
ρ1 + ρ0

)
,

Â = ρ0 + 2ρ1 − adûD−1
x ρ1.
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Proof. From the curvature part or in fact the equations (7b), (7c) and (7d) and the
previous lemma, we simply find that

ût = Ĥ(π1m̂2) + m̂0, m̂0 = π1adâm̂1,

now the torsion part gives the following matrix equation:

adâ(m̂2) = (Dx − adû)m̂1. (13)

Since

ad2
â �= λI, λ ∈ �,

we cannot solve equation (13) in the usual way. Therefore the existence of the
Nijenhuis operator A plays a crucial rule in the symplectic geometry. Notice that
in the Riemannian case we do have ad2

â = −I.
In order to get rid of this difficulty, we do as follows:

ût = Ĥ

⎛
⎝ 0 0 0

0 m22 − m11 −m̄t
2

0 m2 0

⎞
⎠ + Ĥ

⎛
⎝ 0 0 0

0 m11 0
0 0 0

⎞
⎠ + m̂0

=
⎛
⎝ 0 0 0

0 m22 − m11 −m̄t
2

0 m2 0

⎞
⎠ + (Dx − π1adû)

⎛
⎝ 0 0 0

0 m11 0
0 0 0

⎞
⎠ + m̂0

= Ĥ

⎛
⎝ 0 0 0

0 m22 − m11 −m̄t
2

0 m2 0

⎞
⎠ + (

(2Dx − adû)D−1
x ρ1 + ρ0

)
m̂0

= Ĥ

⎛
⎝ 0 0 0

0 m22 − m11 −m̄t
2

0 m2 0

⎞
⎠ + Âm̂0. (14)

Now the matrix

⎛
⎝ 0 0 0

0 m22 − m11 −m̄t
2

0 m2 0

⎞
⎠ ,

can be expressed in terms of m̂2 and consequently in terms of m̂1 using the identity
(13) as follows:

⎛
⎜⎝

0 0 0
0 m22 − m11 −m̄t

2

0 m2 0

⎞
⎟⎠ = −

(
1
2
ρ1 + ρ0

)
π1ad2

am̂2

= −
(

1
2
ρ1 + ρ0

)
π1ada(Dx − adû)m̂1. (15)
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According to identity (9) we have that m21 − m12 = D−1
x K(û, m̂0), thus the matrix m̂1

can be written in terms of m̂0 as follows.

m̂1 =

⎛
⎜⎜⎜⎝

0
m12 − m21

2
0

m21 − m12

2
0 0

0 0 0

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

0
m12 + m21

2
−m̄t

1

m21 + m12

2
0 0

m1 0 0

⎞
⎟⎟⎟⎠

= −1
2

âD−1
x K(û, m̂0) + adâ

(
1
2
ρ1 + ρ0

)
m̂0.

Hence we identify the operator Î as follows:⎛
⎜⎝

0 0 0

0 m22 − m11 −m̄t
2

0 m2 0

⎞
⎟⎠

= −
(

1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)m̂1

= −
(

1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)

(
−1

2
âD−1

x K(û, m̂0) + adâ

(
1
2
ρ1 + ρ0

)
m̂0

)

= −1
2

(
1
2
ρ1 + ρ0

)
π1adâ(adûâ)D−1

x K(û, m̂0)

−
(

1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)adâ

(
1
2
ρ1 + ρ0

)
m̂0

= +1
2

(
1
2
ρ1 + ρ0

)
π1

(
ad2

âû
)
D−1

x K(û, m̂0)

−
(

1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)adâ

(
1
2
ρ1 + ρ0

)
m̂0

= −1
2

ûD−1
x K(û, m̂0) −

(
1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)adâ

(
1
2
ρ1 + ρ0

)
m̂0

= −1
2

ûD−1
x K(û, m̂0) −

(
1
2
ρ1 + ρ0

)
π1adâ(Dx − adû)adâπ1

(
1
2
ρ1 + ρ0

)
m̂0

= Î.

In the last line, we add π1 at end to have a symmetrical expression, as it does not change
anything. Thus replacing the last equation into the evolution (14), we obtain

ût = ĤÎm̂0 + Âm̂0.
�
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REMARK 5. This is exactly the Poisson operator in [17, 1.13] which in general is
defined on Hermitian symmetric spaces. See also [1, 16, 18].

6. Geometric operator. As a main result of the paper, it can be shown that the
operators appeared so far will construct the Hamiltonian and symplectic operators
as well as a Nijenhuis operator. The basic theory of Hamiltonian, symplectic and
Nijenhuis operators for scalar evolution equations is given in [5, 12]. The presentation
here will apply this theory to a Lie algebra valued setting. In the definition below, π1h is
denoted to the space of all π1h-valued functions defined on x-jet space (x, û, û1, . . .) =
J∞ of the dynamical variable û and its derivatives. This space is a Lie algebra if we
consider its elements as vector field p̂. ∂

∂ û where p̂ ∈ π1h.

DEFINITION 7. The linear operator N : π1h → π1h is a Nijenhuis operator if and
only if

DN [Nq̂](p̂) − DN [Np̂](q̂) + N(DN [p̂](q̂) − DN [q̂](p̂)) = 0, (16)

for any pair of vector fields p̂, q̂ ∈ π1h. Here DN denotes the Fréchet derivative of N is
defined as a Linear map by

DN [q̂] = d
dε

N[û + εq̂]|ε=0.

The defining relation for this operator was originally found as a necessary condition
for an almost complex structure to be complex, i.e., as an integrability condition. It is
used to construct hierarchies of integrable equations.

THEOREM 3. The operator N = Â is indeed a Nijenhuis operator. That is, the
Nijenhuis tensor vanishes.

Proof. Here we are given

Np̂ = (ρ0 + 2ρ1)p̂ − adûD−1
x ρ1p̂.

We compute the Fréchet derivative of N as follows:

DN [q̂](p̂) = −adq̂D−1
x ρ1p̂.

Now we see that two first terms of the right-hand side of (16) can be derived as below.

DN [Nq̂](p̂) − DN [Np̂](q̂) = −adNq̂D−1
x ρ1p̂ + adp̂D−1

x ρ1q̂

= −ad(ρ0+2ρ1)q̂−adûD−1
x ρ1q̂D−1

x ρ1p̂ + ad(ρ0+2ρ1)p̂−adûD−1
x ρ1p̂D−1

x ρ1q̂

= −adq̂D−1
x ρ1p̂ − adρ1q̂D−1

x ρ1p̂ + adadûD−1
x ρ1q̂D−1

x ρ1p̂

+ adp̂D−1
x ρ1q̂ + adρ1p̂D−1

x ρ1q̂ − adadûD−1
x ρ1p̂D−1

x ρ1q̂.

On the other hand, for the two last terms of the right-hand side of (16) we obtain

N(DN [p̂](q̂) − DN [q̂](p̂)) = (ρ0 + 2ρ1)
(−adp̂D−1

x ρ1q̂ + adq̂D−1
x ρ1p̂

)
− adûD−1

x ρ1
(−adp̂D−1

x ρ1q̂ + adq̂D−1
x ρ1p̂

)
= −adp̂D−1

x ρ1q̂ − adρ1p̂D−1
x ρ1q̂ + adq̂D−1

x ρ1p̂ + adρ1q̂D−1
x ρ1p̂

+ adûD−1
x adρ1p̂D−1

x ρ1q̂ − adûD−1
x adρ1q̂D−1

x ρ1p̂.
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Now we replace these equations into the right-hand side of (16) and then simplify it as
follows, using the Jacobi identity, in order to prove the statement of the theorem.

DN [Nq̂](p̂) − DN [Np̂](q̂) + N(DN [p̂](q̂) − DN [q̂](p̂))

= +adadûD−1
x ρ1q̂D−1

x ρ1p̂ − adadûD−1
x ρ1p̂D−1

x ρ1q̂

+ adûD−1
x adρ1p̂D−1

x ρ1q̂ − adûD−1
x adρ1q̂D−1

x ρ1p̂

= −adûadD−1
x ρ1p̂D−1

x ρ1q̂

+ adûD−1
x adρ1p̂D−1

x ρ1q̂ − adûD−1
x adρ1q̂D−1

x ρ1p̂

= −adûD−1
x adρ1p̂D−1

x ρ1q̂ + adûD−1
x adρ1q̂D−1

x ρ1p̂

+ adûD−1
x adρ1p̂D−1

x ρ1q̂ − adûD−1
x adρ1q̂D−1

x ρ1p̂

= 0.

�
REMARK 6. Notice that operator Â is not a recursion operator, that is, it is not

invariant under the evolutionary flow.

REMARK 7. Since N = Â is invertible, so by [5, proposition 3.2], the operator Â−1

itself is Nijenhuis operator.

Now let p̂ be an element of π1h1. Then the covector field p̂.dû is dual to the vector
field q̂. ∂

∂ û defined by the following pairing in our context

〈
p̂.dû, q̂.

∂

∂ û

〉
=

∫
K(p̂, q̂). (17)

We shortly write this pairing as 〈p̂, q̂〉 between the vector field q̂. ∂
∂ û identified with q̂

and covector field p̂.dû identified with p̂.

The adjoint of the operator P is defined as

〈p̂, Pq̂〉 = 〈P∗p̂, q̂〉.

Since the pairing is non-degenerate, P∗ is well-defined. This definition can be extend to
the operators acting on the vector fields or covector fields. Using the definition above
one can simply prove the following lemma.

LEMMA 2. The adjoint of the Nijenhuis operator Â is Â∗ = ρ0 + 2ρ1 − ρ1D−1
x adû.

Furthermore the operators Ĥ and Î are anti-symmetric. Moreover, there is a meaningful
link between the operator Ĥ and Â, that is,

ÂĤ = ĤÂ∗.

That means that the operator ĤÂ∗ is also antisymmetric.

In the light of Theorem 3 and the lemmas above the Lie algebraic form of the
operator R defined in (10) can be written as

R̂ = ĤÎÂ−1 = (ĤÂ∗)(Â−1∗ÎÂ−1).
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This decomposition of the operator R̂ is the key to find Hamiltonian and symplectic
operator.

THEOREM 4. The operators Ĥ and ĤÂ∗ are Hamiltonian operators and the operator
Â−1∗ÎÂ−1 is symplectic.

Proof of this theorem is partly presented in the next subsection.

REMARK 8. Theorems 3 and 4 show that the manifold M = G/H is endowed with
a so called ‘Poisson-Nijenhuis structure’ as is defined in [9]. For more information, the
reader is referred to the works of Magri, as presented in for instance [8] and [10].

6.1. Hamiltonian operator. The linear operator Ĥ defined on π1h is Hamiltonian
operator if the Schouten bracket [Ĥ, Ĥ] vanishes. In the case at hand, this bracket can
be expressed as follows.

[Ĥ, Ĥ] =
3∑

i=1

∫
K(p̂i, D

Ĥ
[Ĥp̂i+2](p̂i+1)). (18)

NOTATION 1. To have more space, we will remove the sum over index i, but we take
into account the rule of shifting, that is for instance, we can add to index i, by 1, 2 and
use, for instance, the fact that

p̂i+3 = p̂i, p̂i+4 = p̂i+1, (19)

and so on. Moreover, we simply use the notation H for the operator Ĥ and pi for the
matrix p̂i and likewise for û so that we write as H = Dx − π1adu − aduD−1

x π0adu.

The operator H can be expressed as a combination of three simpler operators as

H = H1 + H2 + H3, H1 = −Dx, H2 = −π1adu, H3 = −aduD−1
x π0adu.

In order to prove that H is Hamiltonian, we show that [Hi, Hj] = 0, for i, j = 1, 2, 3.

LEMMA 3. The Schouten bracket [H3, H3] vanishes.

Proof. We explain every single step and every single rule we use, so that later on
we will just do it. By computing the Fréchet derivative, we obtain

[H3, H3](p1, p2, p3) =
∫

K
(
pi, adaduD−1

x π0adupi+2
D−1

x π0adupi+1
)

+
∫

K
(
pi, aduD−1

x π0adaduD−1
x π0adupi+2

pi+1
)
.

The first term becomes as follows using the shifting rule (19).∫
K

(
pi, adaduD−1

x π0adupi+2
D−1

x π0adupi+1
) =

∫
K

(
pi+1, adaduD−1

x π0adupi
D−1

x π0adupi+2
)
.

As we know, the Killing form is invariant under adjoint action,

K(adX Y, Z) + K(Y, adX Z) = 0, X, Y, X ∈ g. (20)
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Now the second term is simplified as below using this rule and integration by parts.

−
∫

K
(
adupi, D−1

x π0adaduD−1
x π0adupi+2

pi+1
)

=
∫

K
(
D−1

x adupi, π0adaduD−1
x π0adupi+2

pi+1
)

= −
∫

K
(
adaduD−1

x π0adupi+2
D−1

x π0adupi, pi+1
)
.

Now using the Jacobi identity for the three elements u, D−1π0adupi+2 and D−1π0adupi

of the Lie algebra g, we obtain

[H3, H3](p1, p2, p3) =
∫

K
(
pi+1, aduadD−1

x π0adupi
D−1π0adupi+2

)
= −

∫
K

(
adupi+1, adD−1

x π0adupi
D−1π0adupi+2

)
= −

∫
K

(
π0adupi+1, adD−1

x π0adupi
D−1

x π0adupi+2
)

= −1
3

∫
DxK

(
D−1

x π0adupi+1, adD−1
x π0adupi

D−1
x π0adupi+2

)
= 0.

�

LEMMA 4. [H3, H2] = 0.

Proof. The Schouten bracket [H3, H2] is

[H3, H2](p1, p2, p3) = +
∫

K
(
pi, π1adaduD−1

x π0adupi+2
pi+1

)
+

∫
K

(
pi, adπ1adupi+2 D−1

x π0adupi+1
)

(21)

+
∫

K
(
pi, aduD−1

x π0adπ1adupi+2 pi+1
)
. (22)

The first term on the right is simplified as follows:

∫
K

(
pi , π1adaduD−1

x π0adupi+2
pi+1

) = −
∫

K
(
aduD−1

x π0adupi+2 , adpi pi+1
)

=
∫

K
(
D−1

x π0adupi+2 , π0aduadpi pi+1
)
.

The second and third terms of (21) are simplified according to the invariance property
of the Killing form (20), Jacobi identity and the fact that

π0adπ1adupi+2 pi = π0adadupi+2 pi,
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to get the following expression:

−
∫

K
(
π0adπ1adupi+2 pi, D−1

x π0adupi+1
) + K

(
D−1

x π0adupi+1, π0adπ1adupi pi+2
)

= −
∫

K
(
π0adadupi+2 pi, D−1

x π0adupi+1
) + K

(
D−1

x π0adupi+1, π0adadupi pi+2
)

=
∫

K
(
π0aduadpi pi+2, D−1

x π0adupi+1
)

=
∫

K
(
π0aduadpi+1 pi, D−1

x π0adupi+2
)
.

Now it should be clear that [H3, H2](p1, p2, p3) vanishes. �
LEMMA 5. [H2, H2] = 0 = [H1, H2].

Proof. We see that
∫

K(adpi+1 pi, adpi+2 u) = 0 holds using the Jacobi identity and
(20). Also one has π0adpi+1 pi = adρ0pi+1ρ0pi. Hence after few simple step, one can find
out that

[H2, H2](p1, p2, p3) =
∫

K
(
pi, π1adπ1adupi+2 pi+1

)
= −

∫
K

(
adpi+1 pi, adpi+2 u − π0adpi+2 u

) = 0.

Similarly we have that

[H1, H2](p1, p2, p3) = −
∫

K
(
pi, adpi+2,x pi+1

) = −1
3

∫
DxK

(
pi, adpi+2 pi+2

) = 0.

This concludes the proof of the lemma. �
LEMMA 6. [H1, H3] = 0.

Proof. Using the Jacobi identity and (20), one can get that

[H1, H3](p1, p2, p3) = −
∫

K
(
pi, adpi+2,x D−1

x π0adupi+1
) −

∫
K

(
pi, aduD−1

x π0adpi+2,x pi+1
)

=
∫

K
(
D−1

x adpi pi+2,x, π0adupi+1
) +

∫
K

(
π0adupi+1, D−1

x adpi,x pi+2
)

=
∫

K
(
π0adupi+1, adpi pi+2

)
=

∫
K

(
ρ0u, adρ0pi+1 adρ0piρ0pi+2

) = 0.

�
Now we obtain the main result out of these lemmas that the operator H is a

Hamiltonian operator. We can simply prove that the operator ĤÂ∗ is also Hamiltonian.
In fact we have that ĤÂ∗ = C1 + C2 in which

C1 = Dx − π1adu − aduD−1
x π0adu,
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and

C2 = Dxρ1 − π1aduρ1 + ρ1π1adu + aduD−1
x ρ1π1adu.

We already proved that C1 is Hamiltonian, that is, [C1, C1] = 0. Similarly we can prove
that [C2, C2] = 0. It is not difficult to show that [C1, C2] = 0.

6.2. Symplectic operator. As is stated in Theorem (4), it is claimed that the
operator S = Â−1∗ÎÂ−1 is symplectic. The operator Î can be expressed as combination
of three basic operators:

Î = S0 + S1 + S2,

in which

S0 = −1
2

uD−1
x K(u, ·), S1 = 1

2
Dxρ1 − 1

4
adρ1uρ1,

and

S2 = Dxρ0 − 1
2

adρ0uρ1 − 1
2
π1adρ0uρ0.

In order to prove that the operator S is symplectic, we need to show that the Schouten
bracket of the operator vanishes. The local version of Schouten bracket for the linear
operator S defined on vector filed π1h with the covector field valued can be formulated
as follows.

[S, S] =
3∑

i=1

∫
K(p̂i, DS[p̂i+2](p̂i+1)). (23)

Similar to the proof of the Hamiltonian operator, to prove that Â−1∗ÎÂ−1 is symplectic,
it is enough to show that the operators Â−1∗SiÂ

−1 for i = 0, 1, 2 are symplectic. These
can be found in [3].
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