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Abstract

If h is a homomorphism of an ^"-semigroup onto an ^"-semigroup 5", then
h induces a homomorphism ft of the translation semigroup A(5) of S into
ACS') of 5". We will study the relations between the structures of S, S'
and A(S), A(S)', and will introduce the specialized concepts of ^"-semi-
groups S. In particular, we will be interested in power-joined steady or
endless ./f-semigroups. Finally, we will consider admissibility of torsion
abelian groups, that is, consider what torsion abelian group can be a
structure group of a power-joined steady Jf-semigroup.

1. Introduction

By an ./f-semigroup we mean a commutative cancellative archimedean semigroup
without idempotent. Petrich (1973) introduced the concept of steadiness of
^"-semigroups, that is, an ./f-semigroup is called steady if it cannot be embedded
into another ^"-semigroup as a proper ideal. The author (1973) proved that a
finitely generated ^F-semigroup is steady if and only if it is isomorphic to the
direct product of a finite abelian group and the positive integer semigroup under
addition. The study of steadiness or similar concepts of ^"-semigroups is of
significance in the study of extensions of ̂ "-semigroups to commutative cancellative
semigroups. Accordingly the problem is related to their translation semigroups.

In this paper we will investigate the relation between ^"-semigroups S and
their translation semigroups MS), and will specialize 5 by means of MS) in the
natural ways, so that we will introduce a few concepts of ^"-semigroups, steadi-
ness, endlessness, permutation-freeness (denoted by "per-free") and middle-
freeness. In Section 4, we will prove that every ^"-semigroup is a spined product
of a per-free ./^-semigroup and an abelian group. We will discuss how the
•/T-homomorphisms of ^"-semigroups affect the homomorphisms of their trans-
lation semigroups. We are most interested in steady or endless ^"-semigroups, in
particular, those in the power-joined case. We will show that every power-joined
steady ^"-semigroup is a spined product of a power-joined endless ^"-semigroup
and a torsion abelian group. Therefore the study of steady ^"-semigroups is
reduced to the study of endless ^-semigroups. However, the structure of endless
^"-semigroups is too complicated to be simply described even if power-joinedness
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is assumed. Really we shall have the large class of power-joined endless Jf-
semigroups, but it will be interesting that every ^"-semigroup can be embedded
into an endless ^"-semigroup. Finally, we will consider "admissibility" of torsion
abelian groups. What torsion abelian group can be a structure group of some
endless ̂ "-semigroup ?

2. Preliminaries for ^"-semigroups

Throughout this paper, Z denotes the group of all integers, Z+ the semigroup
of all positive integers, Z\ the semigroup of all non-negative integers, R+ the
semigroup of all positive real numbers, R+ the semigroup of all positive rational
numbers. The operation in each is addition.

The following is due to the author (1957) (also see Petrich (1973a) and Clifford
and Preston (1961)).

PROPOSITION 2.1. Let G be an abelian group and I: Gx.G-*Z°+ be a function
satisfying

(2.1.1) /(<*,jS) = /(ft a) for all a, £ e G.

(2.1.2) /(<*,/3) + /(ajS,y) = /(a,ft/) +/(fty) for all a, ft y eG.

(2.1.3) 7(e, a) = 1 (e being the identity of G) for all oceG.

(2.1.4) For each <xeG there is an meZ+ such that /(a, am)>0.

Let S = {(*, a): x eZ\, a e G}. Define the operation by

Then S is an ^-semigroup, denoted by S = (G; I). Every ^V-semigroup can be
obtained in this manner.

A function /: GxG->Z°+ which satisfies (2.1.1) through (2.1.4) is called an
./-function on G.

Let S be an ./F-semigroup and let aeS. Define a relation pa on S by xpay if
and only if amx = any for some m, n eZ+. Then pa is a congruence and Ga = S/pa

is an abelian group and there exists an ./-function, Ia: GaxGa-*Z<\_ such that
S^(Ga; Ia). The group Ga is called the structure group of S with respect to a.
The element a is called a standard element of the representation. Every element of
S is expressed as anp where p is a prime element relative to a, namely, p $ aS; and
there is a one-to-one correspondence between the prime elements relative to a and
the elements of Ga.

PROPOSITION 2.2 (the author (1974a)). Let <p; <7->R+ be a function satisfying

(2.2.1) <p(e) =l,ethe identity ofG.
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(2.2.2) 9?(«)+?J(j8)-?>(aj3)GZ«./Or all «,/3eG.

(2.2.3) For every aeG, np(oi)—<p(<xn)eZ+for some neZ+.

Define ((G; <p)) = {((x,a)): jceR+,jt—<p(<x)eZ\, txeG) with a binary operation

Let

(2.2.4) /(<*, p) = p(a) + <p($) - <p(<xp).

Then I satisfies (2.1.1) through (2.1.4), anrf(G; I)^((G; p))

(*, a) (-»•((* + ?<*)>«))•

(2.2.3) is equivalent to (2.2.3') below:

(2.2.3') For every <xeG,<p(a)+<p(a.m)-<p(<xm+1)>Ofor some meZ+.

The function <p which satisfies (2.2.1) through (2.2.3) is called a defining function
on G. Let S = (G; I). If we define /i: 5 -> R+ by A(JC, a) = r(x+?>(«)) where r is a
fixed element of R+ then h is a homomorphism of S into R+. Conversely if A is a
homomorphism of S into R+ and if we define <p by g?(a) = h(0, a)/h(0, e) where
(0, e) is the standard element of (G; I) and (0, a) is any prime element of (G; I)
relative to (0, e). Then <p satisfies (2.2.4). The existence of a homomorphism h of
S into R+ was proved by the author (1974) or Kobayashi (1973). If JJ is a defining
function on G, define 3&(<p) by @(<p) = {x+<p(<x): xeZ°+,oceG}. Then 0L{<p) is an
c/T-subsemigroup of R+. Proposition 2.2 says S = ((G; <p)) is isomorphic to a
subdirect product of 0t{<p) and G.

A semigroup 5 is called power-joined if, for every x, yeS, there are positive
integers m, n such that xm = yn.

See the following in Chrislock (1966,1969), Higgins (1969,1969a) and Sasaki and
Tamura (1971).

PROPOSITION 2.3. An ^V-semigroup S^ (Ga; Ia) is power-joined (finitely generated)
if and only ifGa is torsion (finite) for some aeS, equivalently for all aeS. A power-
joined (finitely generated) S is isomorphic to a subdirect product of a subsemigroup
ofR+(Z+) and a torsion (finite) abelian group. Given I, <p is determined by

(2.3.1) ?<«) = -£/(«,«*)
«i=l

where n is the order of ex. In particular ifG is finite,

Thus, if G is torsion, there is a one-to-one correspondence between / ' s and p's
on the same G; and if G is torsion, neither (2.1.4) nor (2.2.3) is required since each
one of these is automatically satisfied.
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Spirted products. Let A, B and C be semigroups. Let fx: A^-C and ft: B->C
be homomorphisms of A and B onto C respectively. Define S by

and define the binary operation in 5 by

(a,b)(c,d) = (ac,bd).

Then S is a semigroup. 5 is called a spined product of A and 5 with respect to
fufi and C, denoted by

A txi 5.

(See Kimura (1958) or Yamada (1962).) It is uniquely determined by fi,f2 and C
up to isomorphism. In other words, D = Acx3c.fuft B is the pull back in the
theory of categories. By a spined product D = A t x 5 we mean D = A M Q . , ^ ^

for some C,fx and/g-
See the following in books of universal algebra, for example Gratzer (1968).

PROPOSITION 2.4. Let S, Sx and S2 be semigroups. Then
S^ Sx x S2

O;h,h

for some semigroup C and some surjective homomorphisms fx: Sx -*• C andf2: S2 -*• C
if and only if there are congruences fa and p2 on S such that

(2.4.1) S/p^S^ S/p2zS2.

(2.4.2) px n p2 = i, i the equality relation.

(2.4.3) ft-P2 = Pa'PI-

PROPOSITION 2.5 (the author (1975)). Let A be an Jf-semigroup, B a commutative

cancellative archimedean semigroup and C a commutative cancellative semigroup
such that there exist surjective homomorphisms f: A ->C and g: B-+C. Then
A x c j , g B '5 an ^-semigroup.

3. Preliminaries for translations

Let S be a commutative cancellative semigroup, and Q(S) denote the quotient
group of S, that is, the group of quotients of S. Define «/Q(S) by

SQ(S) = {aeQ(S):aS<=S}.

JQ(S) is a subsemigroup of Q(S) containing S. ^(S) is called the idealizer of S
in Q(S). On the other hand, let A(5) denote the semigroup of translations of S,
and F(5) the semigroup of inner translations of S. See the definition of translation
in Clifford and Preston (1961). In this case, there is no distinction between left
and right translations, and A(S) is isomorphic to the translational hull of S.
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PROPOSITION 3.1.Let a sJQ{S). If Xa: S-> Sis definedby xXa = xa, then Xae A(S).
Every element ofA(S) is obtained in this manner. Under a\-+\a, SQ(S):zA(S) and
S s T(5). Hence A(S) is a commutative cancellative semigroup.

PROOF. Let A be a translation of S. Define A: Q(S) -+ Q(S) as follows. If x e Q(S),
x = y~xz where y,zeS, then xX = y~\zX). It can be shown that A is well defined,
it is a translation of Q{S) and extends A. However, we know that every translation
of Q(S) is inner, hence xX = xa for some fixed a e Q(S). Obviously a must satisfy

In particular, we consider A(5) of an ,/F-semigroup S = (G: I). By the author
(1970), Q(S) can be obtained as the abelian group extension of Z by G with respect
to the factor system/: GxG->Z defined by /(«,£) = / ( « , $ - 1 , that is, Q(S)
= ZxG with the following operation: for {m, a}, {n,/?}eZx G, let

{m, a} • {«, jS} = {m + n +/(«, j8), «£}.

5 can be embedded into Q(S) under (w, a)->{m+l,a}. Expressing each element
of <?Q(S) in terms of G and /, we obtain

PROPOSITION 3.2 (Dickinson, 1970; Hall, 1969, 1972). IfS = (G;I), then
A(S)^{[m, a]: m eZ°_, ae G, m+/(a, | ) > Ofor all^eG) where the binary operation
is defined by

[m, <x] [n,p\ =

)-l,foO /or (

From now on, we will identify A(5) with the semigroup of [m, a]'s above. Let
denote the archimedean component of A(5) containing F(5) and ^(S) the

archimedean component containing the identity translation. Y(S) is an ideal of
A(5), and @(S) is the group of units of A(5) which consists of permutation
translations of S.

PROPOSITION 3.3 (Dickinson, 1970; Hall, 1969, 1972). IfS = (G; I) then
= {[«,«]: in 6Z+, a eG},
= {AeA(S'): Xn<=T(S)for some neZ+},
= T(S) u {[0, a]: /(a, 0 > Ofor al!£eG and /(a, an) > 1 for some n eZ+},
= {[0, a]: /(«, 0 = 1 for all |eG},

A'OS) = A(S) \ (T(S) u ^(S)) = {[0, <*]: 7(a, £ > 0/or a// f e G,
/(a, a") = 1 for all n eZ+ and
/(a, i) > 1 for some $eG}.

The subsemigroups T(5) and ^(5) are MO/ empty, but the subset A'(S) could be
empty. T{S) andY(S) are ideals ofA(S).
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A(5) is the largest commutative cancellative semigroup which contains S1 as an
ideal in the following sense: If L2: S^-A(S) is the inclusion map and if/: S->Tis
an embedding of S into a commutative cancellative semigroup T and f(S) is an
ideal of T, then there is an embedding T: T->A(S) such that 4 = T/.

If A'(5) is not empty, we shall call each archimedean component of A'(S) a
middle component.

Now we introduce the following terminology by specializing the type of A(5).

DEFINITION 3.4. Let 5 be an ^-semigroup and s the identity map on S.

(3.4.1) S is steady if and only if T(S) = W(S).
(3.4.2) S is permutation-free (per-free) if and only if &(S) = {e}.
(3.4.3) S is middle-free (mid-free) if and only if A(S) = Y(S) u
(3.4.4) S is endless if and only if A(5) = T(S) u {e}.

Since A ( 5 ) ^ fQ{S), we have

PROPOSITION 3.5. Let S be an ^f-semigroup.

(3.5.1) The statements (3.5.1.1) to (3.5.1.4) are equivalent:
(3.5.1.1) Sis steady.
(3.5.1.2) IfceJQ{S) andc*eS, then ceS.
(3.5.1.3) IfceJQ(S) andcneSfor someneZ+, then ceS.
(3.5.1.4) IfceJQ{S)\S, then cneJQ(S)\Sfor allneZ+.

(3.5.2) S is per-free if and only if c eJQ(S) and cS = S imply c = 1.
(3.5.3) S is mid-free if and only ifce^Q(S) implies cS = S or cneSfor some n.
(3.5.4) S is endless if and only if ceJQ(S) and c^ 1 imply ceS.

Proposition 3.5 can be restated in terms of elements of S, for example (3.5.1.2)
says: aSzbS and a2eb2S imply aebS. The proof of the equivalence of the first
two of (3.5.1) is due to Petrich (1973). It is easy to show that the last three of
(3.5.1) are equivalent. To prove (3.5.2), use the fact that a translation of S is a
bijection if and only if it is surjective.

By Proposition 3.3 we have

PROPOSITION 3.6. Let S = (G; I).

(3.6.1) S is steady if and only if I(a, £) > Ofor all geG implies /(a, a") = 1 for all
neZ+.
(3.6.2) S is per-free if and only ifl(cx, £)=\ for all £ e G implies a = s.
(3.6.3) S is middle-free if and only ifl(a, £) > Ofor all £ e G implies /(a, an) > 1 for
some neZ+or /(a, £) = 1 for all $eG.
(3.6.4) S is endless if and only if /(a, £) > 0 for all £eG implies a = s, that is, for
each a^e, /(a, 17) = Ofor some rjeG.

Describing (3.6.1) and (3.6.4) in terms of defining functions <p, we have
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PROPOSITION 3.7.

(3.7.1) S = ((G; <p)) is steady if and only if, for each aeG, <p(oc) + <p($)-<p(oc^)>0

for all £ e G implies <p(<x) + 9?(am) - <p(<xm+v) = 1 for all m eZ+.

(3.7.2) S — ((G; <p)) is endless if and only if for each a # e, there is £eG such that

4. Structures

Let S = (G; / ) = ((G; <p)) be an ^"-semigroup. Define K by

K= {aeG: /(a, £) = 1 for all $eG}.

The # is a subgroup of G since ^(S) ^ K under [0, a] -* a by Proposition 3.3.

LEMMA 4.1. Let &17, £, AeG, anrf to 5 = (G; / ) = ((G; p)). I%en £=ij (mod isT)
i, 0 = /(^, O/o/- all £eG. /« ?Aw ca^e, if k=n and A= ? (mod K),

PROOF. Assume ^si j (mod.K). We prove that if *eK, I(<x£, 0 = I(£, 0- First
/(a, £)+/(a& 0 = / (a ,^0 + /(f, 0 for all £eG. Since /(«, f) = /(a, ^0 = 1, we
have /(«£, 0 = K£> 0 for all JeG. As -q = a£ for some oceK, we have done the
necessity. Conversely assume /(£, )̂ = /(ij, ̂ ) for all £ e G. Now

for all JeG. Then I(v, 0 = /(f, 0 implies 7(f"1ij,^) = /(f-1i?,f0- Since £ is
arbitrary, we have

/(f-N. 10 = /(f-S.*) = 1 for a
Therefore ^ijeK, that is, f=») (modii:).

THEOREM 4.2. Lef S be a commutative semigroup. S is an jV-semigroup if and
only if S is isomorphic to a spined product of a per-free *Af-semigroup S * and an
abelian group G.

PROOF. Assume S = (G; I). Let G * = GjK where K is defined at the beginning
of this section; and let g: G^~G* be the natural homomorphism: ijg ~ £*, £eG.
Define /* : G*xG*-*Z% by

(4.2.1) /*(<**, j3*) = /(<*, ,8).

/* is well defined because of Lemma 4.1. It is easy to see that / * satisfies (2.1.1)
through (2.1.4). Let S* = (G*;I*). Thus we have the ^T-semigroup S*. If
/*(«*, £*) = 1 for all f e G * , then, by the definition of/*, /(a, £) = 1 for all £eG,
hence ae^T, equivalently, a* = s* where e* is the identity element of G*. Therefore
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S * is per-free. An element of S is denoted by (m, £), meZ°+, £eG; an element of
S* is denoted by (n,r)*) neZ°+, v*eG*. Define h: S-+S* by

Obviously h is onto, and also we have
((m, i) («, r,)) h = (m+n+I(€, v),

= (m,$*)(n,r)*)

Thus h is a homomorphism of S onto S *.
Now define k: S^G and/: S*-*G* by

(m,£)k = ij, (m, ??*)/= 17*, respectively.
Then fc and/are surjective homomorphisms.

Let />, T and a denote the congruences on S induced by the homomorphisms
h, k and kg, respectively, that is,

(m, $) p(n, rf) if and only if m — n and $=rj (mod K).
(m, £) T(W, 17) if and only if £ — 17.
(m, £) CT(M, 17) if and only if £= 77 (mod#).

Then p n r = i. To show p-r = a, assume (m, £)p-r(l, £)• Then (w, £)/>(«, 17) T(/, 0
implies m = n, and ^=17 = £ by definition, so ^= t, (mod^T), hence (m, £)CT(A £)•
Thus /9-TSCT. Assume (m, g) o(l, £). By definition, £s£(mod.K). We get
(m, £)p(w, 0T(A D whence a^p-r. We have shown p-r = a. Immediately we can
show T p = a. By Proposition 2.4, 5 is isomorphic to the spined product of 5 *
and G with respect t o / : S*^G* and g: G-+G*.

G*J,g

The converse is due to Proposition 2.5.

We want to observe a relation between A(S) and A(S') in the most general case.
Let 5 and 5 ' be ^"-semigroups, h: S-+S' a homomorphism of S onto S', that
is S' = Sh, and H the extension of h to a homomorphism of Q(S) onto (?(£• ')•
(/i is defined by {xy^h = {xh){yh)~x if x,yeS.) Let iV be the kernel of h. Then
SnN= 0. Every homomorphism h of S onto 5 ' is determined by a subgroup iV
of Q(S) such that SnN=0 (the author 1973a). It is easy to see that SN is an
archimedean subsemigroup of Q(S). Since SnN=0 implies SNnN = 0, SiV
has no idempotent. Thus SN is an ./f -semigroup. It is easy to see Q(S) = Q(SN).
Let T:Q(S)^Q(SN) denote the identity map of Q(S). Let 4: 5->g(S),
1̂ : S'^-Q(S') and tj: SN-*Q(SN) be the inclusion mappings in the natural way.
Let ht: S->SN be the embedding defined by x\->xe where e is the identity of N.
Given h, define h2: SN-+S' by (xm)h2 = xh where xeS1, meN. h2 is well defined
and a surjective homomorphism. Elements of A(5), A(S') and A(SN) are denoted
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by A, A' and A" respectively. However, by Proposition 3.1, every A of A(5) is given
by xX = xa, xeS where ae<fQ(S). The A associated with a is denoted by Aa.
Similarly A' associated with b'eJQ{S') and A" associated with c"eJQ(SN) are
respectively denoted by X'b>, where b'eJQ(S'), X"c,, where c" eJQ(SN). Since
S^SN, JQ{S)^JQ{SN). So let hx: A(S)^A(SN) be the inclusion map, that is,
Kh = A^for AeA(S).

Let t2: S^A(S), i2: S'->A(S') and i£: SN->A(SN) be the embeddings, that is
ia, i2 and i\ are the isomorphisms of S, 5" and SJV onto T(5), V(S') and T(5iV;

= Xa(aeS), b'i'2 = X'b,(b'eS'), c" S2 = X"c,, (c" e SN) respectively.denned by
Let F: A(S)^L, F': A(S')-+L' and F": A{SN)^L" be the greatest semilattice
homomorphisms.

In the diagram below, >-> means "one-to-one", - » "onto" and >-» "one-to-one,
onto". We will frequently identify JQ(S) with A(5). Therefore, if X<^Q(S)
A(S)- Xcan be considered.

Let A be a semigroup, B a semigroup with idempotent. A homomorphism / o
A into B is called trivial if | Af\ = 1.

THEOREM 4.3. Given a homomorphism h of an Jf -semigroup S onto an J/ -semi-
group S', there exist a unique nontrivial homomorphism h of A(S) into A(5"),
unique homomorphism /i2 of A(SN) onto A(S'), unique nontrivial homomorphism
H and H-^ ofL into L' and L", respectively, and an isomorphism H2 which is a unique
homomorphism ofL" onto L', such that
(4.3.0) A(S)hc(A(SN))h2 = A(S')

and for each AeA(S), the following diagrams are commutative.

Q(S)——»e(S') s—l-L^~>s> A(sy h ' — ' H

Q(s%
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PROOF. First we show JQ{S))h^JQ{S') where S' = Sh. Let aeSQ(S). By
definition, aS^S and then {ah~)S' = (ah")(Sh) = (aS)H^Sh = Sh = S', hence
ah~eJQ{S'). As stated before the theorem, every A of A(S) is given by Ao, ae«/e(S).

Given h, define h: A(S)^A(S') by

To prove (4.3.0) it is sufficient to show

(4.3.0') G

but we have shown

(4.3.1)

Second, we want to show

(4.3.2) Q Q

Let b'<=J?Q(S'), b' = bh" for some beQ(S). By definition, {bx)h = (bh)(xh~)eSh~
for all xeS1. It follows that bxeSN and bxmeSN for all xeS1, all meN; then
beSQ{SN), hence V e(JQ(SN))h We have (4.3.2).

Next, we want to prove

[4.3.3) (SQ(SN)) tests').
ilecall A2: SN->S' is a homomorphism of S7V onto S ' and so h2 can be extended
to K2: Q(SN)^Q(S'). By (4.3.1) we have JQ(SN))h2<^JQ((SN)h£. However,
QiSN) = g(S) and we see h\ = h&s follows: Let aeQ(SN) = Q(S),

a = (XTM) {yn)~1 = zu~x

where Jf,j,z,ueS, m,neN. Then

a^2 = {xm)h2-(jjm)h£-i = {xh)(yh)-x = {zh)(uhyx = a£

for all aeg(S) , hence h2 = Tt. Also it is easy to see (SN)h2 = Sh = S'. Therefore
we have (4.3.3). Combining (4.3.1), (4.3.2) and (4.3.3), we get (4.3.0'). As h was
defined from h, we define h2: A(SN)^-A(S') from h2 as follows:

Since ch"2 = ch~,

Kh = Kn, ceSQ(SN).

We can easily see that h2 is onto. Consequently (4.3.0) has been proved.
Next we show the commutativity of the diagrams. First it is obvious that

Vi = h". If xeS, xhrh2 = {xe)h2 — xh where e is the identity of N, hence hxhz = h.
For all xeS and all ae^Q{S), A, ,^^ = X"ah2 = A^ = Xah, hence hxh2 = A. For
jreS1, xt{i = xt = x = xe = xhx = xhx<![,hence t1r = A1iJ. For xmeSN, xeS,
meN, (xm)i"Ji = (xm)h~ = xh = xhi[ = (xm)h24> hence ijh~ = A24. Let xeS,
aeJQ(S). Then xAaA1 = (x\a)e = xAa = (^e) A£ = (xh^)(Xah^, hence
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Let aeJQ(S). IfxeSandmeN,

Xah^h2 = (xm)A"ah2 = (xma)h2 = ((xa)m)h2 = {xa)h
= (xa)K = (xR)(aK) = (xh) yal = (xm)h2-(Xah).

Thus (\ahjhz = h2-(Aah). For aeS^SN,

<HK =Kh = K = ai\ = (ae)i"2 = ahxi2

whence i%hx = hxi2. Let aeS, neN,

(anKh, = X"anhz = AJ^x, = X'lm)l = X'al = X'ah = (aA)t; = ( )

Hence 1^2 = ̂ 2'4- Consider the greatest semilattice decompositions:

MS) = U Aa(S), A(5iV) = U AA(SA0, A(S0 = U Ar(S'),
«EI Ae£" yei'

where Aa(5), A^SN) and Ar(5") are archimedean components, in other words,
if AeA(S), AeAAi,(S); if A"eA(5^), A'eA^^SiV); if A'eA(S'), A'eA^(S').
Recall hx is the inclusion. Since Aa(S) is archimedean for each aeL,
(Aa(S))h^Afi(SN) for some J8GL". Define HX:L->L" by ai^ = j8, that is,

A ) . For a ^ e l , we have {A^S^h^ A^ia^Ri(SN) and

(SiV),
hence At^^^CSiV) = A(<XlBl)iatBl)(SN) which implies
Thus i7x is a homomorphism of Z, into L". Let AeA(,S). Then A e A ^ S ) and
(AAFOS1)) * £ AAFJfi(5iV) but A/̂  = A and A^ = A e AXF.(SN), whence FE^h^F ".
Now ^ 2 ^ ' : A(SN)-»L' is a semilattice homomorphism of A(SN). Since F":
A(5JV)->Z," is greatest, there is a homomorphism f/2:L"-»L' such that
/""H2 = h2F'. Of course i / is defined by H=EXE2. (The commutativity of the
remaining parts immediately follows: for example, i2h = M2 is a consequence of
h = hxh2, i2hx = hxi."2 and i.\h2 = A2t2.) Thus the commutativity has been proved.

We have to show E2 is an isomorphism. Recall H2 = !i, A(SN)h2 = A(S"),
(./Q(SAO£ = ./Q0S") and N^&(SN)<=A(SN). We see that if AeA/SW), then
XN^Afi(SN), thus Ap(SN) is a union of N-cosets for each j8eL". Let
2̂,/? = ^AI ApiSN). Then /i2jA maps Afi(SN) onto some A^S"), and each Ay(5'),

ysL", is obtained as an image of A^(SN). Hence E2: L"-»L' is one-to-one.
It remains to prove the uniqueness of h2, h, Hlt E2 and H. Suppose

h2: A{SN)^>A(S'), h: A(S)^A(S'), satisfy:

For all aeSN, \"Ji2 = ai2h2 = ah2i'2 = ai2h2 = X'J^. Let ceJQ(SN), c = ab'1,
a,beSN. Since SQ(SN)z A(SN) under z\-> A"z, cb = a implies Â AJ = Â . Take the
homomorphic images under h2 and h2, then
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but Kh2 = Kn2 = Kh=Kh=_Kh = Kz, Kh = K% = KK since A(s') is
cancellative, we have X"ch2 = X"ch2 for all ce<fQ{SN), that is, A2 = h2. Accordingly
h = hji2 = h-Ji?. = h. Suppose H'^. L-»L", H'2:L"^>L' and H': L-+>L' satisfy
H[H'2 = H', FH[ = hxF", F"H'2 = h2F'. Since F and F" are onto, FH[ = Fi^
implies H'X = HX; F"H2 = F"/f2 implies H'2 = H2; hence H=H'. The uniqueness
has been shown.

Since T(5) and T(S") are the archimedean ideal components of A(5) and A(S")
respectively, 0F(5))AsT(5"). Since ^(S) and ^(5") are the greatest subgroups
of A(5) and A(S'), respectively, (^(S))/(£^(S"). The nontrivality of the homo-
morphisms immediately follows from this fact. The proof of the theorem has been
completed.

COROLLARY 4.4. The following are equivalent:
(4.4.1) N<=
(4.4.2) N^
(4.4.3) A(S) = A(SN).
(4.4.4) hx is onto.

COROLLARY 4.5. h is onto if and only if A(S)N = A(SN).

PROOF. Assume h is onto. Then (JQ{S)) K = JQ(S'), hence (SQ{S)) h = (SQ(SN)) h
by (4.3.0'). It follows that JQ(S)N = JQ(SN)N. But, since N^JQ{SN), we have
JQ{S)N = JQ(SN). Conversely if JQ(S) N = JQ(SN), then

(SQ(S))h = (JQ{SN))K = JQ(S'),

hence h is onto.
Let A be a commutative semigroup. We define a quasi-order || on A as follows:

;c||y if and only if xz = ym for some zeA and some m eZ+.

Let 5 be a subsemigroup of A. B is called ||-cofinal in A if, for every aeA, there
are b,ceB such that 61|a and a\\c.

COROLLARY 4.6. The following are equivalent:
(4.6.1) A(5) w \\-cofinal in A(SN).
(4.6.2) # ! is onto.
(4.6.3) if is onto.

COROLLARY 4.7. The following are equivalent:
(4.7.1) Ht is one-to-one.
(4.7.2) H is one-to-one.
(4.7.3) For X,fieA(S), Xmefi-A(SN) and [xneA-A(SN) for some m,neZ+

imply X.kEfi-A(S) and file A- A(S) for some k, leZ+.
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COROLLARY 4.8. IfN^A(S), then H is an isomorphism ofL onto L'.
Returning to Theorem 4.2, the ft has

ker/z = {(0,a): oceK} = &(S).

By Corollary 4.8, A(5) and A(S*) have the isomorphic greatest semilattice
homomorphic images. For example, S is mid-free if and only if S * is mid-free.

We give another kind of corollary to Theorem 4.3.

COROLLARY 4.9. If S is an ^V-semigroup and S is an ideal of a commutative semi-
group T, then a homomorphism h of S onto an JV-semigroup S' can be extended
to a homomorphism h' of T onto a semigroup 7" where S' is an ideal ofT'.

This corollary can be proved by using h • \'a% = Xa-h.

EXAMPLE 4.10. Let S = {(x,y): x,yeZ+,x+y^3} with usual addition. Then
Q(S) = Z®Z, A(S)zSQ(S) = Z\®Z\. Let TV = {(2z, - 2z): zeZ}. Then

S+N = {(x,y): x,y eZ, x+y > 3}
and

SQ(S+N) - {(x,y): x,yeZ,x+y>0},

= Nu{(x,y): x,yeZ,x+y>0}$SQ(S+N).

Let Q(S') = Q(S)/N = Z2®Z where Z2 is a cyclic group of order 2; let
h: Q(S)-»Q(S'), h = h\S. Then

S' = Sh = Z2© {3,4,5,...}, MS'teW) = Z2®Z%,

where 0 is the identity. On the other hand, (JQ(S+N))h~ = Z2®Z\. Let (x,y)
denote the element of Q(S') corresponding to (x,y)eQ(S). We see

but

Hence {^Q{S))h"^^fQ{S'). Now L is isomorphic to the lattice of subsets of a
two-element set; L'^L" and it is isomorphic to the chain of two elements, h is
not onto but H is onto.

5. Steady or endless Jf -semigroups

Steady Jf -semigroups have a simple property relative to direct products.

PROPOSITION 5.1.

(5.1.1) Let Sx,...,Sn be ^V-semigroups. The direct product Sxx ...xSnis a steady
JT-semigroup if and only if St is steady for each i~ l,...,n.
(5.1.2) Let S be an Jf-semigroup and G an abelian group. SxG is a steady ^-semi-
group if and only ifS is steady.
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PROOF. TO prove (5.1.1), use the restatement of (3.5.1). The proof of (5.1.2) is
technically included in the proof of (5.1.1) since a group trivially satisfies (3.5.1).

Obviously steadiness is not preserved by *V-subsemigroups. If S is a steady
Jf-semigroup, the particular homomorphic image S* given in Theorem 4.2 is
steadys. However, a homomorphic image of a steady ^K-semigroup need not
be steady.

EXAMPLE 5.2. We give an example of a steady yT-semigroup 5 = ((G; <p))
while 0t{<p) is not steady.

Let £ = ((Z; <p)) where <p is defined by

cp(ni) = \{2m + 2>) ifmeZ".,

?>(-») = K« + 3) if n BZ+.

Then we see that <p is a defining function on Z and S is steady since <p satisfies
(3.7.2). However, M{cp) = (K*+3): xeZ°+} and M{cp) is not steady since \$M{<p)
and (3.5.1.2) is not fulfilled. Accordingly "SxG" in (5.1.2) cannot be replaced be
"a subdirect product of S and G".

A semigroup of positive real numbers under addition is called a cone if it consists
of the positive elements of a group of real numbers under addition.

Let S be a positive real number semigroup under addition. As is well known, S
is a cone if and only if it is naturally totally ordered, that is, for any distinct
elements, x,yeS, either x\y or y\ x.

PROPOSITION 5.3. If S is a cone, then S is an endless ^V-semigroup. However, the
converse is not true in general.

PROOF. It is obvious that S is an ^"-semigroup. Suppose S contains the smallest
element a with respect to the usual order. Then every element x of S has the form
x = ia where ieZ+, hence S^Z+. By using (3.4), we see Z+ is endless. Assume
S contains no smallest element. Also we can assume that S contains the particular
number 1. This does not lose generality. Then P = {peS: /> < 1} is the set of prime
elements of S with respect to 1. For every peP, there is a qeP such that^ = q+r
for some re P. This shows that S is endless. The converse is not true since the
following counter-example shows:

Let R(R+) be the semigroup of (positive) rational numbers under addition. Let
S = {x+yj2: x,yeR+, l/j2<y/x<<j3}. S is an endless ^-semigroup but it is
not a cone since

S^{x+y^2: x,yeR,x+yj2>0}.

We assume S is a power-joined ^F-semigroup, hence S = (G; I) or ((G; <p))
where G is torsion by Proposition 2.3. The notation S = (G; /) = ((G; <p)) means
that (p satisfies (2.2.4).
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THEOREM 5.4 (Hall, 1972). If S is a power-joined J/ -semigroup then S is mid-
free.

PROOF. Suppose A(S) has a middle component, say, Aa(5), whose elements have
the form [0, a] by Proposition 3.3. Since /(a, a") = 1 for all n eZ + , we have
[0, a ] " = [0, s] e Aa(S), but [0, e] 6 ^(S) . This is a contradiction.

In Theorem 4.2, let us assume 5 is a power-joined steady ^"-semigroup. By
Theorem 5.4, Sis mid-free. From Theorem 4.3 and Corollaries 4.4,4.5,4.8 it follows
that Y(S*) = Q¥(S))h = (T(S))h = F(S*) and 9[S*) = (&{S))h = {e*}. There-
fore S * is endless. Thus we have

THEOREM 5.5. S is a power-joined steady ^V-semigroup if and only if S is iso-
morphic to a spined product of a power-joined endless ~W-semigroup and a torsion
abelian group.

We end this section by constructing more complicated endless ./F-semigroups.

THEOREM 5.6. Let {Sj = ((Gg; cp^)): £ eS} be a family of (power-joined) semi-
groups Sg where 131 is infinite. Then there is an endless {power-joined) ^-semigroup
S = ((G; <p)) such that

(5.6.1) G is the direct sum: G = 2£eSC?f.
(5.6.2) S( can be embedded into Sfor all £ e E .

PROOF. Let G = Sg 6 3 G. The operation in G is additively denoted, the identity
being denoted by 0. If a 6 G and if a is not the identity, a is uniquely expressed as

where a^ 6 G^ and a.^ is not the identity (i = 1,..., k). We want to define <p: G -*• R+

such that <p\Gg = <pg for each £ e S . Now define <p by

if a y£ 0 and a = a,,,
?>(«) = " "

Then it is easy to see that <p is a defining function on G. Moreover, if a ^ 0 and
a = a& + . . . + oLgh, choose j8 e G, j8^ 0, such that

j3 = iS71+...+j37| and yrft for all i = l / a n d ; = l k.

This is possible since | S | is infinite. Then obviously a+j3^0 and

Therefore S = ((G; $>)) is endless. Obviously each S^ can be embedded into S, and
it is evident that S is power-joined if and only if each Gg is torsion.

The S = ((G; <p)) which has been obtained from {SE = ((G£; <pg)): £eS} is called
the direct union of {5j = ((Gf; <pg)): £eE}, and <p is denoted by <p —
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COROLLARY 5.7. Every {power-joined) J/-semigroup can be embedded into an
endless {power-joined) J/"-semigroup.

EXAMPLE 5.8. Let Z4 be the cyclic group of order 4: Z4 = {0,1,2,3} where 4 = 0.
Define <p: Z4->R+ by

(

where m = 0, T, 2,3. Then <p is a denning function on Z4. Let S be the direct union
of{((Gf;^)):/eZ+} where

Gi = Zt forallieZ+,
<Pi = <p for all ieZ+.

Let q> = 2 & i ?i- T h e n ®(f) = {K m +2) : w eZ° }, and S = ((22-i Gi'•> ?)) i s P°wer-
joined, endless, but ^(99) is not steady.

Thus endlessness (steadiness) is not preserved under homomorphisms even if the
^"-semigroup is power-joined. Furthermore, we see that the above example S is
never homomorphic onto a steady positive real number semigroup. It is obvious
that endlessness is not preserved under subsemigroups. In particular, note that
endlessness is not preserved under direct products. For example, Z + is endless but
Z+@Z+ is not endless since the prime elements of Z+@Z+ with respect to the
element (1,1) have the form (l,y) or (x, 1), x,y^l. The product of any two prime
elements cannot be a prime element with respect to (1,1).

6. Admissibility of groups for endlessness

What abelian group G can be a structure group of some endless ^semigroup?

DEFINITION 6.1. Let G be an abelian group. We say G admits JJ or 6 is
admissible if there is a defining function <p on G such that, for each a ^ e, aeG,
f>(a)+f>(jS) = p(aj3) for some fieG. In particular, if a 3̂ is obtained such that

e, then we say that G strongly admits <p or G is strongly admissible.

THEOREM 6.2. Let G be a finite abelian group.
(6.2.1) G is admissible if and only if G is cyclic.
(6.2.2) G is never strongly admissible.

PROOF. (6.2.1) Assume G admits p. Then S = ((G; <p)) is finitely generated and
endless. Since S is steady, S^Z+xG by Theorem 7 of the author (1973). Then
?(Q = 1 for all £eG, hence S is endless if and only if |G| = 1, that is, S^Z+.
Since every structure group of Z + is cyclic, G is cyclic. Conversely, assume that
G is a finite cyclic group, say G = {e,a, ...,an-1}, an = e. Define <p by

9{e) = 1,
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Then, if 1 ^i^n-2, <p(<xi) + <p(ocn-i-1) = ^(a""1) and f ^ - ^ + ^ a ) = <p(e). Hence
G is admissible.

(6.2.2) Suppose G strongly admits <p. By (6.2.1) S = (((?; p) )=Z + . Choose any
element n as a standard element. Then {1,2,...,«} is the set of prime elements with
respect to n, and the J^-function is

1 ;+/>«,

o ;+y<«,

hence the defining function <pn is given by

because a unique defining function belongs to /„. Zn admits <pn but for the element
n - 1 , only the element 1 has the property that <pn(n — l) + <pn(l) = <pn(n). Thus,
for any structure group Zn of S, Zn is not strongly admissible. Accordingly G is
never strongly admissible.

LEMMA 6.3. If an abelian group Gx strongly admits <px and if <p2 is any defining
function on G2, then there is a <p such that G = GxxG2 strongly admits <p,<p\Gi = <pi

and St = ((Gil <pt)) can be embedded into S=((G; p)) (i =1 ,2) .

PROOF. Let G = G1xG2 = {(a,j8): a e G v f t e G J . Define <p by

^ ( a ) + <p2(fi) if a =̂  e and j3 ^ s,

<p2(fi) if a = e,

I if a = ft = e.

It is routine but easy to verify <p(ot,fi) + <p(y,h)— cp(ay,pS)eZ\. Let (a,j8)^(e,e).
For (a,e) with a ^ e , choose (e,S) with S^e; then p(a,e) + <p(e,8) = <p(oc,8) where
(a,S)^(e,e). Similarly treat for (e,/?) with jS^e. If a^e and j8^e, we can choose
yeGj such that ay^s and 9?i(a) + f>i(y) = Pi(ay)- Then

In any case <p\Gt = ??€ (i= 1,2) and Sf = ((G<; 9?^) can be embedded into

Does there exist a torsion abelian group G and a defining function tp such that
G strongly admits <p ? G is necessarily infinite because of (6.2.2).

EXAMPLE 6.4. Let p be a positive prime number, and let S = {x/pm: x,meZ+}.
The semigroup 5 under addition is obviously a cone. By Proposition 5.3, S is endless.
The structure group of S with respect to any element of the form p1 (leZ) is
isomorphic to a quasi-cyclic group G(/?°°) = U«=i C(Pn)>tne union of the ascending
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chain of cyclic groups C(pn) of order pn in the natural way. After identifying the
isomorphic images we denote it by G(paS) = {x/pm: meZ+, l^x^pm} whose
operation is defined by the usual addition mod 1. (Here the element " 1 " is an
idempotent.) Then the defining function ifi: G(/>°°)->5 is given by

pm

Then if

Since p+l^px+l^pm+1-p+l<pm+\ px+l/pm+1 is not the identity. Thus
G(/?°°) strongly admits iff.

THEOREM 6.5. Let G be a torsion abelian group. G is admissible if and only ifG is
either an infinite torsion group or a finite cyclic group.

PROOF. Every torsion abelian group G is the direct sum of primary groups (for
example, see Rotman, 1965). Thus G is a direct sum

G = £ Gg,

where Gg is either a cyclic group of prime power or a quasi-cyclic group GO?00).
If G is finite it has been done in Theorem 6.2. Assume G is infinite. Either
| S | = oo or | S | < oo and at least one of Gg is infinite, hence Gg = G(/?°°). In case
JSJ = oo, Theorem 5.6 can be applied; in case Gg= G{pai), apply Lemma 6.3
and Example 6.4. Thus the theorem has been proved.

PROBLEMS.

1. Is the iff defined in Example 6.4 the only defining function which is strongly
admitted by G^00)?

2. Is every infinite abelian group admissible ?
3. Every power-joined ./^-semigroup S is a subdirect product of a torsion

abelian group G and a positive rational semigroup P under addition. Find a
necessary and sufficient condition on the subdirect product of G and P in order
that S be steady (or endless).

Acknowledgement

This paper was written while the author visited Monash University. The author
is grateful to Professor G. B. Preston and Dr T. E. Hall for their useful advice
when the author gave the seminar on this paper.

https://doi.org/10.1017/S144678870002019X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002019X


202 Takayuki Tamura [19]

References

J. L. Chrislock (1966), The Structure of Archimedean Semigroups, Dissertation, University of
California, Davis, California.

J. L. Chrislock (1969), "On medial semigroups", / . Algebra 12, 1-9.
A. H. Clifford (1954), "Naturally totally ordered commutative semigroups", Amer. J. Math.

76, 631-646.
A. H. Clifford and G. B. Preston (1961), The Algebraic Theory of Semigroups, Vol. 1, Math

Surveys, No. 7 (Amer. Math. Soc, Providence, R.I.).
R. P. Dickinson (1970), Right Zero Union of Semigroups, Dissertation, University of California,

Davis, California.
L. Fuchs (1963), Partially Ordered Algebraic Systems, Pergamon Press, Oxford.
G. Gratzer (1968), Universal Algebra, Van Nostrand, Princeton, New Jersey.
R. E. Hall (1969), The Structure of Certain Commutative Separative and Commutative Cancellative

Semigroups, Dissertation, Pennsylvania State University, Middletown, Pennsylvania.
R. E. Hall (1972), "The translational hull of an JV-semigroup", Pac. J. Math. 41, 379-389.
J. C. Higgins (1969), "Representing ^-semigroups", Bull. Austral. Math. Soc. 115-125.
J. C. Higgins (1969a), "A faithful canonical representation for finitely generated N-semigroups",

Czech. Math. J. 19, 375-379.
N. Kimura (1958), "The structure of idempotent semigroups I", Pac. J. Math. 8, 257-275.
Y. Kobayashi (1973), "Homomorphisms on iV-semigroups into /J+ and the structure of

iV-semigroups", / . Math. Tokushima University 7, 1-20.
M. Petrich (1973), "Normal bands of commutative cancellative semigroups", Duke Math. J.

40, 17-32.
M. Petrich (1973a), Introduction to Semigroups, C. E. Merril Publishing Co., Columbus, Ohio.
J. J. Rotman (1965), The Theory of Groups (Allyn and Bacon Inc., Boston).
M. Sasaki and T. Tamura (1971), "Positive rational semigroups and commutative power-joined

cancellative semigroups without idempotent", Czech. Math. J. 21, 567-576.
T. Tamura (1957), "Commutative nonpotent archimedean semigroups with cancellation law I",

J. Gakugei Tokushima University 8, 5-11.
T. Tamura (1970), "Abelian groups and ^"-semigroups", Proc. Japan Acad. 46, 212-216.
T. Tamura (1973), "Finitely generated steady JV-semigroups", Proc. Amer. Math. Soc. 41,

425-430.
T. Tamura (1973a), "^"-congruences of ^"-semigroups", / . Algebra 27, 11-30.
T. Tamura (1974), "Irreducible ./f-semigroups", Math. Nachr. 63, 71-78.
T. Tamura (1974a), "Basic study of ./^-semigroups and their homomorphisms", Semigroup

Forum 8, 21-50.
T. Tamura (1975), "Basic study of iV-semigroups and their homomorphisms II", Semigroup

Forum 10,250-261.
M. Yamada (1962), The Structure of Separative Bands, Dissertation, University of Utah, Salt

Lake City, Utah.

University of California
Davis, California
USA 95616

https://doi.org/10.1017/S144678870002019X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002019X

