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Branching Rules for Principal Series
Representations of SL(2) over a p-adic Field

Monica Nevins

Abstract. We explicitly describe the decomposition into irreducibles of the restriction of the principal

series representations of SL(2, k), for k a p-adic field, to each of its two maximal compact subgroups

(up to conjugacy). We identify these irreducible subrepresentations in the Kirillov-type classification of

Shalika. We go on to explicitly describe the decomposition of the reducible principal series of SL(2, k)

in terms of the restrictions of its irreducible constituents to a maximal compact subgroup.

1 Introduction

Let G be (the k-points of) a reductive group defined over a p-adic field k of character-

istic zero, and odd residual characteristic, and K a maximal compact subgroup. We
are interested in the decomposition of admissible representations of G upon restric-
tion to K, in analogy with the case of k = R. In this paper, we consider the group
G = SL(2, k) and its two nonconjugate maximal compact subgroups K and K̃. Here

K denotes the subgroup SL(2,O), where O is the integer ring of k, and K̃ denotes the
subgroup ωKω−1, where ω =

[
0 1
̟ 0

]
∈ GL(2, k), for ̟ a uniformizing element of k.

We have three main results. The first is contained in Propositions 4.4 and 4.5, and
is valid also with K replaced by K̃ (Corollary 4.6).

Theorem 1 Let χ be a primitive character mod pm. Then Vχ = IndG
B χ decomposes

into a direct sum of K-representations as

ResK Vχ = V Km

χ ⊕
⊕

n>m

(
W +

χ,n ⊕W−
χ,n

)

where V Km

χ is irreducible of degree qm + qm−1 if χ2 6= 1, and for all n > m, the W±
χ,n are

irreducible, pairwise inequivalent, representations of degree 1
2
qn−2(q2 − 1). Moreover,

for n ≥ 2m, the representations W±
χ,n depend only on the central character of Vχ.

Our next result (Theorems 7.2 and 7.4) is the explicit matching of the irreducible
K-representations arising in Theorem 1 with representations constructed by Shalika
using induction from compact open subgroups to K. This construction is reviewed

in Section 5; see particularly (5.3) and (5.9). It is an orbit method construction, in
the sense of [H, LP], although effectively it is a construction for finite groups.

Our matching theorem may be summarized for K as follows. Here, g denotes the
maximal parahoric subalgebra sl(2,O) of the Lie algebra of G.
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Branching Rules in SL(2, k) 649

Theorem 2 Suppose χ is primitive mod pm. Then if m > 1, V Km

χ ≃ Dm(χ,X), where

X ∈ g\pg represents a split K-orbit. For all n > m, W +
χ,n ⊕ W−

χ,n ≃ Dn(ρ0, x0) ⊕
Dn(ρ1, x1), where the characters ρi and the elements xi ∈ g\pg (representing ramified

K-orbits) are determined explicitly in terms of the character χ.

Theorems 7.2 and 7.4 also give an explicit description of the K̃-representations
occuring in IndG

B χ, using a generalization of Shalika’s construction presented in Sec-

tion 6. For n ≥ 2m, the orbits arising in Theorem 2 are nilpotent ones, as explained
in Remark 7.5, and are no longer dependent on even the choice of additive character
η used in Shalika’s construction.

Theorem 2 fits in well in the theory of types. This theory asserts that the irre-

ducible admissible representations are classified by the types they contain. A type is a
pair ( J, ρ) of a compact open subgroup J and a representation ρ of J; π contains ( J, ρ)
if Res J(π) contains ρ as a summand. Alan Roche has computed types of the principal
series representations and in [R, Example 3.5] explicitly describes a type ( Jχ, ρχ) for

IndG
B χ. This type is exactly the inducing datum for Shalika’s constructions of the

“primary” irreducible V Km ; that is, Dm(χ,X) = IndK
Jχ
ρχ.

Most principal series representations are irreducible. With our normalizations
(Section 3), the reducible ones are IndG

B sgnτ for τ ∈ {ε,̟, ε̟}. Each of these
decomposes into two irreducible constituents, which we denote H± (depending on

a choice of additive character). Our third result, an application of Theorem 2, is the
identification of the irreducible K-representations occuring in each constituent.

The following is a summary of the results obtained for IndG
B sgnε, from Theo-

rems 9.1 and 9.2 and Corollary 9.3 (with some extra notation suppressed for read-

ability).

Theorem 3 Consider V = IndG
B sgnε. Set xt =

[
0 t
0 0

]
, and let 1K and StK denote the

trivial and Steinberg representations of K, respectively. Then

ResK (V ) = 1K ⊕ StK ⊕
⊕

n>1

{Dn(1, x1) ⊕ Dn(1, xε)} ,

with StK ,D2k+1(1, xt ) ⊆ H+ and 1K ,D2k(1, xt ) ⊆ H−, for t ∈ {1, ε}. Similarly,

ResK̃ (V ) = 1K̃ ⊕ StK̃ ⊕
⊕

n>1

{
D̃n(1, x̟−1 ) ⊕ D̃n(1, xε̟−1 )

}
,

with 1K̃ , D̃2k(1, xt̟−1 ) ⊆ H+ and StK̃ , D̃2k+1(1, xt̟−1 ) ⊆ H−, for t ∈ {1, ε}.

The results for IndG
B sgnτ , τ = ̟, ε̟ are similar in flavour.

Theorems 2 and 3 tie in well with the “orbit method” interpretation of the clas-
sification of irreducible constituents of principal series, as follows. In [K], Wentang
Kuo establishes an explicit connection between irreducible constituents of principal

series representations of split reductive p-adic groups G and (classes of) principal
nilpotent orbits. Specifically, he constructs, up to certain choices, a map ρ from the
set of principal nilpotent orbits to the set of (generic) irreducible constituents of uni-
tary principal series πχ = IndG

B χ [K, 4.1.7]. This map ρ has the property that for O,
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a principal nilpotent orbit, the set of principal nilpotent orbits arising with nonzero
coefficient in the Harish–Chandra–Howe local character expansion of ρ(O) is exactly

Qχ · O [K, Thm 4.2.5]. Here Qχ can be viewed as a subgroup of the maximal split
torus of the (algebraic) adjoint group of G [K, 5.2.5].

For G = SL(2, k), we can identify Qχ with a subgroup of k× which acts by scaling
on the nilpotent orbits. When πχ is irreducible, Qχ = k×, so all orbits occur; whereas
when χ = sgnτ , Qsgnτ

= {u ∈ k× | sgnτ (u) = 1}.

In our case, we have produced a list of representations of K and K̃ occuring in
πχ, such that each representation is constructed via an orbit method (in the sense of

Kirillov) and is associated to an adjoint orbit of K or K̃. The nilpotent adjoint orbits
of K which occur are represented by Xt , t ∈ O×, whereas those of K̃ which occur
are represented by Xt , t ∈ ̟−1O×. Taking their G-saturations gives the four prin-

cipal nilpotent orbits of G, and thus one would wish to say that πχ is associated to

the nilpotent orbits occuring in its K and K̃ decompositions. A glance at Theorem 3,
however, reveals this is far too naive. Nonetheless, one can see from Theorem 9.2 and
Corollary 9.3 that the collection of nilpotent orbits which occur among the primi-
tive modulo pn representations of K and K̃ for fixed n > 1 in a given irreducible

constituent of πχ is invariant under Qχ. It seems quite reasonable to expect that this
relationship can be made more precise, a problem the author hopes to address in a
subsequent paper.

The organization of this paper is as follows. We establish our notation in Section 2.
In Section 3, we define the class of principal series representations Vχ and recall some
useful results about induced representations. The decomposition of ResK Vχ into

irreducible subrepresentations is given in Section 4. In Section 5 we recall pertinent
results of [ShII], in which Shalika constructs irreducible representations of K starting
from adjoint orbits of K on its O-Lie algebra. Section 6 is devoted to describing how
conjugation by ω gives equivalent constructions of representations of K̃, with some

small modifications. In Section 7 we match the irreducible representations of K (and
K̃) occuring in Vχ with those presented in Sections 5 and 6. In Section 8, we recall
a description of the irreducible constituents of reducible principal series of SL(2, k)
given in [GGPS]. We conclude in Section 9 with the identification of the irreducible

representations of K and K̃ ocurring in each of these irreducible constituents.

Principal series representations of PGL(2, k) were decomposed by Silberger rela-

tive to K = PGL(2,O) in [Si] and relative to the other nonconjugate maximal com-
pact K̃ in [Si2]. Casselman considered related questions for all irreducible admissible
representations of the group GL(2, k) in [C]. In Section 4, we are inspired by Sil-
berger’s approach in [Si].

2 Notation

Let k be a p-adic field (of characteristic 0) of residual characteristic p 6= 2. Denote

its integer ring by O and its prime ideal p. The order of the residue field κ = O/p

is denoted q = p f . Let ̟ be a uniformizing element of p, and normalize the p-adic
valuation so that val(̟) = 1. Fix a nonsquare element ε ∈ O×\O×2. Let sgn denote
the sign character on κ×: sgn(a2) = 1 and sgn(εa2) = −1 for all a ∈ κ×. Extend
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this to a character on O× by sgn(1 + p) = 1.
On k×, the sign characters are defined by sgnτ (a) = (a/τ ), for τ ∈ k×/k×2,

τ 6= 1, where (·/·) denotes the (2-)Hilbert symbol. Thus since p 6= 2, sgnε(m̟k) =

(−1)k for all m ∈ O× and k ∈ Z, and for τ ∈ {̟, ε̟}, sgnτ coincides with sgn on
O×.

Let G = SL(2, k), the group of 2 × 2 unimodular matrices over the field k. Let

K = SL(2,O), the subgroup of matrices of G, all of whose entries lie in O, and

K̃ =

{[
a b

c d

]
: a, d ∈ O, c ∈ p, b ∈ p−1, ad − bc = 1

}
.

These are representatives of the two conjugacy classes of maximal compact subgroups
of G. If we set

ω =

[
0 1
̟ 0

]
,

representing an element of the affine Weyl group, then K̃ = ωKω−1
= Kω .

We make use of the standard filtration of K by normal subgroups:

K = K0 ⊇ K1 ⊇ K2 ⊇ · · ·

where Ki , i ≥ 1, consists of those matrices in K which are congruent to the identity
matrix I mod pi . Let K̃i = Kω

i ; this defines a filtration of K̃.
Let K be either K or K̃. Let (π,V ) be an admissible smooth representation of G,

and denote by V Ki the set of Ki-fixed vectors in V . Then we have

(2.1) V =

⋃

i≥0

V Ki

and each subspace V Ki is finite dimensional. Moreover, by normality of the Ki in
K, each V Ki is K-invariant. Hence, to decompose the restriction to K of (π,V ) into

irreducibles, it suffices to do so for each V Ki .
Let χ ′ be a continuous multiplicative character of k× and consider its restriction

χ to a character of O×. If | · | denotes the norm on k, we have χ ′(r̟k) = |̟k|sχ(r)
(for some s ∈ C) whenever r ∈ O×. The character χ ′ is called unramified if χ = 1,

the trivial character, and ramified otherwise. Let m be the least positive integer such
that 1 + pm ⊆ ker(χ); then we say χ is primitive mod pm.

3 Principal Series Representations of SL(2, k)

Let B be the Borel subgroup of upper triangular matrices in G. Write B = TU , where
T is the maximal split torus, consisting of diagonal matrices, and U is the unipotent
radical, consisting of those matrices u in G such that u− I is strictly upper triangular.

Since the commutator of B lies in U , a character of B is defined by its restriction to
T (and any character of T defines one of B). These characters may be identified with
characters of k× via

χ ′

(
a b

0 a−1

)
= χ ′(a).
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Then a principal series representation of G is a (normalized) induced representation
denoted πχ ′ = IndG

B χ
′, on the vector space

(3.1) Vχ ′ = { f : G → C | f (bg) = χ ′(b)|b| f (g) ∀g ∈ G, b ∈ B, and f ∈ C∞}.

The action of G on Vχ ′ is given by right translations: πχ ′(g) f (h) = f (hg) for all
g, h ∈ G. The normalization by |b| in (3.1) ensures that unitarity is preserved and that

IndG
B χ

′
= IndG

B χ
′−1

(that is, invariance under the action of the Weyl group). The
principal series representation (πχ ′ ,Vχ ′) is called unramified (respectively, ramified)

if χ ′ is an unramified (respectively, ramified) character of T.
Since both K and K̃ are good maximal compact subgroups, G admits the Iwasawa

decompositions G = BK = BK̃. If follows that for K denoting either K or K̃,

ResK IndG
B χ

′
= IndK

B∩K χ

where χ = ResB∩K χ
′. (In particular, the normalization factor in the induction from

B ∩ K is identically 1 and may be omitted.) In the sequel, we assume without loss of
generality that χ ′

= χ.
The following easy lemma implies that it suffices to consider the restriction to K.

Lemma 3.1 Let K, K̃ be as above. There exists a vector space automorphism Υ of

IndG
B χ such that πχ(k)( f ) = Υ

−1πχ(ωkω−1)(Υ f ) for all k ∈ K, f ∈ IndG
B χ. Thus

ResK IndG
B χ ≃ ResK̃ IndG

B χ

(with the group isomorphism implicit).

Proof Let s =
[

0 −1
1 0

]
. For each f ∈ IndG

B χ, define Υ f (g) = f (sω−1gω). Since

sω−1

[
a c

0 a−1

]
ωs−1

=

[
a −c̟
0 a−1

]

it follows that Υ f (bg) = f (sω−1bgω) = f (sω−1bωs−1sω−1gω) = χ(b)Υ f (g) for
all b ∈ B, g ∈ G. Hence Υ is an automorphism. It is an intertwining operator
between the usual action πχ of G and the twisted action πωχ(g) = πχ(ωgω−1), since

for all g, h ∈ G and f ∈ IndG
B χ,

Υ(πχ(g) f )(h) = πχ(g) f (sω−1hω) = f (sω−1hωg)

and

πωχ(g)(Υ f )(h) = Υ f (hωgω−1) = f (sω−1(hωgω−1)ω) = f (sω−1hωg)

are equal. The conclusions follow.

Finally, let us recall the Intertwining Number Theorem for finite groups, which
will be used extensively in the following sections.
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Proposition 3.2 Let G be a finite group and H, L two subgroups of G. Suppose χ and

ρ are characters of H and L, respectively. Define H = H(H\G/L, χ, ρ) to be the vector

space

H = {F : G → C | F(hgl) = χ(h)F(g)ρ(l) ∀h ∈ H, g ∈ G, l ∈ L}.

Then the intertwining operators from IndG
L ρ to IndG

H χ are given by convolution with

the functions in H. This is a Hecke algebra when H = L and χ = ρ.

Proof Given F ∈ H, it is clear that the map T from IndG
L ρ to IndG

H χ given by

(3.2) T f (g) =

∑

k∈G

F(k) f (k−1g)

is an intertwining operator. Hence it suffices to prove that

dim H = dim HomG(IndG
H χ, IndG

L ρ).

By Frobenius reciprocity, one has HomG(IndG
H χ, IndG

L ρ) ≃ HomH(χ,ResH IndG
L ρ).

By [S, Prop. 22], one has

ResH IndG
L ρ ≃

⊕

s∈S

IndH
Ls
ρs,

where S is a system of representatives for the double cosets H\G/L, the group Ls is

the intersection sLs−1 ∩ H, and ρs(x) = ρ(s−1xs) for x ∈ Ls. Hence

HomH(χ,ResH IndG
L ρ) ≃

⊕

s∈S

HomH(χ, IndH
Ls
ρs).

This latter term is isomorphic to
⊕

s∈S HomLs
(χ, ρs), again by Frobenius reciprocity.

Since these are characters, we conclude that for a given s ∈ S, the dimension of
HomLs

(χ, ρs) is at most 1. It is nonzero if and only if χ(h) = ρs(h) for all h ∈ Ls,
that is, if and only if χ(h) = ρ(l) whenever h = sls−1 (for h ∈ H and l ∈ L).

This is precisely the condition under which there exists a non-zero function F ∈
H supported on the double coset HsL. Such functions form a basis for H, which
completes the proof.

4 Branching Rules for (πχ,Vχ) under K and K̃

Let χ be as in Section 3 and write Vχ for ResK Vχ ≃ IndK
B∩K χ (or simply V where

there can be no confusion). Write Bn
= (B ∩ K)/(B ∩ Kn) and Kn

= K/Kn. Suppose
χ is primitive mod pm. Then, for χ 6= 1, χ factors through Bn if and only if n ≥ m,
in which case we denote the corresponding character of Bn by χ.

Definition 4.1 A representation π of Kn which does not factor through Kn−1 is
called primitive.
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(One often adds the condition that a primitive representation must be irreducible
(see, for example, [ShII]), but it is convenient for us not to.)

Lemma 4.2 Suppose χ 6= 1 is primitive mod pm. If 0 ≤ n < m, then V Kn

χ = {0}.

For any n ≥ m,

V Kn

χ ≃ IndKn

Bn χ

where both sides are primitive representations of Kn.

Proof Let n ≥ 0. If B ∩ Kn * ker(χ), then V Kn

χ = {0}; this happens exactly for
n < m (unless χ = 1). The indicated isomorphism of Kn-representations for n ≥ m

is immediate. This implies in particular that V
Kn−1

χ ( V Kn

χ for all n ≥ m, whence the

primitivity of V Kn

χ .

Note that Lemma 4.2, together with (2.1), implies that in order to decompose Vχ

into irreducibles under K, it suffices to decompose principal series representations

of the finite groups Kn. We begin with the group K1, which may be identified with
SL(2, κ), a finite group of Lie type. Its representation theory is well understood, and
we deduce the following result from [DM, §15.9].

Lemma 4.3 Suppose χ is primitive mod p. If χ = 1 is the trivial character, then

V K1

1
= 1 ⊕ St, where St denotes the q-dimensional Steinberg representation of SL(2, κ).

If χ = sgn, then V K1

sgn decomposes into two inequivalent irreducible representations with

characters Ξ
±
sgn , each of degree (q + 1)/2. For any other χ, V K1

χ is irreducible.

The last statement of Lemma 4.3 is a special case of the following Proposition.

Proposition 4.4 Let χ be a primitive character mod pm, and V = Vχ. If χ2 6=
1, then V Km is an irreducible representation of degree qm + qm−1. For all n > m,

Wn = V Kn/V Kn−1 decomposes into two inequivalent irreducible representations of de-

gree qn−2(q2 − 1)/2.

Proof The dimensions of V Km and Wn can be computed directly (for instance by
counting left cosets of Bn in Kn). One can show the irreducibility of V Km using the
Mackey irreducibility criterion, but let us instead deduce both assertions by applying
Proposition 3.2, with H = H(Bn\Kn/Bn, χ).

A basis for H consists of functions with support on a double coset of Bn in Kn. Let
ε ∈ O×\O×2 be a fixed nonsquare (as in Section 2). Then a set of representatives for
these double cosets is

(4.1)

{[
1 0

0 1

]
, s =

[
0 −1

1 0

]
, st

k =

[
1 0

t̟k 1

]
: t ∈ {1, ε}, 1 ≤ k < n

}

(or, more accurately, their corresponding cosets in Kn
= K/Kn).

For each k ∈ Kn, a nonzero function Fk ∈ H with support on BnkBn exists if
and only if, whenever bkb ′

= k (with b, b ′ ∈ Bn) we have χ(b)χ(b ′) = 1. Thus
the identity double coset supports a nonzero function (namely, FI |Bn = χ), but a
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nonzero Fs ∈ H supported on the double coset BnsBn exists if and only if χ2
= 1.

It also follows from direct calculation that the double cosets Bnst
kBn support nonzero

functions if and only if 1 + pk is contained in the kernel of χ, that is, for k ≥ m.

Hence dim H = 1 + 2(n − m) if χ2 6= 1; otherwise, dim H = 2 + 2(n − m).
The irreducibility of V Km (for χ2 6= 1), and the decomposition of each Wn into two

inequivalent irreducible subrepresentations, follows.

Let us write this decomposition for each n > m as Wn = W +
n ⊕ W−

n . We would
like to deduce that W±

n have the same degree. Note that Wn is the restriction to

SL(2,O) of a representation of GL(2,O) — namely, consider the principal series rep-
resentation corresponding to the character χ ⊗ 1 on diagonal subgroup of GL(2,O)
(identified with k× × k×). By the same method as above, we deduce that this sub-
space is irreducible under GL(2,O). Hence there must exist an element g ∈ GL(2,O),

g /∈ SL(2,O) mapping W +
n bijectively onto W−

n .

We thus have

Vχ = V Km

χ ⊕ (W +
χ,m+1 ⊕W−

χ,m+1) ⊕ (W +
χ,m+2 ⊕W−

χ,m+2) ⊕ · · · ,

and this is an orthogonal decomposition of Vχ into pairwise inequivalent irreducible
(when χ2 6= 1) subrepresentations of K.

The following proposition shows that the “tail end” of Vχ depends only on the
central character of the representation. More precisely, let ϑ be a character of k×

satisfying ϑ(−1) = −1. (For example, take ϑ = sgn if −1 /∈ O×2.)

Proposition 4.5 Letχ be primitive modulo pm. The orthogonal complement of V
K2m−1

χ

in Vχ is equivalent to the orthogonal complement of V
K2m−1

1
in V1 if χ(−1) = 1 and to

the orthogonal complement of V
K2m−1

ϑ in Vϑ if χ(−1) = −1.

Proof Let n ≥ m. We apply Proposition 3.2. Let H = H(Bn\Kn/Bn, χ, 1) if
χ(−1) = 1 and H = H(Bn\Kn/Bn, χ, ϑ) if χ(−1) = −1. The condition on χ is
clearly necessary for H to be nontrivial.

Assume without loss of generality that χ /∈ {1, ϑ, ϑ−1} (since Vϑ ≃ Vϑ−1 ). Then

neither Bn nor BnsBn (notation of (4.1) ) support a nonzero function in H. For the
remaining double cosets, a nonzero function F ∈ H supported on Bnst

kBn exists if
and only if whenever bst

kb ′
= st

k, the diagonal elements of b and b ′ either all lie in

1 + pm or in −1 + pm. This occurs exactly for those st
k such that neither the parameter

k nor the difference n − k are less than m. It follows that dim H = 2(n + 1 − 2m) for
n ≥ 2m, and is zero otherwise, as required.

Corollary 4.6 The statements of Lemma 4.2, Lemma 4.3, Proposition 4.4 and Propo-

sition 4.5 are also true with K replaced by K̃.

This follows from Lemma 3.1.
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5 Shalika’s Classification of Irreducible Representations of K

Propositions 4.4 and 4.5 give a description of the decomposition of ResK Vχ into ir-
reducible representations. It is of interest to further identify these subrepresentations

in an explicit way, using the classification of irreducible representations of K given by
Shalika in [ShI, ShII]. In this Section, we recall the pertinent results from [ShII].

Let k ≥ 1 and fix η a primitive additive character of O/pk (that is, a character of O

satisfying pk−1 * ker(η)). Note that this primitivity implies that the set of additive
characters of O/pk is exactly {ηa | a ∈ O/pk} where ηa(b) = η(ab) for all b ∈ O/pk.

Let g = sl(2,O) be the Lie algebra (over O) of traceless 2 × 2 matrices with co-
efficients in O. Denote by gk the quotient space g/pkg; this is a Lie algebra over
O/pk. The trace defines a nondegenerate K-invariant bilinear form on g (or on gk)
via B(X,Y ) = tr(XY ).

An element X ∈ g is called primitive if X /∈ pg. Fix a nonsquare ε ∈ O×. Repre-
sentatives of the K-orbits of primitive elements of g are:

split orbits:
[
λ 0
0 −λ

]
, where λ ∈ O× (taken modulo ±1);

ramified orbits:
[

0 t
a̟ 0

]
, where t ∈ {1, ε} and a ∈ O;

unramified orbits:
[

0 1
εa2 0

]
, where a ∈ O×.

The centralizer TX of a split element X is the diagonal split torus; whereas if X =[
0 σ
τ 0

]
then

TX =

{[
a b

bτσ−1 a

]
: a2 − b2τσ−1

= 1

}
.

Denote by TX,n the image of each of these in Kn; they coincide with the centralizers
in Kn of the image of X in gn.

Shalika constructs irreducible primitive representations of Kn for n ≥ 2 (that is,
representations which do not factor through Kn−1) using the following result from
Clifford theory (see [ShII, Thm 1.3], for example): Given an irreducible representation

τ of a normal subgroup N of a finite group G, and an extension of τ to an irreducible rep-

resentation θ of the stabilizer S of τ under G, then IndG
S θ is irreducible and its restriction

to N contains τ .

Shalika’s construction proceeds as follows. First suppose n = 2k is even. Define
the normal subgroup Nk of K2k

= K/K2k as

(5.1) Nk =

{
n =

[
1 + c̟k d̟k

e̟k 1 − c̟k

]
: c, d, e ∈ O/pk

}
.

In particular, an element n ∈ Nk can be written as n = 1 + z̟k, with z ∈ gk. Then

for each x ∈ gk, define a character ηx of Nk via

(5.2) ηx(1 + z̟k) = η(tr(zx)).

As x runs over the K-orbits in gk, ηx gives all (classes of) characters of the abelian nor-
mal subgroup Nk of K2k. Choose any X ∈ g2k whose reduction modulo pk equals x;
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then Shalika shows that the stabilizer S of ηx under K2k is TX,2kNk. Hence if ρ is a
character of TX,2k coinciding with ηx on TX,2k ∩ Nk, then

(5.3) D2k(ρ, x) = IndK2k

TX,2kNk
ρ⊗ ηx

defines a primitive irreducible representation of K2k (where ρ⊗ ηx denotes the char-
acter of TX,2kNk given by ρ⊗ ηx(tn) = ρ(t)ηx(n)).

The construction for odd n, n = 2k + 1, is more complex; we describe it only for
split and ramified orbits. One defines for x ∈ gk characters ηx of the abelian normal
subgroup Nk+1 of K2k+1 via ηx(1 + z̟k+1) = η(tr(zx)) as before. Now, however, the
stabilizer of ηx in K2k+1 is TX,2k+1Ik, where X ∈ g2k+1 is any lift of x, and the subgroup

Ik is defined to be

(5.4) Ik =

{
n =

[
1 + c̟k d̟k

e̟k+1 1 − c̟k + c2̟2k

]
: c, d ∈ O/pk+1, e ∈ O/pk

}
.

Choose a character ξ of pk/p2k+1 satisfying

(5.5) ξ(λ̟k+1) = η(λ) ∀λ ∈ O/pk

and define an extension ηx,ξ of ηx to Ik via

(5.6) ηx,ξ(1 + z̟k) = ξ(̟k tr(zX)),

where we have written n = 1 + z̟k as in (5.4). This expression can be simplified
somewhat, as follows.

When x ∈ gk is a split element of the form x =
[
λ 0
0 −λ

]
with X ∈ g2k+1 covering x,

(5.6) becomes

(5.7) ηx,ξ(1 + z̟k) = ξ(2λc̟k − λc2̟2k).

When x ∈ gk is a ramified element of the form x =
[

0 t
a̟ 0

]
(with t ∈ {1, ε}, a ∈ O),

then (5.6) becomes

(5.8) ηx,ξ(1 + z̟k) = η(ad + te) = η(̟−1 tr(zX)).

In these two cases, Shalika deduces that the representations

(5.9) D2k+1(ρ, x, ξ) = IndK2k+1

TX,2k+1Ik
ρ⊗ ηx,ξ

for ρ any character of TX,2k+1 agreeing with ηx,ξ on TX,2k+1 ∩ Ik, are irreducible and

primitive. Note that since (5.8) is independent of the choice of ξ, for x ramified we
may abbreviate D2k+1(ρ, x, ξ) to D2k+1(ρ, x) where convenient.

Remark 5.1 This method for the case of n odd and x unramified is also discussed

in [ShII]. In contrast with the above, it does not produce a complete list of primitive
irreducible representations of K associated to unramified elements; to do this, Shalika
uses a more geometric construction in [ShI]. We omit this case and will have no need
for those representations here.
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The representations (5.3) and (5.9) are primitive, irreducible and equivalent only
if their parameters x are in the same K-orbit [ShII, Theorems 2.1 and 2.5]. Their

dimensions are as follows:

split case: qn−1(q + 1),
ramified case: 1

2
qn−1(q2 − 1),

unramified case: qn−1(q − 1),

and they, together with the unramified representations constructed in [ShI], exhaust
all irreducible primitive (mod Kn) representations of K, n ≥ 2.

6 Representations of K̃

We would now like to carry out the same Kirillov-type construction to explicitly pro-
duce representations of K̃. These representations would then be associated to primi-
tive orbits, not in g, but in the O-Lie algebra

g̃ =

{[
a b

c −a

]
: a ∈ O, b ∈ p−1, c ∈ p

}
= gω.

There is essentially no work to be done; one simply conjugates all the components in
Shalika’s construction by ω and this produces the required Kirillov-type construction
of representations of K̃.

More specifically, the primitive orbits in g̃ are:

split orbits:
[
λ 0
0 −λ

]ω
=

[
−λ 0

0 λ

]
, λ ∈ O× (taken modulo ±1);

ramified orbits:
[

0 t
a̟ 0

]ω
=

[
0 a

t̟ 0

]
, with t ∈ {1, ε}, a ∈ O; and

unramified orbits:
[

0 1
εa2 0

]ω
=

[
0 εa2̟−1

̟ 0

]
with a ∈ O×.

Let T̃X,n denote the stabilizer of X ∈ g̃ in K̃n. Define the normal subgroup Ñk of K̃2k

via Ñk = {1+z̟k | z ∈ g̃k} and the subgroup Ĩk of K̃2k+1 via (5.4), with the necessary

modification that d ∈ O/pk and e ∈ O/pk+1.
Choose x ∈ g̃k as above, and X ∈ g̃n lifting x. Then the corresponding character

η̃x of Ñk is given by η̃x(1 + z̟k) = η(tr(zx)). For n = 2k + 1, choose ξ as in (5.5) and
define η̃x,ξ(1 + z̟k) = ξ(̟k tr(zX)).

Then, for ρ̃ a character of T̃X,n agreeing with η̃x, η̃x,ξ as appropriate, we define:

D̃2k(ρ̃, x) = IndK̃2k

T̃X,2kÑk

ρ̃⊗ η̃x;

D̃2k+1(ρ̃, x, ξ) = IndK̃2k+1

T̃X,2k+1 Ĩk

ρ̃⊗ η̃x,ξ .

Proposition 6.1 The representations above are irreducible and primitive, and under

the isomorphism K ≃ K̃ = Kω
= ωKω−1, we have

D̃2k(ρω, xω) ≃ D2k(ρ, x)

and

D̃2k+1(ρω, xω, ξ) ≃ D2k+1(ρ, x, ξ)

where ρω(t) = ρ(ω−1tω) and xω = ωxω−1.
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Proof First note that for any subgroup H ⊆ K, and character φ of H, IndK
H φ ≃

IndKω

Hω φω via the map f 7→ f ω , where f ω(g) = f (ω−1gω). This map satisfies
(k · f )ω = kω · f ω , which is the statement that the representations of the two iso-
morphic groups are equivalent.

Since T̃Xω ,n = Tω
X,n, Ñk = Nω

k , Ĩk = Iωk , η̃xω = (ηx)ω and η̃xω ,ξ = (ηx,ξ)
ω , the

indicated isomorphisms, and thus the first statement of the proposition, follow from
(5.3), (5.9) and the definitions preceding the proposition.

The representatives for the primitive orbits of K̃ given above are in some sense not
the most natural. For instance, when x represents a split orbit, both xω = −x and x

itself represent the same K̃ orbit.

Corollary 6.2 Let x =
[
λ 0
0 −λ

]
, with λ ∈ O×. Then

D̃2k(ρ, x) ≃ D2k(ρ, x)

and

D̃2k+1(ρ, x, ξ) ≃ D2k+1(ρ, x, ξ)

(with the group isomorphism implicit).

Proof For any subgroup H ⊆ K, s ∈ K and character φ of H, IndK
H φ ≃ IndK

Hs φs

via the map f 7→ fs where fs(k) = f (s−1k). Let s =
[

0 −1
1 0

]
. Then since (TX,nNk)s

=

T−X,nNk, and ρs ⊗ ηs

x = ρ−1 ⊗ η−x, we have D2k(ρ, x) ≃ D2k(ρ−1,−x). Since

ρω = ρ−1 and xω = −x, we are done by Proposition 6.1. (This part also follows from
[ShII, Theorem 2.1].)

When n = 2k+1, the subgroup Ik is not normal, and in fact Is

k = IT
k , the transpose.

We wish to prove that the two representations,

Dn(ρω
−1

, xω
−1

, ξ) = Dn(ρ−1,−x, ξ) = IndKn

T−X,nIk
ρ−1 ⊗ η−x,ξ

(from Proposition 6.1) and Dn(ρ, x, ξ) ≃ IndKn

T−X,nIs

k

ρ−1 ⊗ ηs

x,ξ (from Corollary 6.2),

are isomorphic. We use Proposition 3.2. Since T−X,nIk ∩ T−X,nIs

k = Ik ∩ Is

k , one
sees that the two characters η−x,ξ and ηs

x,ξ agree on the intersection. Consequently

there exists a nonzero intertwining operator (supported on the identity double coset)
between these two irreducible representations of Kn.

For nilpotent x, xω represents also a nilpotent orbit of K̃. An upper triangular
representative of this orbit, which compares more directly with x, is preferable. Let
X = Xt =

[
0 t
0 0

]
∈ g2k+1 and x = xt , its image in gk. Set

r =

[
0 α−1r

r 0

]
, with

{
r =

√
−1, α = 1 if −1 ∈ k2,

r =
√
−ε, α = ε if −1 /∈ k2.
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(An obvious choice for the nonsquare element ε in the latter case would be ε = −1,
giving r = s.) Then for ηxr,ξ defined by (5.6) and any character ρ agreeing with ηxr,ξ

on the intersection, define

D2k+1(ρ, xr, ξ) = IndK2k+1

TXr ,2k+1
Ik
ρ⊗ ηxr,ξ .

Note that in this case, the expression for ηxr,ξ does not simplify as it did in (5.8).

Lemma 6.3 For X, ρ, ξ as above, we have D2k+1(ρ, xr, ξ) ≃ D2k+1(ρ, x, ξ).

Proof We have D2k+1(ρ, x, ξ) = IndK2k+1

TX,2k+1Ik
ρ ⊗ ηx,ξ ≃ IndK2k+1

TXr ,2k+1
Ir

k

ρr ⊗ ηr

x,ξ . The

structure of TX,2k+1 for this X implies that ρr
= ρ. As in the proof of Corollary 6.2, we

apply Proposition 3.2 to see that there is an intertwining operator between this last
representation and D2k+1(ρ, xr, ξ), supported on the identity double coset. Hence
D2k+1(ρ, x, ξ) occurs in D2k+1(ρ, xr, ξ); by dimension count, they are equivalent.

One then defines, for t ∈ {̟−1, ε̟−1}, the analogous representations of K̃ via

D̃2k+1(ρ, xt , ξ) = IndK̃2k+1

T̃Xt ,2k+1 Ĩk

ρ⊗ ηxt ,ξ .

Corollary 6.4 Let t ∈ {1, ε}, Xt ∈ g2k+1, xt ∈ gk, ρ, ξ and α ∈ {1, ε} be as above.

Then

D̃2k(ρ, xαt̟−1 ) ≃ D2k(ρ, xt ) and D̃2k+1(ρ, xαt̟−1 , ξ) ≃ D2k+1(ρ, xt , ξ).

Proof Let r̃ = r
[
̟ 0
0 ̟−1

]
; then r̃ ∈ K̃ conjugates Xω

t to Xαt̟−1 . We have T̃ r̃

X,n =

T̃Xr̃ ,n and ρ̃r
= ρ = ρω. Since r̃ ∈ K̃n, Ñk

r̃

= Ñk, but Ĩk
r̃ 6= Ĩk. As in the proof

of Corollary 6.2, the isomorphism D̃2k(ρω, xt
ω) ≃ D̃2k(ρ, xαt̟−1 ) follows directly,

whereas the isomorphism D̃2k+1(ρω, xt
ω, ξ) ≃ D̃2k+1(ρ, xαt̟−1 , ξ) is equivalent to

Lemma 6.3.

7 Identification of Irreducible Components and Adjoint Orbits

In this section, we identify explicitly, in the context of Shalika’s classification, the
irreducible representations occuring in the decomposition of V = Vχ with respect to

both K and K̃.

Fix a nontrivial additive characterψ of k with kernel O. For any k > 0, the additive
characters of O/pk are given by a 7→ ψ(ta), for some t ∈ p−k. Without loss of
generality, we may thus choose the family of primitive additive characters of O/pk,
for each k > 0, via

(7.1) ηk(x) = ψ(̟−kx) for all x ∈ O/pk

for use in Shalika’s construction. In particular, the characters ξk of pk/p2k+1 (see
(5.5)) may then simply be defined by

(7.2) ξk(x) = ψ(̟−2k−1x) for all x ∈ pk/p2k+1.
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We have the decomposition ResK V = V Km ⊕ ⊕
n>m(W +

n ⊕ W−
n ); let us write

ResK̃ V = V K̃m ⊕
⊕

n>m(W̃ +
n ⊕ W̃−

n ). By the dimension count in Proposition 4.4,

it follows that the representation V Km (respectively V K̃m ) corresponds to a split orbit,
and the W±

n (respectively, W̃±
n ) correspond to ramified orbits. The following Lemma

is the key to defining these orbit representatives (as will become clear in the proof of

Theorem 7.2 below).

Lemma 7.1 Assume χ is primitive mod pm. If m = 1, set λχ = 0. Otherwise, if

m = 2k is even, choose λχ ∈ O× so that

(7.3) χ(1 + c̟k) = ψ(2̟−kcλχ) for all c ∈ O/pk;

if m = 2k + 1 is odd, choose λχ ∈ O× so that

(7.4) χ(1 + c̟k) = ψ(̟−k−1(2c − c2̟k)λχ) for all c ∈ O/pk+1 .

In each of these cases, λχ is uniquely defined modulo pm−k.

Proof One verifies directly that in each case, the map c 7→ χ(1 + c̟k) gives a well-
defined primitive additive character of O/pk (respectively, of O/pk+1). Consequently
λχ is uniquely defined up to pk (respectively, pk+1), and has valuation zero by primi-

tivity.

Theorem 7.2 Suppose m ≥ 2. Then for m = 2k,

V Km ≃ Dm

(
χ,

[
λχ 0

0 −λχ

])
and V K̃m ≃ D̃m

(
χ,

[
λχ 0

0 −λχ

])
.

For m = 2k + 1,

V Km ≃ Dm

(
χ

[
λχ 0
0 −λχ

]
, ξχ

)
and V K̃m ≃ D̃m

(
χ,

[
λχ 0
0 −λχ

]
, ξχ

)
.

Proof Write λ = λχ, and let η = ηk. Let x =
[
λ 0
0 −λ

]
∈ gk. For any lift X of x to gm,

TX,m is the subgroup of diagonal matrices in K; thus χ defines a character of TX,m by
restriction.

We claim that for m = 2k (respectively, m = 2k + 1), χ⊗ηx (respectively, χ⊗ηx,ξ)
coincides with χ on the intersection of TX,nNk (respectively, TX,nIk) with Bm. Since
TX,n ⊂ Bm, this would prove the “coherence condition” of Shalika’s inducing char-
acter, and thus that Dm(χ, x) (respectively, Dm(χ, x, ξ)) is well-defined. It would

also prove the existence of a nonzero element in the corresponding intertwining al-
gebra H (namely, one supported on the identity double coset). The irreducibility of
the two representations would then imply their equivalence.

Suppose first that m = 2k. Then

Nk ∩ Bm
=

{
n =

[
1 + c̟k d̟k

0 1 − c̟k

]
: c, d ∈ O/pk

}
;
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thus for all n ∈ Nk ∩ Bm, ηx(n) = η(2λc) = ψ(̟−k2λc) = χ(n) by (7.1) and (7.3).

Next, suppose m = 2k + 1. Then we have

Ik ∩ Bm
=

{
n =

[
1 + c̟k d̟k

0 1 − c̟k + c2̟2k

]
: c, d ∈ O/pk

}
.

Using now (5.7), (7.2) and (7.4), we deduce

ηx,ξ(n) = ξ(2λc̟k −λc2̟2k) = ψ(̟−2k−1(2c̟k − c2̟2k)λ) = χ(1 + cπk) = χ(n),

as required.

The analogous statements for K̃ follow directly by Corollary 6.2.

Let us now turn to the remaining irreducible representations in ResK V (respec-
tively, ResK̃ V ). We begin with a definition to help simplify our notation.

Definition 7.3 Let m, k = [m/2] and λχ be as in Lemma 7.1, and suppose n > m.

Set γ0 = λχ̟
n−m and γ1 = ε−1λχ̟

n−m. When m = 1, γi = 0 for each i; otherwise,
these elements of pn−m are uniquely defined modulo pn−k. Now for i ∈ {0, 1}, define
a subgroup of Kn via

(7.5) Ti,n =

{
t =

[
a b

bγ2
i a

]
: a, b ∈ O/pn, a2 − b2γ2

i = 1

}

and define the character ρi of Ti,n via ρi(t) = χ(a + bγi).

Theorem 7.4 Use the notation of Definition 7.3. Then

W +
n ⊕W−

n = Dn

(
ρ0,

[
0 1

γ2
0 0

])
⊕ Dn

(
ρ1,

[
0 ε
εγ2

1 0

])
,

and

W̃ +
n ⊕ W̃−

n = D̃n

(
ρω0 ,

[
0 γ2

0̟
−1

̟ 0

])
⊕ D̃n

(
ρω1 ,

[
0 γ2

1ε̟
−1

ε̟ 0

])
.

Proof Note that since the orbits are ramified, we have omitted the irrelevant char-

acter ξ in the notation for n odd. Let X0 =

[
0 1
γ2

0
0

]
and X1 =

[
0 ε
εγ2

1
0

]
and x0, x1 their

images in gk. Then TXi ,n = Ti,n, and ρi is a well-defined character of Ti,n.

Define Γi =
[

1 0
γi 1

]
and let Hi denote the space of intertwining operators between

V Kn

χ and Dn(ρi, xi). We claim that there exists nonzero functions Fi ∈ Hi such that
Fi(Γi) = 1. Establishing this claim proves the theorem.

First suppose n = 2(k + r) is even, where k = [m/2] as in Lemma 7.1. What needs
to be shown is that whenever ΓibΓ

−1
i = tn, with b ∈ Bn, t ∈ Ti,n and n ∈ Nk+r, then

χ(b) = ρi(t)ηxi
(n). So let b =

[ s u
0 s−1

]
∈ Bn, t ∈ Ti,n as in (7.5) and n ∈ Nk+r as in
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(5.1) (with k replaced by k+r). Then ηx0
(n) = η(dγ2

0 +e) and ηx1
(n) = η(ε(dγ2

1 +e)),
where η = ηk+r in (7.1). With this notation,

ΓibΓ
−1
i =

[
s − uγi u

(s − s−1)γi − uγ2
i s−1 + uγi

]
.

Setting this equal to tn lets one solve for u and for s−1
= (a−bγi)(1−̟k+r(c + dγi)).

This yields the equalities s = (a + bγi)(1 + ̟k+r(c + dγi)) and (from the equality of
(2, 1) entries) 2γi(c +dγi) = dγ2

i +e. Hence χ(b) = χ(a +bγi)χ(1 +̟k+r(c +dγi)) =

ρi(t)χ(1 + ̟k(dγ2
i + e)̟rγ−1

i /2). Now apply (7.3), (7.4) and Definition 7.3; note
that since n > m, the term containing c2 (in case m is odd) lies in the kernel of the
character, and thus disappears.

Now suppose that n = 2(k + r) + 1 is odd. Then Shalika’s inducing subgroup is
Ti,nIk+r ; write an element n ∈ Ik+r as in (5.4) (with k replaced by k+r). The characters
ηxi ,ξ are defined via (5.8) by ηx0,ξ(n) = η(̟−1γ2

0 d + e) and ηx1,ξ(n) = η(ε(̟−1γ2
1 d +

e)). Setting ΓibΓ
−1
i = tn yields again that s = (a + bγi)(1 + ̟k+r(c + dγi)), this

time with the relation γi(2c − c2̟k + 2dγi) = dγ2
i + e̟. The necessary equality

χ(b) = ρi(t)ηxi ,ξ(n) follows from careful calculation as before.

The statement for K̃ now follows from Proposition 6.1.

Remark 7.5 While the extensions ρi of the characters ηxi
(Definition 7.3) depend

on the choice of γi modulo pm, and are uniquely defined by λχ only modulo pn−k, the

inducing data for the Shalika representations occuring in Theorem 7.4 depend only
on γi modulo at most pk+r+1. We deduce that the orbit parameters of the decom-
position into irreducibles are determined by Lemma 7.1. Further, note that when
n ≥ 2m, one may without loss of generality choose γ0 = γ1 = 0 in Definition 7.3

and in Theorem 7.4. This implies that the choice of additive character η does not
matter here and moreover that ρi depends only on the value of χ(−1), as expected
(Proposition 4.5). In this case, the orbit representatives Xi (for K) are simply the
nilpotent elements

[
0 1
0 0

]
and

[
0 ε
0 0

]
, and it is the identity double coset which supports

the nonzero intertwining operator of the proof of the theorem. This simplification
will be used in the proof of Theorem 9.2.

Example 1

ResK V1 = 1 ⊕ St ⊕
⊕

n>1

[
Dn

(
1,

[
0 1
0 0

])
⊕ Dn

(
1,

[
0 ε
0 0

])]

and, applying Corollary 6.4,

ResK̃ V1 = 1 ⊕ St ⊕
⊕

n>1

[
D̃n

(
1,

[
0 ̟−1

0 0

])
⊕ D̃n

(
1,

[
0 ε̟−1

0 0

])]
.

Similarly for Vϑ, where the orbits are the same but the inducing character is ϑ in place

of 1.
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8 The Reducible Principal Series

The principal series representations Vχ = IndG
B χ of G = SL(2, k), with normaliza-

tion as in (3.1), are reducible exactly when χ = sgnτ , for τ nontrivial in k×/k×2. In
each of these cases, Vχ decomposes into two irreducible subrepresentations. In this

Section, we recall the results of [GGPS], in which the authors explicitly describe the
irreducible constituents of IndG

B sgnτ in the “χ-realization” (hereafter refered to as
the F-realization, to avoid clash of notation) of the principal series.

We first begin by realizing the principal series Vχ, forχ a unitary character of B, on

the space W of complex-valued L2-functions on k. In our original realization (3.1),
we consider IndG

B χ as acting on the space

Vχ = { f : G → C | f ∈ C∞ and ∀b ∈ B, f (bg) = χ(b)|b| f (g)}

by right translation. Given a function f ∈ Vχ, define φ ∈ W via

(8.1) φ(x) = f

([
1 0
x 1

])
.

(That this function is in L2 follows from the unitarity of χ and the decomposition
G = BK.) The corresponding action of g =

[
a b
c d

]
∈ G, defined a.e., is (c.f. [GGPS,

Ch. 2 §3.1])

(8.2) (g · φ)(x) = φ
( ax + c

bx + d

)
χ(bx + d)−1|bx + d|−1,

since, whenever bx + d 6= 0, one has

[
1 0
x 1

] [
a b

c d

]
=

[
(bx + d)−1 b

0 bx + d

] [
1 0

(ax + c)(bx + d)−1 1

]
.

Choose an additive character δ of k and define the Fourier transform of a function
φ ∈ W via (c.f. [GGPS, Ch. 2 §3.2])

(8.3) φ̃(u) =

∫

k

φ(x)δ(−ux) dx

for all u ∈ k. The action of g ∈ G on a function φ̃ in this realization can be explicitly
expressed as integration with a kernel function. This defines the F-realization of

IndG
B χ as a representation of G on a space of complex-valued L2 functions of k.

Now suppose that χ = sgnτ , for τ ∈ {ε,̟, ε̟}. Then IndG
B sgnτ is reducible

and in the F-realization its two invariant irreducible subspaces are H±, where H+

consists of all functions φ̃ supported on the set {u ∈ k∗ | sgnτ (u) = 1}, and H−

of those supported on its complement [GGPS, Ch. 2 §3.5]. Where no confusion can
result, we use H± to denote the corresponding irreducible constituents in every other
realization.

https://doi.org/10.4153/CJM-2005-026-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-026-1


Branching Rules in SL(2, k) 665

9 Representations of K Occuring in the Irreducible Constituents of
IndG

B sgnτ

Our goal now is, starting with an irreducible representation of K occuring in

ResK IndG
B sgnτ ,

to compute the support of its elements in the F-realization (Section 8), and thus
deduce to which irreducible constituent of IndG

B sgnτ it belongs.

We first consider V K1 , which, by Lemma 4.3, itself decomposes into two irre-
ducibles:

• when τ = ε, V K1

sgnτ
≃ V K1

1
≃ 1 ⊕ St;

• when τ ∈ {̟, ε̟}, V K1

sgnτ
≃ V K1

sgn ≃ Ξ
+
sgn ⊕ Ξ

−
sgn .

The trivial and Steinberg representations of the first case are easy to distinguish and
identify; whereas to distinguish the two equidimensional irreducible constituents of
the latter case, we consult [DM, Ch. 15, Table 2]. They reveal that the characters Ξ

±
sgn

of these two irreducible representations of SL(2, κ) are distinguished by their values
on g =

[
1 1
0 1

]
, as follows. Let η be a fixed choice of additive character of κ (nontrivial

on Fp ⊆ κ) and define

(9.1) σ1 =

∑

a∈κ∗2

η(a) and σε =

∑

a∈κ∗2

η(εa).

Then Ξ
+
sgn (g) = −σ1 and Ξ

−
sgn (g) = −σε (where the characters Ξ

±
sgn have been de-

fined relative to this choice of η as well).

Extend η to a character of O by setting η(p) = 1. Let δ be an additive character of
k satisfying δ(a) = η(a) for all a ∈ O. Thus δ is trivial on p, and nontrivial on O. We
will define the F-realization of our representation relative to this choice of δ (both

here and in Theorem 9.2).

Theorem 9.1 Let V = IndG
B sgnτ and consider the decomposition of V K1 into irre-

ducible K-representations identified with representations of K1 ≃ SL(2, κ), as above.

• For τ = ε, we have 1 ⊆ H− and St ⊆ H+.
• For τ 6= ε, and −1 /∈ k2, we have Ξ

+
sgn ⊆ H+ and Ξ

−
sgn ⊆ H−.

• For τ 6= ε, and −1 ∈ k2, we have Ξ
+
sgn ⊆ H− and Ξ

−
sgn ⊆ H+.

Proof Let us begin by making explicit the identification of principal series repre-
sentations of the finite group of Lie type SL(2, κ) with subspaces of Vsgnτ

invariant
under K. Write B for the image of B ∩ K in SL(2, κ), and sgnτ (equal to either 1 or

sgn) for the corresponding character on B.

The space V = Ind
SL(2,κ)
B

sgnτ consists of functions from SL(2, κ) to C trans-
forming on the left by sgnτ under B. A basis for V is as follows. For each n ∈
κ, let fn be the function in V supported on the right coset B

[
1 0
n 1

]
and satisfying
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fn

(
1 0
n 1

)
= 1. Similarly, let fs be the function in V supported on B

[
0 −1
1 0

]
and satis-

fying f
(

0 −1
1 0

)
= 1.

These can be lifted to functions in IndK
B∩K sgnτ by letting K1 act trivially. To extend

these further to functions in IndG
B sgnτ , define Fn(bk) = sgnτ (b)|b| fn(k) for b ∈ B,

k ∈ K, and n ∈ κ ∪ {s}. The corresponding functions φn in the L2-realization (see
(8.1) ) are φn(x) = Fn

([
1 0
x 1

])
for all x ∈ k. Explicitly, for n ∈ κ,

φn(x) =

{
1 if x ∈ n + p,

0 otherwise,

whereas for n = s, if x /∈ O, then
[

1 0
x 1

]
=

[
x−1 1

0 x

] [
0 −1
1 0

] [
1 x−1

0 1

]
∈ BsK1, so

φs(x) =

{
sgnτ (x−1)|x|−1 if x /∈ O,

0 otherwise.

For n ∈ κ, we have φ̃n(u) =
∫

k
φn(x)δ(−ux) dx =

∫
n+p

δ(−ux) dx. If u ∈ p, then

δ(−ux) ≡ 1 and so the integral evaluates to the volume q−1. If u /∈ p, write u = m̟l,
with l ≤ 0, and make the change of variable −ux = −mn̟l +

∑0
i=l+1 ai̟

i + r,

with r ∈ p and the coefficients ai varying over representatives of κ in k (hereafter
abbreviated ai ∈ κ). Then we have

φ̃n(u) = ql
∑

al+1,...,a0∈κ

∫

p

δ(−mn̟l +

0∑

i=l+1

ai̟
i + r) dr

= qlδ(−mn̟l)

0∏

i=l+1

∑

ai∈κ

δ(ai̟
i)

∫

p

dr

=

{
0 if l ≤ −1, (since

∑
a0∈κ

δ(a0) = 0)

q−1δ(−mn) if l = 0.

Thus one has

(9.2) φ̃n(u) =

{
q−1δ(−un) if u ∈ O,

0 otherwise.

The computation of φ̃s is a bit more involved. From this point, assume u = m̟l

with m ∈ O×. We compute using (8.3),

φ̃s(u) =

∫

k\O

sgnτ (x−1)|x|−1δ(−ux) dx

=

∑

k<l

qk sgnτ (−u−1)

∫

̟kO×

sgnτ (x−1)δ(x) dx.
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For τ = ε, sgnτ (x−1) = (−1)k on̟kO×. Thus the summand for each k in the range
1 ≤ k < l becomes qk(−1)l(−1)k(q−k − q−k−1) = (−1)k+l(1 − q−1).

On the other hand, for τ ∈ {̟, ε̟}, the character sgnτ takes each of the values

±1 half of the time, and so the integral for k ≥ 1 is zero.

For those terms with k ≤ 0, we make the change of variables x = ak̟
k+· · ·+a0+r,

with r ∈ p, ai ∈ κ, and the first coefficient ak 6= 0. Then sgnτ (x) = sgnτ (ak̟
k), and

δ(x) =
∏0

i=k δ(ai̟
i).

If k ≤ −1, one has, as before, a factor equal to
∑

a0∈κ
δ(a0) = 0, and the sum-

mand is identically zero. When k = 0, however, the corresponding summand is
sgnτ (−u−1)

∑
a0∈κ×

sgnτ (a0)δ(a0)
∫

p
dr. If τ = ε, sgnτ (a0) = 1, so the summand

equals (−1)l(−1)q−1
= (−1)l+1q−1. When τ ∈ {̟, ε̟}, the summand may be

rewritten as q−1 sgnτ (−u)(σ1 − σε) (see (9.1)).

In summary (with u = m̟l) we have for sgnε:

(9.3) φ̃s(u) =





0 if l ≤ 0,

q−1 if l ≥ 1, l odd,

−1 if l ≥ 1, l even.

For sgnτ with τ 6= ε, we have

(9.4) φ̃s(u) =

{
0 if l ≤ 0,

q−1 sgnτ (−u)(σ1 − σε) if l ≥ 1.

We are now ready to prove the theorem. Let τ = ε; then sgnε ≡ 1 on O×. The

trivial subrepresentation in Ind
SL(2,κ)
B

1 has as basis the function
∑

n fn + fs taking

value 1 everywhere. Set φ1 =
∑

n φn + φs. By (9.2) and (9.3), we have φ̃1(u) =∑
n φ̃n(u) + φ̃s(u) = 1 + q−1 if l ≥ 1 is odd and equals zero otherwise. Hence

φ̃1 ∈ H−.

On the other hand, a basis for the Steinberg representation is given by {ψn =

φn − φs | n ∈ κ}. Evaluating each ψ̃n at u ∈ k× yields, by (9.2) and (9.3),

ψ̃n(u) =





q−1δ(−un) if u ∈ O×,

q−1 + 1 if u ∈ p2l, l ≥ 1,

0 otherwise.

Hence St corresponds to a representation in H+.

Now suppose τ is equal to either ̟ or ε̟. Then V K1

sgnτ
= V K1

sgn , which decom-

poses into two inequivalent subrepresentations under SL(2, κ). We construct explicit
bases for these subrepresentations of ResK IndG

B sgnτ and compute the values of their
characters on g =

[
1 1
0 1

]
to distinguish them.

Using (9.2) and (9.4), we construct bases for the K-invariant subspaces of V K1 (in
the L2 realization) by considering their intersections with the inverse images of H±
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under Fourier transform. For m ∈ κ∗, define hm
=

∑
n∈κ δ(mn)φn. Define also

h±
= c

∑
n∈κ φn ± φs, where (notation of (9.1) )

(9.5) c = q−1 sgnτ (−1)(σ1 − σε).

One can easily see that h̃± ∈ H± and h̃m ∈ Hsgnτ (m). These clearly form bases for

the corresponding irreducible subspaces of V K1 (or equivalently of Ind
SL(2,κ)
B

sgnτ );

denote these subspaces H̃+ and H̃−.
We need to determine the character of, say, H̃+, that is, the trace of g on this

subspace. Compute this as follows. First note, using (8.2), that

g · φ1 = φs,

g · φs = sgnτ (−1)φ−1,

g · φn = sgnτ (1 − n)φn(1−n)−1 for n 6= 1.

The “reverse” change of variables is given by

φn = q−1
∑

m∈κ×

δ(−mn)hm + (2cq)−1(h+ + h−)

and φs =
1
2
(h+ −h−). This yields, with some effort, that the trace of g on H̃+ is given

by

tr(g)
∣∣

H̃+
= q−1

∑

m∈κ×2

∑

n∈κ\{1}

sgnτ (1 − n)δ(−mn2(1 − n)−1)

+ 2−1c + (2cq)−1 sgnτ (−1).

We evaluate this in several stages. First note that since (σ1 − σε)
2

= sgn(−1)q [DM,
Ch. 15.9], the sum of the last two terms simplifies to q−1 sgnτ (−1)(σ1 −σε) = c (see

(9.5) ). For the rest, let us compute the sum over m for each n.
When n = 0, we have q−1

∑
m∈κ×2 δ(0) = (q + 1)(2q)−1. For the (q− 3)/2 values

of n such that sgnτ (1−n) = 1 and n 6= 0, we have q−1
∑

m∈κ×2 δ(−mn2(1−n)−1) =

q−1σ−1, where σ−1 = σ1 if sgnτ (−1) = 1 and σ−1 = σε otherwise. Similarly, for

the (q−1)/2 values of n such that sgnτ (1−n) = −1, the sum evaluates to −q−1σ−ε.
Hence

tr(g)
∣∣

H̃+
= q−1

( q − 1

2
+

q − 3

2
σ−1 −

q − 1

2
σ−ε + sgnτ (−1)(σ1 − σε)

)
.

We simplify, using that σ1 + σε = −1, to obtain

tr(g)
∣∣

H̃+
=

{
−σε = Ξ

−
sgn (g) if sgnτ (−1) = 1,

−σ1 = Ξ
+
sgn (g) if sgnτ (−1) = −1,

as was required to show. The case of H̃− is similar.
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The representations ResK IndG
B χ decompose into a direct sum of their K1-fixed

vectors and pairs of irreducible K-representations by Proposition 4.4. These K-re-

presentations are explicitly determined in Theorem 7.4. Let χ = sgnτ ; then m = 1.
As discussed in Remark 7.5, we may without loss of generality choose the parameters
γi to equal zero. Then

Tn = T0,n = T1,n =

{
t =

[
a b

0 a

]
: a ∈ ±1, b ∈ O/pn

}
,

and the characters ρi of Tn are given simply by ρi(t) = sgnτ (a) (= sgnτ (t), upon
identification of Tn with a subgroup of Bn). Let us write X1 =

[
0 1
0 0

]
and Xε =

[
0 ε
0 0

]

for representatives of these nilpotent K-orbits in g2k+1, and x1, xε for the correspond-
ing elements in gk. It follows that the irreducible K-representations occuring in
IndG

B sgnτ are for all n > 1, Dn(sgnτ , x1) and Dn(sgnτ , xε). As they are in fact in-
dependent of the choice of additive character η (primitive modulo pk) defining ηx

and ηx,ξ , we may without loss of generality define η via η(a) = δ(̟−k+1a) for all
a ∈ O/pk.

The following theorem identifies the irreducible component of IndG
B sgnτ in which

each of these irreducible K-representations lies.

Theorem 9.2 Given the decomposition IndG
B sgnτ = H+ ⊕ H− (Section 8) and the

decomposition of IndG
B sgnτ into irreducible representations of K as above, we have the

following:

• for τ = ε, we have D2k(sgnε, xt ) ⊆ H− and D2k+1(sgnε, xt ) ⊆ H+ for all k ≥ 1;
• for τ 6= ε such that sgnτ (̟) = 1, we have that Dn(sgnτ , x1) is in H+ and that

Dn(sgnτ , xε) is in H− for all n ≥ 2; and
• for τ 6= ε such that sgnτ (̟) = −1, we have that D2k(sgnτ , xε) and D2k+1(sgnτ , x1)

are in H+, whereas D2k(sgnτ , x1) and D2k+1(sgnτ , xε) are in H−, for all k ≥ 1.

Proof We first outline our proof. Let h be an element of Dn(sgnτ , xt ) for some

n > 1, t ∈ {1, ε}. Thus h can be viewed as a function from K to C, trivial on Kn, and
transforming on the left by the character sgnτ ⊗ηxt

(respectively, sgnτ ⊗ηxt ,ξ) of the
subgroup T2kNk (as in (5.3) ) (respectively, T2k+1Ik (as in (5.9))). Let us write J = Nk

or Ik, as the case may be. (More precisely, it is Tn JKn, not Tn J, which is the subgroup

of K; let us write Tn J for both and abuse notation by writing ηxt
for ηxt ,ξ , even though

the latter does depend on ξ.)
The proof of Theorem 7.4 (and Remark 7.5) gave an explicit intertwining operator

from Dn(sgnτ , xt ) to IndK
B∩K sgnτ . Specifically, set

F ∈ H = H(B ∩ K\K/Tn J, sgnτ , sgnτ ⊗ηxt
)

to be a function with support on the identity double coset. Then the intertwining

operator L is given by Lh = F ∗ h, where ∗ denotes convolution. As in the proof
of Theorem 9.1, one can extend Lh to an element of IndG

B sgnτ and then identify it
with an element of the L2 realization. Applying the Fourier transform then yields a
function which by invariance lies exactly in one of H+ or H−.
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Let us begin. For h ∈ Dn(sgnτ ,Xt ), and F as above with F( 1 0
0 1 ) = 1, Lh(k) =

(F ∗ h)(k) =
∫

K
F(g)h(g−1k) dg. Since F is supported on B ∩ K · Tn J = (B ∩ K) J,

there exists some nonzero constants c, c ′ such that

Lh(k) = c

∫

b∈B∩K

∫

n∈ J

F(bn)h(n−1b−1k) dn db

= c

∫

B∩K

∫

J

sgnτ (b)ηxt
(n)ηxt

(n−1)h(b−1k) dn db

= c ′
∫

B∩K

sgnτ (b)h(b−1k) db.

The function TLh : k → C in the L2 realization of IndG
B sgnτ corresponding to Lh is

given by (cf. (8.1) )

TLh(x) =

{
Lh

(
1 0
x 1

)
if x ∈ O, and

sgnτ (x)|x|−1Lh
(

0 −1

1 x−1

)
if x /∈ O.

Let us now fix a choice of h; namely, choose h ∈ Dn(sgnτ , xt ) such that h( 1 0
0 1 ) = 1

and such that h is supported on the coset Tn J. We wish to take the Fourier transform
(8.3) of TLh for this h.

Since, for x /∈ O,

b−1k =

[
a−1 −c

0 a

] [
0 −1
1 x−1

]
=

[
c −a + cx−1

a−1 a−1x−1

]
/∈ Tn J,

it follows that h(b−1k) = 0 for all b ∈ B ∩ K for this k. Hence TLh(x) = 0 for x /∈ O

and we have

T̃Lh(u) =

∫

O

TLh(x)δ(−ux) dx

= c ′
∫

O

∫

B∩K

sgnτ (b)h

(
b−1

[
1 0
x 1

])
δ(−ux) db dx

= c ′ ′
∫

x∈O

∫

a∈O×

∫

c∈O

sgnτ (a)h

([
a−1 −c

0 a

] [
1 0

x 1

])
δ(−ux) dc da dx

= c ′ ′
∫

O

∫

O×

∫

O

sgnτ (a)h

(
a−1 − cx −c

ax a

)
δ(−ux) dc da dx.

By the choice of h, this last integrand is nonzero only if a ∈ ±1+pk and x ∈ pk (when
n = 2k) or x ∈ pk+1 (when n = 2k + 1). Writing l = k if n = 2k and l = k + 1 if

n = 2k + 1, we evaluate (for a ∈ α + pk and x ∈ pl/pn):

h

(
a−1 − cx −c

ax a

)
= h

([
α ∗
0 α

] [
∗ ∗
x ∗

])
= sgnτ (a)δ(xt̟−n+1).
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Thus we have

T̃Lh(u) = c ′ ′
∫

pl

∫

±1+pk

∫

O

sgnτ (a)2δ(xt̟−l−k+1)δ(−ux) dc da dx

= c ′ ′ ′
∫

pl

δ(x(t̟−l−k+1 − u)) dx.

This integral is nonzero if and only if u ≡ t̟1−l−k mod p1−l. Thus T̃Lh is sup-

ported on the set {u | sgnτ (u) = sgnτ (t̟l+k−1)} (with t ∈ {1, ε} and l ∈ {k, k + 1}
as fixed above). The theorem follows.

Corollary 9.3 Given the decomposition IndG
B sgnτ = H+ ⊕ H− and the decompo-

sition into K̃-irreducibles of ResK̃ IndG
B sgnτ as in Theorems 7.2 and 7.4, we have the

following:

• for τ = ε, 1 ⊆ H+, St ⊆ H−, D̃2k(sgnε, xt̟−1 ) ⊆ H+ and D̃2k+1(sgnε, xt̟−1 , ξ) ⊆
H− for all k ≥ 1, t ∈ {1, ε};

• for τ 6= ε: if sgnτ (̟) = 1, then Ξ
± ⊆ H∓,

D̃2k(sgnτ , x̟−1 ) and D̃2k+1(sgnτ , x̟−1 , ξ)

are in H+ and D̃2k(sgnτ , xε̟−1 ) and D̃2k+1(sgnτ , xε̟−1 , ξ) are in H−, for all k ≥ 1;
• for τ 6= ε: if sgnτ (̟) = −1, then

Ξ
± ⊆ H± and D̃2k(sgnτ , x̟−1 ) and D̃2k+1(sgnτ , xε̟−1 , ξ)

are in H+, whereas D̃2k(sgnτ , xε̟−1 ) and D̃2k+1(sgnτ , x̟−1 , ξ) are in H−, for all

k ≥ 1.

Proof Recall from Lemma 3.1 the automorphism Υ of IndG
B χ, which intertwines

πχ and πωχ . Since the subspaces H+ and H− are invariant under both actions of G, to

determine the decomposition of H+ and H− under K̃, it suffices by Lemma 3.1 and
Theorems 9.1 and 9.2 to determine when ΥH+

= H+ and when ΥH+
= H−. Then

the explicit identification follows from Proposition 6.1 and Corollary 6.4.

We use the notation of the proof of Theorem 9.1. For n ∈ κ ∪ {s}, we compute

Υφn(x) = ΥFn

(
1 0
x 1

)
= Fn

(
0 −1
1 x̟−1

)

=

{
fn

(
0 −1
1 0

)
if x ∈ p2,

sgnτ (x−1̟)|x−1̟| fn

(
1 0

x−1̟ 1

)
if x /∈ p2.

Suppose first that τ = ε. Then φ1 =
∑

n∈κ∪{s} φn ∈ H− and sgnτ (m̟k) =

(−1)k if m ∈ O×. Thus Υφ1(x) = 1 if x ∈ p2 and for any x ∈ m̟k + pk+1 with
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k ≤ 1, Υφ1(x) = (−1)k−1qk−1. Consequently,

Υ̃φ1(u) =

∫

k

Υφ1(x)δ(−ux) dx

=

∫

p2

δ(−ux) dx +
∑

k≤1

(−1)k−1qk−1

∫

̟kO×

δ(−ux) dx.

We evaluate this as before and see that Υ̃φ1(u) is nonzero only for sgnε(u) = 1.
Hence Υφ1 ∈ H+, and so necessarily ΥH−

= H+ for τ = ε.
Now suppose that τ 6= ε. Then h+

= c
∑

n∈κ φn + φs ∈ H+. A similar calculation

yields that Υ̃h+(u) is nonzero only when sgnτ (−u̟) = 1. Thus ΥH+
= H+ when

sgnτ (−̟) = 1, and ΥH+
= H− otherwise.
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