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Abstract

If & is a homomorphism of an . "-semigroup onto an /4 -semigroup S’, then
h induces a homomorphism % of the translation semigroup A(S) of § into
A(S’) of §’. We will study the relations between the structures of S, S’
and A(S), A(S)’, and will introduce the specialized concepts of .4 "-semi-
groups S. In particular, we will be interested in power-joined steady or
endless A -semigroups. Finally, we will consider admissibility of torsion
abelian groups, that is, consider what torsion abelian group can be a
structure group of a power-joined steady A4 -semigroup.

1. Introduction

By an A4 -semigroup we mean a commutative cancellative archimedean semigroup
without idempotent. Petrich (1973) introduced the concept of steadiness of
A -semigroups, that is, an .4 -semigroup is called steady if it cannot be embedded
into another .4/ -semigroup as a proper ideal. The author (1973) proved that a
finitely generated A -semigroup is steady if and only if it is isomorphic to the
direct product of a finite abelian group and the positive integer semigroup under
addition. The study of steadiness or similar concepts of A -semigroups is of
significance in the study of extensions of A -semigroups to commutative cancellative
semigroups. Accordingly the problem is related to their translation semigroups.
In this paper we will investigate the relation between A4 -semigroups S and
their translation semigroups A(S), and will specialize S by means of A(S) in the
natural ways, so that we will introduce a few concepts of A -semigroups, steadi-
ness, endlessness, permutation-freeness (denoted by ‘‘per-free””) and middle-
freeness. In Section 4, we will prove that every A4 -semigroup is a spined product
of a per-free A -semigroup and an abelian group. We will discuss how the
A -homomorphisms of A4 -semigroups affect the homomorphisms of their trans-
lation semigroups. We are most interested in steady or endless .4 "-semigroups, in
particular, those in the power-joined case. We will show that every power-joined
steady A -semigroup is a spined product of a power-joined endless A -semigroup
and a torsion abelian group. Therefore the study of steady 4 -semigroups is
reduced to the study of endless .4 -semigroups. However, the structure of endless
A -semigroups is too complicated to be simply described even if power-joinedness
184
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is assumed. Really we shall have the large class of power-joined endless A -
semigroups, but it will be interesting that every .4 -semigroup can be embedded
into an endless ./ -semigroup. Finally, we will consider “admissibility” of torsion
abelian groups. What torsion abelian group can be a structure group of some
endless A4 -semigroup ?

2. Preliminaries for .4 -semigroups

Throughout this paper, Z denotes the group of all integers, Z, the semigroup
of all positive integers, Z9 the semigroup of all non-negative integers, R, the
semigroup of all positive real numbers, R, the semigroup of all positive rational
numbers. The operation in each is addition.

The following is due to the author (1957) (also see Petrich (1973a) and Clifford

and Preston (1961)).

PROPOSITION 2.1. Let G be an abelian group and I: Gx G—~Z9 be a function
satisfying
2.1.1) Kao,B)=I(B,) for all o,BeG.
(2.1.2) Ko, Py+1(aB,y) = K, By) +I(B,y) for all o,B,y€eG.
(2.1.3) I(e,a) =1 (¢ being the identity of G) for all x€G.
(2.1.4) For each a€G there is an meZ _ such that I(o, ™) > 0.
Let S = {(x,a): x€Z%, a€G}. Define the operation by

(x’ Ot) (_}’, /3) = (x+y+1(°" ﬁ)’ OLB)
Then S is an A -semigroup, denoted by S = (G;I). Every N -semigroup can be
obtained in this manner.

A function I: Gx G—>Z9 which satisfies (2.1.1) through (2.1.4) is called an
#-function on G.

Let S be an A -semigroup and let a€S. Define a relation p, on S by xp,y if
and only if @™ x = a™y for some m, neZ_. Then p, is a congruence and G, = S/p,,
is an abelian group and there exists an #-function, I,: G, x G,~>Z9 such that
S~(G,; I,). The group G, is called the structure group of S with respect to a.
The element a is called a standard element of the representation. Every element of
S is expressed as a™p where p is a prime element relative to a, namely, p¢aS; and
there is a one-to-one correspondence between the prime elements relative to @ and
the elements of G,.

ProPosSITION 2.2 (the author (1974a)). Let ¢: G— R, be a function satisfying
22.1) @(e) =1, ¢ the identity of G.
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222) p()+9B)—p(ep)eZY for all o,BEG.
(2.2.3) For every o €G, np(a)—p(a™ €Z, for some neZ,.
Define ((G; ¢)) = {((x,®)): xeR,,x—p(x) €ZY, € G} with a binary operation
(>, (3, B) = ((x+y, 2B)).
Let
2249 I(«, B) = () + p(B) — p(op).
Then I satisfies (2.1.1) through (2.1.4), and (G; I)~ ((G; ¢)) under
(x, > (G + @(a), ).
(2.2.3) is equivalent to (2.2.3") below:
(2.2.3") For every o€ G, p(a)+ p(a™)— (o™ 1) > 0 for some meZ,,.

The function ¢ which satisfies (2.2.1) through (2.2.3) is called a defining function
on G. Let S = (G; I). If we define h: S—>R, by h(x, &) = r(x+ ¢(«)) where r is a
fixed element of R, then £ is a homomorphism of S into R,. Conversely if 4 is a
homomorphism of S into R, and if we define ¢ by @(a) = A(0, )/h(0, £) where
(0, ¢) is the standard element of (G; I) and (0, «) is any prime element of (G; I)
relative to (0, £). Then ¢ satisfies (2.2.4). The existence of a homomorphism & of
S into R, was proved by the author (1974) or Kobayashi (1973). If ¢ is a defining
function on G, define %#(p) by Z(p) = {x+¢(x): x€Z9,x€G}. Then %(p) is an
A -subsemigroup of R,. Proposition 2.2 says S = ((G; ¢)) is isomorphic to a
subdirect product of %(¢p) and G.

A semigroup S is called power-joined if, for every x, y€.S, there are positive
integers m,n such that x™ = y™.

See the following in Chrislock (1966, 1969), Higgins (1969, 1969a) and Sasaki and
Tamura (1971).

PROPOSITION 2.3. An A -semigroup S (G ,; 1,) is power-joined ( finitely generated)
if and only if G, is torsion (finite) for some a€ S, equivalently for all ac S. A power-
Joined (finitely generated) S is isomorphic to a subdirect product of a subsemigroup
of R (Z,) and a torsion (finite) abelian group. Given I, ¢ is determined by

23.0) Ple) = St

where n is the order of o. In particular if G is finite,
1
=— > I(a, &).

Thus, if G is torsion, there is a one-to-one correspondence between I’s and ¢'s
on the same G; and if G is torsion, neither (2.1.4) nor (2.2.3) is required since each
one of these is automatically satisfied.

https://doi.org/10.1017/5144678870002019X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870002019X

[4] A -Semigroups 187

Spined products. Let A, B and C be semigroups. Let f,: A~ C and f;: B>C
be homomorphisms of 4 and B onto C respectively. Define S by

S = {(a, b): /1(a) = 1o(b)}
and define the binary operation in S by
(a,b)(c,d) = (ac, bd).
Then S is a semigroup. S is called a spined product of 4 and B with respect to

fu./; and C, denoted by

A < B,
Cifs,fa

(See Kimura (1958) or Yamada (1962).) It is uniquely determined by f;, f; and C
up to isomorphism. In other words, D = A<a¢,;, 5, B is the pull back in the
theory of categories. By a spined product D = A <1 Bwe mean D = A=<, . B
for some C, f; and f;.

See the following in books of universal algebra, for example Gratzer (1968).

PROPOSITION 2.4. Let S, S, and S, be semigroups. Then

S; Sl B S2
Cifvfe

Jor some semigroup C and some surjective homomorphisms f;: Sy C and f: Sy~ C
if and only if there are congruences p, and p, on S such that

Q41) S/p= Sy, S/pa=Ss.

24.2) pnpy=t, the equality relation.

(24.3) pi py=ps p1.

PROPOSITION 2.5 (the author (1975)). Let A be an N -semigroup, B a commutative
cancellative archimedean semigroup and C a commutative cancellative semigroup
such that there exist surjective homomorphisms f: A—>C and g: B—C. Then
Ave=<ag, o Bis an A -semigroup.

3. Preliminaries for translations

Let S be a commutative cancellative semigroup, and Q(S) denote the quotient
group of S, that is, the group of quotients of S. Define .#y(S) by

Fo(S) ={acQ(S): aS< S}

Jo(S) is a subsemigroup of Q(S) containing S. F,(S) is called the idealizer of S
in Q(S). On the other hand, let A(S) denote the semigroup of translations of S,
and I'(S) the semigroup of inner translations of S. See the definition of translation
in Clifford and Preston (1961). In this case, there is no distinction between left
and right translations, and A(S) is isomorphic to the translational hull of S.
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PROPOSITION 3.1. Let ac Fy(S). If A,: S— S is defined by xA, = xa, then X, € A(S).
Every element of A(S) is obtained in this manner. Under ar-> A, #5(S)x A(S) and
S~ T(S). Hence A(S) is a commutative cancellative semigroup.

PROOF. Let A be a translation of S. Define A: Q(S)— Q(S) as follows. If x € O(S),
x = y~1z where y,z €S, then xA = y~1(z]). It can be shown that X is well defined,
it is a translation of Q(S) and extends A. However, we know that every translation
of Q(S) is inner, hence xA = xa for some fixed a€ Q(S). Obviously a must satisfy
Sac S.

In particular, we consider A(S) of an 4 -semigroup S = (G: I). By the author
(1970), O(S) can be obtained as the abelian group extension of Z by G with respect
to the factor system f: G x G—>Z defined by f(e,B) = I(a,8)—1, that is, O(S)
= Z x G with the following operation: for {m, o}, {n,B}€Z % G, let

{m, o}-{n, f} = {m+n+/(c, B), of}.

S can be embedded into Q(S) under (m, o)—>{m+1, a}. Expressing each element
of #y(S) in terms of G and 7, we obtain

ProrosiTioN 3.2 (Dickinson, 1970; Hall, 1969, 1972). If S=(G;I), then
AS)={m, a]: meZY, a G, m+ (o, £)>0 for all £ € G} where the binary operation
is defined by

[m, a][n, B] = [m+n+I(a, f)—1, of]
and
(x, g) [m’ 0‘] = (x+m+1(§s 0‘)_ 1, fa) fOl‘ (x: f)ES

From now on, we will identify A(S) with the semigroup of [m, «]'s above. Let
¥'(S) denote the archimedean component of A(S) containing I'(S) and %(S) the
archimedean component containing the identity translation. ¥(S) is an ideal of
A(S), and #%(S) is the group of units of A(S) which consists of permutation
translations of S.

ProposITION 3.3 (Dickinson, 1970; Hall, 1969, 1972). If S = (G; I) then
I'(S) = {[m,a): meZ,,aeG},
¥(S) = {Ac A(S): A*eI'(S) for some neZ.},
= I'(S) u{[0, «]: I(«, £)> 0 for all £ € G and I(a, ™) > 1 for some neZ,},
9(S)={[0,a]: I(e, §) = 1 for all £€G},
A'(S) = AT (S)uF(S)) ={[0,]: I(e, £)>0 for all £€G,
Ho,0™) =1 for allneZ, and
K, £)> 1 for some £ G).
The subsemigroups W(S) and %(S) are not empty, but the subset A'(S) could be
empty. I'(S) and V' (S) are ideals of A(S).
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A(S) is the largest commutative cancellative semigroup which contains S as an
ideal in the following sense: If ¢,: §— A(S) is the inclusion map and if f: S—Tis
an embedding of S into a commutative cancellative semigroup T and f(S) is an
ideal of T, then there is an embedding 7: 7 A(S) such that ¢, = 7f.

If A’(S) is not empty, we shall call each archimedean component of A’(S) a
middle component.

Now we introduce the following terminology by specializing the type of A(S).

DEerFINITION 3.4. Let S be an A4 -semigroup and ¢ the identity map on S.
(3.4.1) S is steady if and only if I'(S) = ¥(S).
(3.4.2) S is permutation-free (per-free) if and only if (S) = {e}.
(3.4.3) S is middle-free (mid-free) if and only if A(S) = ¥ (S)u %(S).
(3.4.4) S is endless if and only if A(S) = I'(S)u{e}.

Since A(S)= . Fy(S), we have

PROPOSITION 3.5. Let S be an A -semigroup.
(3.5.1) The statements (3.5.1.1) to (3.5.1.4) are equivalent:
(3.5.1.1) S is steady.
(3.5.1.2) Ifcefy(S) and c*€S, then ceS.
(3.5.1.3) IfceFy(S) and c* €S for some neZ,, then ceS.
(3.5.1.4) If ce Fy(S)\S, then c"e Iy (S)\S for all neZ,.
(3.5.2) S is per-free if and only if c€ Iy(S) and cS = S imply ¢ = 1.
(3.5.3) S is mid-free if and only if c € #((S) implies cS = S or c™ €S for some n.
(3.5.4) S is endless if and only if c€ Fy(S) and c#1 imply c€S.

Proposition 3.5 can be restated in terms of elements of .S, for example (3.5.1.2)
says: aS<bS and a*€b? S imply acbS. The proof of the equivalence of the first
two of (3.5.1) is due to Petrich (1973). It is easy to show that the last three of
(3.5.1) are equivalent. To prove (3.5.2), use the fact that a translation of S is a
bijection if and only if it is surjective.

By Proposition 3.3 we have

PROPOSITION 3.6. Let S = (G; I).
(3.6.1) S is steady if and only if Ko, £)>0 for all £ € G implies I(oe, o™) = 1 for all
nez,.
(3.6.2) S is per-free if and only if (o, £) = 1 for all £€G implies « = &.
(3.6.3) S is middle-free if and only if 1(x, £) >0 for all ¢ € G implies I(x, a™) > 1 for
some neZ__ or I(o, ) = 1 for all £€G.
(3.6.4) S is endless if and only if o, £)>0 for all £€G implies o = &, that is, for
each a# ¢, (o, ) = 0 for some n€G.

Describing (3.6.1) and (3.6.4) in terms of defining functions ¢, we have
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ProrosiTION 3.7.
(3.7.1) S=(G; @)) is steady if and only if, for each o€ G, p(x)+ ¢(&)—p(af)>0
Sor all £ €G implies p(a)+ p(a™)— (o™ 1) = 1 for all meZ,.
(3.7.2) S =((G; @) is endless if and only if for each o+ ¢, there is £ € G such that
@(o) +@(§) — p(af) = 0.

4. Structures
Let S=(G; I) = ((G; ¢)) be an A -semigroup. Define K by
K={aeG: o, &) =1 for all £€G}.
The K is a subgroup of G since %(S)~ K under [0, «]-> « by Proposition 3.3.

LEMMA 4.1 Let £,7, L, A€ G, and let S = (G; I) = ((G; )). Then £=n (mod K)
if and only if I(€,0) = I(w, {) for all L€G. In this case, if {=n and A= { (mod K),
then 1(£, X) = I(», {).

PrOOF. Assume £=7 (mod K). We prove that if aeK, I(a§, {) = I(¢, §). First
I, ©)+H(cé, ) = I(o, EQ+I(E, §) for all {e@. Since Ko, &) =Ko, £0) =1, we
have I(a€, {) = I(£, §) for all {€G. As n = af for some €K, we have done the
necessity. Conversely assume I(£, {) = I(», {) for all {€G. Now

I, O +1(n, ) =17, EO+I(E, D)
for all {€G. Then I(n, {) = I(£, {) implies I({1m, €) = I(é1y, £0). Since { is
arbitrary, we have
(10, ) =1(é1n,e)=1 forall {eG.
Therefore {1y €K, that is, £=7 (mod K).

THEOREM 4.2. Let S be a commutative semigroup. S is an A -semigroup if and
only if S is isomorphic to a spined product of a per-free N -semigroup S* and an
abelian group G.

PrOOF. Assume S = (G; I). Let G * = G/K where K is defined at the beginning
of this section; and let g: G— G* be the natural homomorphism: £g = £*, £€G.
Define I*: G*x G*~>Z9 by
4.2.1) I'*(a*, B*) = I(, B).

I'* is well defined because of Lemma 4.1. It is easy to see that I* satisfies (2.1.1)
through (2.1.4). Let S* =(G*; I'*). Thus we have the A -semigroup S¥*. If
I'*(o*, £*) = 1 for all £* € G*, then, by the definition of I*, I(«, £) = 1 for all £€G,
hence a € K, equivalently, «* = &* where &* is the identity element of G*. Therefore
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S * is per-free. An element of S is denoted by (m, £), meZ9, £€G; an element of
§* is denoted by (n,7*) neZ9, n* e G*. Define h: S->S * by
(m, &) (m, £*).
Obviously /4 is onto, and also we have
((m, &) (m, M) h = (m+n+1(&,7m), Enh
= (m+n+1(§,7), (én)*)
= (m+n+I*(&*,9%), £*9%)
= (m, £*) (n,7*)
= (m, &) h-(n,m)h.
Thus 4 is a homomorphism of S onto S *.
Now define k: S—G and f: S *->G* by
m,Ok=¢ (mn*) f=n* r1espectively.
Then k and f are surjective homomorphisms.
Let p, 7 and o denote the congruences on S induced by the homomorphisms
h, k and kg, respectively, that is,
(m, €) p(n,m) if and only if m = n and {=7 (mod K).
(m, &) (n,n) if and only if £ = .
(m, &)o(n,m) if and only if £=n (mod K).
Then pn 7 =t To show p*7 = o, assume (m, &) p-7(, ). Then (m, &) p(n,n) 7(l, {)
implies m = n, and £=% = { by definition, so {={ (mod K), hence (m, &) o(/, {).
Thus p-7So. Assume (m,¢)o(l,{). By definition, £={(modK). We get
(m, &) p(m, ) 7(I, {) whence o< p* 7. We have shown p-7 = o. Immediately we can
show 7- p = 0. By Proposition 2.4, S is isomorphic to the spined product of S *
and G with respect to f: S*¥*—>G* and g: G G*.
SxS* <G
a% g
The converse is due to Proposition 2.5.

We want to observe a relation between A(S) and A(S’) in the most general case.
Let S and S’ be A -semigroups, h: S— S’ a homomorphism of S onto S’, that
is S’ = Sh, and % the extension of 4 to a homomorphism of Q(S) onto Q(S’).
( is defined by (xy)~1h = (xh)(yh) if x,y€S.) Let N be the kernel of 4. Then
Sn N =@. Every homomorphism % of S onto S’ is determined by a subgroup N
of Q(S) such that SN N = @ (the author 1973a). It is easy to see that SN is an
archimedean subsemigroup of Q(S). Since SNN =0 implies SNON=@, SN
has no idempotent. Thus SN is an A -semigroup. It is easy to see Q(S) = Q(SN).
Let ©: Q(S)—>Q(SN) denote the identity map of Q(S). Let ¢: S—>Q(S),
0 8'>Q(S’) and f: SN—Q(SN) be the inclusion mappings in the natural way.
Let 4,: S— SN be the embedding defined by x> xe where e is the identity of N.
Given A, define hy: SN—S' by (xm) hy = xh where xe S, meN. h, is well defined
and a surjective homomorphism. Elements of A(S), A(S) and A(SN) are denoted
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by A, X and A" respectively. However, by Proposition 3.1, every A of A(S) is given
by xA = xa, xeS where ac.fy(S). The A associated with a is denoted by A,.
Similarly A’ associated with b'€#o(S’) and A" associated with ¢” €.95(SN) are
respectively denoted by A;,, where &' €.7,(S’), A, where c¢"€FH(SN). Since
S SN, Fy(S)S FH(SN). So let by: A(S)—>A(SN) be the inclusion map, that is,
Aghy = X for Ae A(S).

Let tg: S—>A(S), ¢5: S'>A(S') and ¢5: SN-> A(SN) be the embeddings, that is
ty, ty and ¢ are the isomorphisms of S, S’ and SN onto I'(S), I'(S’) and I'(SN;
defined by aw, = A, (@€S), b'iy= A, (B'eS’), "3 = A}, (c"€SN) respectively.
Let F: A(S)—>L, F': A(S")>L' and F": A(SN)->L” be the greatest semilattice
homomorphisms.

In the diagram below, > means “‘one-to-one”’, —> “‘onto’” and >—> “one-to-one,
onto”. We will frequently identify .#,(S) with A(S). Therefore, if X< Q(S)
A(S) X can be considered.

Let A be a semigroup, B a semigroup with idempotent. A homomorphism f o
A into B is called trivial if | Af| = 1.

THEOREM 4.3. Given a homomorphism h of an A -semigroup S onto an N -semi-
group S’, there exist a unique nontrivial homomorphism h of A(S) into A(S’),
unique homomorphism hy of A(SN) onto A(S’), unique nontrivial homomorphism.
H and H, of L into L' and L", respectively, and an isomorphism H, which is a uniqu.
homomorphism of L” onto L', such that
4.3.0) ASYhs (A(SN)) by = A(S”)
and for each A€ A(S), the following diagrams are commutative.

QS)——-—»Q(S) s— sy A(s>———~>A(S) —L s

NAONA NA N A

O(SN) A(SN)
A F
OS)e—2—s > S 25 A(S) L
Y
i Iy Iy hy H,
- YA N " Moreover,
O(SN)<—2— SN >—"> SN >~ A(SN)——>>L" (Y(S)) hS ¥ (S")
(F(SHh=%(S')
h hy h, h, H,
Y A 1 i{
f ’ I‘ :) 1:/
(S¢S <5 Mgt A(S") L
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PrOOF. First we show Jy(S))hc Fy(S’) where S’ = Sh. Let a€.fy(S). By
definition, aS<S and then (ah)S’ = (ah)(Sh) = (aS)h=Sh= Sh=S’, hence
ahe F(S"). As stated before the theorem, every A of A(S) is given by A,, @€ £y(S).

Given h, define h: A(S)—A(S’) by

Ah= X3z, aegy(S).
To prove (4.3.0) it is sufficient to show

i(4.3.0') (FON S (Fo(SN) = Fy(S"),
‘but we have shown

4.3.1) (JQ(S))EE Jo(S).
Second, we want to show

[(4.3.2) Io(S)S (Jo(SN)) k.

t b€y (S"), b’ = bh for some be Q(S). By definition, (bx)/ = (bh)(xh)e Sh
or all xeS. It follows that bxe SN and bxme SN for all xe S8, all meN; then
ibefQ(SN), hence b’ €(F,(SN)) h. We have (4.3.2).
. Next, we want to prove
4.3.3) (Fo(SN) h= F5(S").
Recall 4,: SN-> S’ is a homomorphism of SN onto S’ and so A, can be extended
to hy: Q(SN)—>Q(S’). By (4.3.1) we have JG(SN))h,= Fo((SN)hy). However,
O(SN) = Q(S) and we see 4, = / as follows: Let ae Q(SN) = Q(S),
a=(@m(Qnyt=zul
where x,y,z,ucS, myneN. Then
ahy = (xm) hy: (yn) h) ™1 = (xh) (yh)~* = (2h) (k)™ = ah
for all ae Q(S), hence A, = . Also it is easy to see (SN)hy = Sh = S’. Therefore
we have (4.3.3). Combining (4.3.1), (4.3.2) and (4.3.3), we get (4.3.0'). As h was
defined from #, we define hy: A(SN)—>A(S’) from A, as follows:
Since ch, = ch,
Ay = Ng, ceFH(SN).
We can easily see that %, is onto. Consequently (4.3.0) has been proved.

Next we show the commutativity of the diagrams. First it is obvious that
ih=h. If xeS, xh, hy = (xe) h, = xh where e is the identity of N, hence h, hy = k.
For all xeS and all ae $y(S), A b hy = X, hy = Xz = A, h, hence hyhy = h. For
X€ES, xui=xi=Xx=xe=xh =xhu,hence v T=rh. For xmeSN, x€S,
meN, (xm)cih = (xm)h = xh = xh = (xm)hy,, hence ¢ h=hy. Let x€S,
a€Fy(S). Then xA, by = (xA)e = x), = (xe) X, = (xhy) (A, hy), hence

Aohy = (A hy).
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Let ae #,(S). If xe Sand meN,

(xm) (A hy) hy = (xm) X, hy = (xma) by = ((xa) m) hy = (xa) h
= (xa)h = (xh) (ah) = (xh) Xz = (xm) hy* (A ).

Thus (A, A Ay = hy* (A h). For ae SS SN,
awhy = Iy = A, = a = (ae)i; = ahy i
whence 1, i, = hy 1. Let a€ S, neN,
(@) ihy = Ny = Ngnity = Xami = X = Xy = (@)1 = (an) iy,
Hence 3 hi, = hy-t,. Consider the greatest semilattice decompositions:

A(S) = ULAm(S)7 A(SN) = ﬁlJL”Aﬁ(SN)’ A(‘S /) = UL,AY(S I)’
ae € ye

where A(S), Ay(SN) and A (S’) are archimedean components, in other words,
if Ae A(S), Ae Ay p(S); if "€ A(SN), A" € Ajupr(SN); if X € A(S"), X € Afpl(S?).
Recall A, is the inclusion. Since A (S) is archimedean for each a €L,
(ALSNh=Ay(SN) for some BeL”. Define H;: L->L" by oH,=p, that is,
AN IS Ay (SN). For oy, €L, we have (Ay,4,(5)) 7S A(yyom,(SN) and
EAal(S ) Aaz(s Nhy = (Aal(S Nh (A(!g(S Nhs Aym,(SN)- Aoch 1(SN )S A(a;Hﬂ(co,H ]
SN),
hence A(q407,(SN) = Ay, 100, (SN) which implies (o o) Hy = (o Hy) (o Hy).
Thus H, is a homomorphism of L into L”. Let A€ A(S). Then AeA,z(S) and
(Ar(SN R Ay, (SN) but My = Aand My = A€ A 5.(SN), whence FH, = by F".
Now h,F’': A(SN)—>L' is a semilattice homomorphism of A(SN). Since F”:
A(SN)—>L" is greatest, there is a homomorphism H,: L"—>L’ such that
F"Hy,=h,F'. Of course H is defined by H = H, H,. (The commutativity of the
remaining parts immediately follows: for example, ¢,k = i is a consequence of
h=hyhy, t3hy = hyvy and by = hyi}.) Thus the commutativity has been proved.

We have to show H, is an isomorphism. Recall &, =k, A(SN)h,= A(S"),
(Fo(SNYh = Fy(S’) and NS Y(SN)=A(SN). We see that if Ae Ay (SN), then
ANS A4(SN), thus Ax(SN) is a union of N-cosets for each BeL”. Let
hy5 = hy| AJ(SN). Then hy ; maps A4 (SN) onto some Ag(S’), and each A,(S),
y€L’, is obtained as an image of A4(SN). Hence H,: L”->>L' is one-to-one.

It remains to prove the uniqueness of h,, h, H,, H, and H. Suppose
Ryt A(SN)—>A(S"), h: A(S)—A(S"), satisfy:

Uhy=hyth,  hyhy=h.

For all aeSN, X.hy = alihy = ahyiy = allhy = X hy. Let c€IH(SN), ¢ =ab,
a,beSN. Since FH(SN)=~ A(SN) under z— X;, cb = a implies A; Ay = A7. Take the
homomorphic images under h, and A,, then

) Nk = Xohyy  (h) (N hy) = Xy,
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but Aphy= N, = Mg, Mhy= Mg, = Ni, Xohy=Xj=X,h, Since A(S") is
cancellative, we have Xk, = ALk, for all c€ #,(SN), that is, h, = hy. Accordingly
h=hhy=h h,=h. Suppose H}: L->>L", H,: L" L’ and H’': L->>L’ satisfy
Hi{Hy=H', FH;=hF", F"Hy=h,F'. Since F and F” are onto, FH; = FH,
implies H; = H,; F"H, = F"H, implies H; = H,; hence H = H'. The uniqueness
has been shown.

Since W'(S) and W(S’) are the archimedean ideal components of A(S) and A(S’)
respectively, (F'(S)) A< W(S’). Since %(S) and %(S’) are the greatest subgroups
of A(S) and A(S’), respectively, (Z(S))h< %(S’). The nontrivality of the homo-
morphisms immediately follows from this fact. The proof of the theorem has been
completed.

COROLLARY 4.4. The following are equivalent:
4.4.1) N<¥(S).
(4.4.2) NcA(S).
(4.4.3) A(S)= A(SN).
(4.4.4) hy is onto.

COROLLARY 4.5. h is onto if and only if A(S)N = A(SN).

PRrOOF. Assume /s onto. Then (F,(S)) k = F(S ), hence (Fo(S)) f = (Fo(SN) i
by (4.3.0'). It follows that Jy(S) N = #,(SN) N. But, since NS .#,(SN), we have
Jo(S) N = Fo(SN). Conversely if A (S)N = S,(SN), then

(So(SNh = (Fo(SN) k= Fy(S"),

hence £ is onto.
Let A be a commutative semigroup. We define a quasi-order || on 4 as follows:

x|y if and only if xz = y™ for some ze 4 and some meZ,.

Let B be a subsemigroup of A. B is called ||-cofinal in A if, for every a€ 4, there
are b, ce B such that b||a and al|c.

COROLLARY 4.6. The following are equivalent:
4.6.1) A(S) is||-cofinal in A(SN).
(4.6.2) H, is onto.
(4.6.3) H is onto.

COROLLARY 4.7. The following are equivalent:
(4.7.1) H, is one-to-one.
(4.7.2) H is one-to-one.
4.7.3) For ApeA(S), Aepu-A(SN) and umcA-A(SN) for some m,neZ,
imply Xee - A(S) and pl e A- A(S) for some k, I€Z,.
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COROLLARY 4.8. If N A(S), then H is an isomorphism of L onto L',
Returning to Theorem 4.2, the 4 has
kerh ={(0,x): «€K} = %(S).

By Corollary 4.8, A(S) and A(S*) have the isomorphic greatest semilattice
homomorphic images. For example, S is mid-free if and only if S * is mid-free.
We give another kind of corollary to Theorem 4.3.

COROLLARY 4.9. If S is an N -semigroup and S is an ideal of a commutative semi-
group T, then a homomorphism h of S onto an N -semigroup S’ can be extended
to a homomorphism b’ of T onto a semigroup T' where S’ is an ideal of T'.

This corollary can be proved by using 2+ Az = A -h.

ExAmpPLE 4.10. Let S ={(x,y): x,y€Z,x+y>3} with usual addition. Then
0S)=Z®Z, A(S)=Sy(S) =Z%®2Y. Let N = {2z, ~ 22):z€ Z}. Then

S+N={x,y):x,yeZ,x+y>3}
and
AS+N)2IG(S+N) ={(x,y): x,yeZ,x+y>0},
Jo(S)+N=Nu{(x,»): x,yeZ,x+y>0}SI(S+N).
Let Q(S")=QO(S)IN=2Z,®Z where Z, is a cyclic group of order 2; let
h: O(S)—>Q(S"), h = h|S. Then
S’'=8h=27,9{3,4,5,...}, AS)2I,S)=Z,0Z",
(FoSNE = (Z,0Z,) v {0}
where 0 is the identity. On the other hand, (F,(S+N Wh=2Z,®Z 9. Let (x,)
denote the element of Q(S’) corresponding to (x,») € O(S). We see
(I, =D eIy (S+N)E but ¢(FH(S)A.

Hence (Fy(S))ASI(S’). Now L is isomorphic to the lattice of subsets of a
two-element set; L'~ L" and it is isomorphic to the chain of two elements. k4 is
not onto but H is onto.

5. Steady or endless ./ -semigroups

Steady .4 -semigroups have a simple property relative to direct products.

PROPOSITION 5.1.
(5.1.1) Let §,,..., S, be A -semigroups. The direct product S;x ... x S, is a steady
N -semigroup if and only if S; is steady for each i=1,...,n.
(5.1.2) Let S be an A -semigroup and G an abelian group. S x G is a steady N -semi-
group if and only if S is steady.
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Proor. To prove (5.1.1), use the restatement of (3.5.1). The proof of (5.1.2) is
technically included in the proof of (5.1.1) since a group trivially satisfies (3.5.1).

Obviously steadiness is not preserved by 4 -subsemigroups. If S is a steady
A -semigroup, the particular homomorphic image S* given in Theorem 4.2 is
steadys. However, a homomorphic image of a steady .4 -semigroup need not
be steady.

ExaMPLE 5.2. We give an example of a steady A -semigroup S = ((G; ¢))
while Z(p) is not steady.

Let S = ((Z; ¢)) where ¢ is defined by

@(m) = 32m+3) if meZl,
e(—n)=3%n+3) ifneZ,.

Then we see that ¢ is a defining function on Z and S is steady since ¢ satisfies
(3.7.2). However, Z(p) = {3(x+3): x€Z9%} and Z(¢p) is not steady since § ¢ Z(p)
and (3.5.1.2) is not fulfilled. Accordingly “Sx G” in (5.1.2) cannot be replaced be
“a subdirect product of S and G”.

A semigroup of positive real numbers under addition is called a cone if it consists
of the positive elements of a group of real numbers under addition.

Let S be a positive real number semigroup under addition. As is well known, S
is a cone if and only if it is naturally totally ordered, that is, for any distinct
elements, x, y €S, either x|y or y|x.

PROPOSITION 5.3. If S is a cone, then S is an endless A -semigroup. However, the
converse is not true in general.

ProOOF. 1t is obvious that S is an A -semigroup. Suppose S contains the smallest
element a with respect to the usual order. Then every element x of S has the form
x = ia where ieZ_, hence S~ Z,. By using (3.4), we see Z_ is endless. Assume
S contains no smallest element. Also we can assume that S contains the particular
number 1. This does not lose generality. Then P = {pe.S: p<1}is the set of prime
elements of S with respect to 1. For every p&P, there is a g€ P such that p=g+r
for some reP. This shows that S is endless. The converse is not true since the
following counter-example shows:

Let R(R,) be the semigroup of (positive) rational numbers under addition. Let
S={x+yy2:x,yeR,, }/J2<y/x<43}. S is an endless .4 -semigroup but it is
not a cone since

SZ{x+yy2: x,yER,x+yJ2>0}.

We assume S is a power-joined .4 -semigroup, hence S = (G; I) or ((G; ¢))
where G is torsion by Proposition 2.3. The notation S = (G; I) = ((G; ¢)) means
that ¢ satisfies (2.2.4).
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THEOREM 5.4 (Hall, 1972). If S is a power-joined N -semigroup then S is mid-
free.

ProoF. Suppose A(S) has a middle component, say, A (S), whose elements have
the form [0,a] by Proposition 3.3. Since I(a,a™) =1 for all neZ,, we have
[0, a]™ = [0, ] e A (S), but [0, e]€ %(S). This is a contradiction.

In Theorem 4.2, let us assume S is a power-joined steady A4 -semigroup. By
Theorem 5.4, Sis mid-free. From Theorem 4.3 and Corollaries 4.4, 4.5, 4.8 it follows
that (S *) = (W(S)h = (T'(S) h = ['(S*) and %(S *) = (%(S)) h = {¢*}. There-
fore S * is endless. Thus we have

THEOREM 5.5. S is a power-joined steady N -semigroup if and only if S is iso-
morphic to a spined product of a power-joined endless A -semigroup and a torsion
abelian group.

We end this section by constructing more complicated endless .4 -semigroups.

THEOREM 5.6. Let {S; = ((Gg; pp): £€E} be a family of (power-joined) semi-
groups Sg where | 2| is infinite. Then there is an endless (power-joined) N -semigroup
S = ((G; @)) such that

(5.6.1) G is the direct sum: G = X .z Gp.
(5.6.2) S; can be embedded into S for all {€E.

PROOF. Let G = 3. G. The operation in G is additively denoted, the identity
being denoted by 0. If € G and if « is not the identity, « is uniquely expressed as

o= ot ... oy,
where o € Gy, and ay, is not the identity (i = 1, ..., k). We want to define ¢: G>R,,
such that g| G, = ¢, for each £€E. Now define ¢ by

@ Pelag)+... + @) ifas0and a=ag, +...+a,
pla) =
if =0.

Then it is easy to see that ¢ is a defining function on G. Moreover, if a#0 and
a = oz +...+ag, choose BeG, B#0, such that
B= ,8,h+...+f}," and 7,#¢ foralli=1,..,/landj=1,..,k.
This is possible since | E| is infinite. Then obviously a+ B0 and
P+ (B) = p(a+B).

Therefore S = ((G; ¢)) is endless. Obviously each S, can be embedded into S, and
it is evident that S is power-joined if and only if each G is torsion.

The S = ((G; »)) which has been obtained from {S; = ((G¢; @p)): £ € E} is called
the direct union of {S; = ((Gg; pp): £€E}, and ¢ is denoted by ¢ = 3, =@,
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CoRrOLLARY 5.7. Every (power-joined) AN -semigroup can be embedded into an
endless (power-joined) N -semigroup.

ExAMPLE 5.8. Let Z, be the cyclic group of order 4: Z, = {0,1,2,3} where 4 =0.
Define ¢: Z;->R, by
o) = }(m+2)
where /7 = 0,1,2,3. Then ¢ is a defining function on Z,. Let S be the direct union
of {((Gy; ¢p): ieZ,} where
G; =2, forallieZ,,
o;=¢ forallieZ,.

Let § = X2, @;. Then Z(¢) = {3(m+2): meZY}, and S = (T2, G;; ¢)) is power-
joined, endless, but Z(¢) is not steady.

Thus endlessness (steadiness) is not preserved under homomorphisms even if the
A -semigroup is power-joined. Furthermore, we see that the above example S is
never homomorphic onto a steady positive real number semigroup. It is obvious
that endlessness is not preserved under subsemigroups. In particular, note that
endlessness is not preserved under direct products. For example, Z, is endless but
Z,®Z, is not endless since the prime elements of Z, ®Z, with respect to the
element (1, 1) have the form (1, y) or (x, 1), x,y>1. The product of any two prime
clements cannot be a prime element with respect to (1, 1).

6. Admissibility of groups for endlessness

What abelian group G can be a structure group of some endless A~semigroup ?

DeriNtTION 6.1. Let G be an abelian group. We say G admits ¢ or G is
admissible if there is a defining function ¢ on G such that, for each a#s, «€G,
@(e)+@(B) = @(of) for some BeG. In particular, if a B is obtained such that
of# &, then we say that G strongly admits ¢ or G is strongly admissible.

THEOREM 6.2. Let G be a finite abelian group.
(6.2.1) G is admissible if and only if G is cyclic.
(6.2.2) G is never strongly admissible.

PRrOOF. (6.2.1) Assume G admits ¢. Then S = ((G; @)) is finitely generated and
endless. Since S is steady, S~Z_ x G by Theorem 7 of the author (1973). Then
p(£) =1 for all £€G, hence S is endless if and only if |G| = 1, that is, S=Z,.
Since every structure group of Z, is cyclic, G is cyclic. Conversely, assume that
G is a finite cyclic group, say G = {¢, , ..., a1}, o™ = &. Define ¢ by

@(e) =1,

o0,
qa(oz)—; (i=1,...,n—1).
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Then, if 1<i<n—2, p(of)+ ¢(a®) = p(a”1) and p(a™ 1)+ ¢(a) = ¢(¢). Hence
G is admissible.

(6.2.2) Suppose G strongly admits . By (6.2.1) S = ((G; ¢))= Z,. Choose any
element z as a standard element. Then {1, 2, ..., n} is the set of prime elements with
respect to », and the #-function is

1 i+j>n,
L(,j) = { o
0 i+j<n,

hence the defining function ¢, is given by

R Y i
o) =5 (E00.0) =
because a unique defining function belongs to I,,. Z,, admits ¢, but for the element
n—1, only the element | has the property that ¢, (n—1)+¢,(1) = ¢,(n). Thus,
for any structure group Z, of S, Z, is not strongly admissible. Accordingly G is
never strongly admissible.

LemMA 6.3. If an abelian group G, strongly admits ¢, and if @, is any defining
function on Gy, then there is a @ such that G = G, X G, strongly admits ¢, p|G; = ¢;
and S; = ((G;; ¢;)) can be embedded into S = ((G; ¢)) (i=1,2).

PrOOF. Let G = G, x Gy = {(«, B): a € Gy, B€G,}. Define ¢ by

P(@)+pu(B) if a# cand B# ¢,

BEC ifp=s,
PP =\ o® ifa=s,
1 ifa=f=c

It is routine but easy to verify ¢(c, B)+ ¢(y,8)— ¢(ay, B8)€ZY. Let (x, B)# (¢, €).
For (a, &) with a# ¢, choose (g,8) with 8+ ¢; then ¢(w, £)+ @(e, 8) = @(a, ) where
(o, 8)# (&, €). Similarly treat for (e, B) with B#e. If a# ¢ and S+ ¢, we can choose
y € Gy such that ay+# ¢ and @y(0)+ @,(y) = @,(oy). Then

P, B)+p(y, &) = P1(0) + 2o(B) + 21 () = Pu(o¥) + 22(B) = ¢y, B).
In any case ¢|G;=g¢;(=1,2) and S;=((G;; p;)) can be embedded into
S =((G; o).
Does there exist a torsion abelian group G and a defining function ¢ such that
G strongly admits ¢ ? G is necessarily infinite because of (6.2.2).

EXAMPLE 6.4. Let p be a positive prime number, and let S = {x/p™: x,meZ_}.
The semigroup S under addition is obviously a cone. By Proposition 5.3, S is endless.
The structure group of S with respect to any element of the form p! (/€Z) is
isomorphic to a quasi-cyclic group G(p®) = UZ_; C(p™), the union of the ascending
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chain of cyclic groups C(p™) of order p® in the natural way. After identifying the
isomorphic images we denote it by G(p®) = {X/p™: meZ ,1<x<p™} whose
operation is defined by the usual addition mod 1. (Here the element “1” is an
idempotent.) Then the defining function ¢: G(p®)-> S is given by

x X
Hom) =
Then if 1 <x<p™—1,
~ —~J
X 1 px+1
¢ p_ﬂ; +l/’ pm+]_ = ll’ pm+1 ¢

~
Since p+1<px+1<pm—p+1<p™tl px+1/p™t is not the identity. Thus
G(p™) strongly admits .

THEOREM 6.5. Let G be a torsion abelian group. G is admissible if and only if G i
either an infinite torsion group or a finite cyclic group.

Proor. Every torsion abelian group G is the direct sum of primary groups (fo

example, see Rotman, 1965). Thus G is a direct sum
G= X G,
el

where G is either a cyclic group of prime power or a quasi-cyclic group G(p™)
If G is finite it has been done in Theorem 6.2. Assume G is infinite. Either
[E]| =0 or |E|<oo and at least one of G; is infinite, hence G; = G(p™). In casc
| &] = o0, Theorem 5.6 can be applied; in case G;= G(p®), apply Lemma 6.:
and Example 6.4. Thus the theorem has been proved.

PROBLEMS.

1. Is the ¢ defined in Example 6.4 the only defining function which is strongly
admitted by G(p®)?

2. Is every infinite abelian group admissible ?

3. Every power-joined A -semigroup S is a subdirect product of a torsior
abelian group G and a positive rational semigroup P under addition. Find ¢
necessary and sufficient condition on the subdirect product of G and P in orde:
that S be steady (or endless).
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