Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T09:05:04.115Z Has data issue: false hasContentIssue false

A Beginner's Guide to Mesoscale Survey with Quadrotor-UAV Systems

Published online by Cambridge University Press:  03 August 2018

Kyle G. Olson*
Affiliation:
Department of Anthropology, University of Pennsylvania, 3260 South Street, Rm. 325, Philadelphia, PA 19104, USA
Lynne M. Rouse
Affiliation:
Eurasian Department, German Archaeological Institute (DAI), Im Dol 2–6, Haus 2, 14195 Berlin, Germany
*
(kols@sas.upenn.edu, corresponding author)

Abstract

Quadrotor-UAV (unmanned aerial vehicle) systems are becoming increasingly ubiquitous in archaeological field research for the production of digital elevation models and orthophoto mosaics of sites, monuments, and landscapes. In order to make up for the lack of suitable imagery to use in a larger project on the landscapes surrounding Bronze Age tell sites in the Murghab delta of eastern Turkmenistan, we developed a protocol for the deployment of out-of-the-box UAV systems to document sites and their immediate environs. This article discusses the fundamentals of aerial survey based on our experience deploying a quadrotor UAV, using examples from our case study of the site of Togolok 1. We argue that the approach we developed is particularly useful for mesoscale survey, between 1 and 5 km2, and is particularly useful for producing technical quality outputs, even by relative newcomers to UAV-based aerial survey.

Los vehículos aéreos no tripulados tipo cuadricóptero se han convertido en populares herramientas en investigaciones de campo arqueológicas para producir modelos digitales de elevación y mosaicos ortofotográficos de sitios, monumentos y paisajes. Con el fin de compensar la falta de imágenes adecuadas para un proyecto sobre los paisajes que rodean los sitios tell de la Edad del Bronce en el delta del Murghab, en el oriente de Turkmenistan, hemos desarrollado un protocolo para el despliegue de vehículos aéreos no tripulados de fácil uso y ensamblaje para registrar sitios arqueológicos y sus alrededores. Este artículo discute los fundamentos de la prospección aérea con base en nuestra experiencia en el despliegue de un cuadricóptero, presentando ejemplos de nuestro estudio de caso en el sitio de Togolok 1. Consideramos que el modelo propuesto es particularmente útil para sondeos a mediana escala, abarcando áreas entre 1 y 5 km2, ya que permite producir resultados técnicos de calidad, incluso por aquellos con poca experiencia en la prospección aérea con vehículos no tripulados.

Type
How to Series
Copyright
Copyright 2018 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Agisoft 2017a Tutorial (Intermediate Level): Coded Targets & Scale Bars in Agisoft PhotoScan Pro 1.1. Electronic document, http://www.agisoft.com/pdf/PS_1.3%20-Tutorial%20(BL)%20-%20Orthophoto,%20DEM%20(GCPs).pdf, accessed November 21, 2017.Google Scholar
Agisoft 2017b Orthophoto & DEM Generation (with GCPs). Support Tutorials. Electronic document, http://www.agisoft.com/pdf/PS_1.3%20-Tutorial%20(BL)%20-%20Orthophoto,%20DEM%20(GCPs).pdf, accessed August 22, 2017.Google Scholar
Agribotix 2018 Vignetting Effects Illustrated. Electronic document, https://agribotix.com/vignetting-effects-illustrated/, accessed February 20, 2018.Google Scholar
Baliño, Israel 2016 Processing a Detailed Digital Terrain Model Using Photogrammetry and UAVs at Cerro de la Mascara, Sinaloa, Mexico. SAA Archaeological Record 16 (2):2529.Google Scholar
Barnes, Grenville, and Volkmann, Walter 2015 High-Resolution Mapping with Unmanned Aerial Systems. Surveying and Land Information Science 74:513.Google Scholar
Brenningmeyer, Todd, Kourelis, Kostis, and Katsaros, Miltiadis 2016 The Lidoriki Project: Low Altitude, Aerial Photography, GIS, and Traditional Survey in Rural Greece. In CAA 2015: Keep the Revolution Going: Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Vol. 2, edited by Campana, Stefano, Scopigno, Roberto, Carpentiero, Gabriella, and Cirillo, Marianna, pp. 979988. Archaeopress, Oxford.Google Scholar
Campana, Stefano 2017 Drones in Archaeology: State-of-the-art and Future Perspectives. Archaeological Prospection 24:275296. DOI:10.1002/arp.1569, accessed July 5, 2018.Google Scholar
Cantoro, Gialuca, Tsigonaki, Christina, Armstrong, Kayt, and Sarris, Apostolos 2016 Integrating Low Altitude with Satellite and Airborne Aerial Images: Photogrammetric Documentation of Early Byzantine Settlements in Crete. In CAA 2015: Keep the Revolution Going: Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Vol. 2, edited by Campana, Stefano, Scopigno, Roberto, Carpentiero, Gabriella, and Cirillo, Marianna, pp. 963970. Archaeopress, Oxford.Google Scholar
Cerasetti, Barbara, Codini, Giorgia B., and Rouse, Lynne M. 2014 Walking in the Murghab Alluvial Fan (Southern Turkmenistan): An Integrated Approach between Old and New Interpretations about the Interaction between Settled and Nomadic People. In “My Life is like the Summer Rose”: Maurizio Tosi e l'Archeologia come modo di vivere: Papers in honour of Maurizio Tosi for his 70th birthday, edited by Lamberg-Karlovsky, C. C., Genito, B., and Cerasetti, B., pp. 105114. BAR International Series 2690. Archaeopress, Oxford.Google Scholar
Chiabrando, Filiberto, Nex, Francesco, Piatti, D., and Rinaudo, Fulvio 2011 UAV and RPV Systems for Photogrammetric Surveys in Archaeological Areas: Two Tests in the Piedmont Region (Italy). Journal of Archaeological Science 38:697710.Google Scholar
Colomina, Ismael, and Molina, Pere 2014 Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing 92:7997.Google Scholar
De Reu, Jeroen, Trachet, Jan, Laloo, Pieter, and De Clerq, Wim 2016 From Low Cost UAV Survey to High Resolution Topographic Data: Developing Our Understanding of a Medieval Outport of Bruges. Archaeological Prospection 25:335346.Google Scholar
Dietrich, James 2015 Agisoft Photoscan Crash Course (updated for version 1.1.6). Advanced Geographic Research. Electronic Document, http://adv-geo-research.blogspot.com/2015/06/photoscan-crash-course-v1-1.html, accessed August 21, 2017.Google Scholar
Dubbini, Marco, Curzio, Lucia Irene, and Campedelli, Alessandro 2016 Digital Elevation Models from Unmanned Aerial Vehicle Surveys for Archaeological Interpretation of Terrain Anomalies: Case Study of the Roman Castrum of Burnum (Croatia). Journal of Archaeological Science: Reports 8:121134.Google Scholar
Eisenbeiß, Henri 2009 UAV Photogrammetry. PhD dissertation, Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule Zürich, Zürich.Google Scholar
Eisenbeiß, Henri, and Sauerbier, Martin 2011 Investigation of UAV Systems and Flight Modes for Photogrammetric Applications. Photogrammetric Record 26 (136):400421.Google Scholar
FAA (Federal Aviation Administration) 2015 Know Before You Fly. Electronic document, http://knowbeforeyoufly.org/wp-content/uploads/2015/01/KBYF_Brochure.pdf, accessed February 20, 2018.Google Scholar
Fernández-Hernandez, Jesus, González-Aguilera, Diego, Rodríguez-Gonzálvez, Pablo, and Mancera-Taboada, Juan 2015 Image-Based Modelling from Unmanned Aerial Vehicle (UAV) Photogrammetry: An Effective, Low-Cost Tool for Archaeological Applications. Archaeometry 57:128145.Google Scholar
Fernández-Lozano, Javier, and Gutiérrez-Alonso, Gabriel 2016 Improving Archaeological Prospection Using Localized UAVs Assisted Photogrammetry: An Example from the Roman Gold District of the Eria River Valley (NW Spain). Journal of Archaeological Science: Reports 5:509520.Google Scholar
Field, Sean, Waite, Matt, and Wandsnider, LuAnn 2017 The Utility of UAVs for Archaeological Surface Survey: A Comparative Study. Journal of Archaeological Science: Reports 13:577582.Google Scholar
Fiorillo, Fausta, Fernández-Palacios, Belen Jimenez, Remondino, Fabio, and Barba, Salvatore 2013 3d Surveying and Modelling of the Archaeological Area of Paestum, Italy. Virtual Archaeology Review 4 (8):5560.Google Scholar
Gubaev, Abdyrakhman G., Koshelenko, Gennadič Andreevich, and Tosi, Maurizio 1998 The Archaeological Map of the Murghab Delta Preliminary Reports 1990–95, Vol. 1. Instituto Italiano per l'Africa e l'Oriente, Roma.Google Scholar
Gutiérrez, Gerardo, Erny, Grace, Friedman, Alyssa, Godsey, Melanie, and Gradoz, Machal 2016 Archaeological Topography with Small Unmanned Aerial Vehicles. SAA Archaeological Record 16 (2):1013.Google Scholar
Gutiérrez, Gerardo, and Searcy, Michael T. 2016 Introduction to the UAV Special Edition. SAA Archaeological Record 16 (2):69.Google Scholar
Hamilton, Scott, and Stephenson, Jason 2016 Testing UAV (Drone) Aerial Photography and Photogrammetry for Archaeology. Technical Report, Lakehead University Thunder Bay. DOI:10.13140/RG.2.1.4306.3443, accessed May 1, 2017.Google Scholar
Harrison-Buck, Eleanor, Willis, Mark, and Walker, Chester 2016 Using Drones in a Threatened Archaeological Landscape: Rapid Survey, Salvage, and Mapping of the Maya Site of Saturday Creek, Belize. SAA Archaeological Record 16 (2):3035.Google Scholar
Harwin, Steve, and Lucieer, Arko 2012 Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing 4:15731599.Google Scholar
Hill, Austin C. 2013 Archaeology and UAVs: Legal, Ethical and Safe Use of Drones for Archaeological Research. Anthropology News May/June:29.Google Scholar
Hill, Austin C., and Rowan, Yorke 2017 Droning On in the Badia: UAVs and Site Documentation at Wadi al-Qattafi. Near Eastern Archaeology 80:114123.Google Scholar
Hill, Austin C., Rowan, Yorke, and Kersel, Morag M. 2014 Mapping with Aerial Photographs: Recording the Past, the Present, and the Invisible at Marj Rabba, Israel. Near Eastern Archaeology 77:182186.Google Scholar
Howland, Matthew D., Kuester, Falko, and Levy, Thomas E. 2014 Structure from Motion: Twenty-First Century Field Recording with 3D Technology. Near Eastern Archaeology 77:187191.Google Scholar
Karel, Wilfried, Doneus, Michael, Briese, Christian, Verhoeven, Geert, and Pfeifer, Norbert 2014 Investigation on the Automatic Geo-Referencing of Archaeological UAV Photographs by Correlation with Pre-existing Ortho-Photos. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40 (5):307312.Google Scholar
Kersel, Morag M., and Hill, Austin C. 2015 Aerial Innovations: Using Drones to Document Looting. Oriental Institute News & Notes 224 (Winter):89.Google Scholar
Lang, Matthias, Behrens, Thorston, Schmidt, Karsten, Svoboda, Dieta, and Schmidt, Conrad 2016 A Fully Integrated UAV System for Semi-automated Archaeological Prospection. In CAA 2015: Keep the Revolution Going: Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Vol. 2, edited by Campana, Stefano, Scopigno, Roberto, Carpentiero, Gabriella, and Cirillo, Marianna, pp. 989996. Archaeopress, Oxford.Google Scholar
Limp, William F., and Williamson, Malcolm R. 2017 Strategies for International Travel with “High-Tech” Archaeological Field Equipment. Advances in Archaeological Practice 5:382387.Google Scholar
Lo Brutto, Mauro, Garrafa, A., and Meli, P. 2014 UAV Platforms for Cultural Heritage Survey: First Results. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (5):227234.Google Scholar
Markofsky, Steve, Ninfo, Andrea, Balbo, Andrea L., Conesa, Francesc C., and Madella, Marco 2017 An Investigation of Local Scale Human/Landscape Dynamics in the Endorheic Alluvial Fan of the Murghab River, Turkmenistan. Quaternary International 437 (B):119.Google Scholar
Martínez-del-Pozo, José-Ángel, Cerrillo-Cuenca, Enrique, and Salas-Tovar, Ernesto 2013 Low Altitude Aerial Photography Applications for Digital Surface Models Creation in Archaeology. Transactions in GIS 17:227246.Google Scholar
Mesas-Carrascosa, Francisco-Javier, García, María Dolores Notario, de Larriva, Jose Emilio Meroño, and García-Ferrer, Alfonso 2016 An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas. Sensors 16:18381853.Google Scholar
Molloy, Barry 2016 Introduction: Thinking of Scales and Modes of Interaction in Prehistory. In Of Odysseys and Oddities: Scales and Modes of Interaction between Prehistoric Aegean Societies and Their Neighbors, edited by Molloy, Barry, pp. 124. Sheffield Studies in Aegean Archaeology 10. Oxbow Books, Oxford.Google Scholar
Mouget, Anna, and Lucet, Genevieve 2014 Photogrammetric Archaeological Survey with UAV. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (5):251258.Google Scholar
Neitzel, F., and Klonowski, Jörg 2011 Mobile 3D Mapping with a Low-Cost UAV System. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (1/C22):16.Google Scholar
Nex, Francesco, and Remondino, Fabio 2014 UAV for 3D Mapping Applications: A Review. Applied Geomatics 6 (1):115.Google Scholar
Nocerino, E., Menna, Fabio, Remondino, Fabio, and Saleri, Renato 2013 Accuracy and Block Deformation Analysis in Automatic UAV and Terrestrial Photogrammetry: Lesson Learnt. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (5):203208.Google Scholar
Ortiz, Juan, Gil, Maluz, Martinez, Santiago, Rego, Teresa, and Meijide, Gonzalo 2013 Three-Dimensional Modelling of Archaeological Sites Using Close-Range Automatic Correlation Photogrammetry and Low-Altitude Imagery. Archaeological Prospection 20:205217.Google Scholar
Parcero-Oubiña, Cesar, Manana-Borrazas, Patricia, Guimil-Farina, Alejandro, Fabrega-Alvarez, Pastor, Pino, Mariela, and Borie, Cesar 2016 Mapping on a Budget: A Low-Cost UAV Approach for the Documentation of Prehispanic Fields in Atacama (N. Chile). SAA Archaeological Record 16 (2):1721.Google Scholar
Rinaudo, Fulvio, Chiabrando, Filiberto, Lingua, A., and Spano, A. 2012 Archaeological Site Monitoring. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39 (B5):583588.Google Scholar
Salvatori, Sandro, Tosi, Maurizio, and Cerasseti, Barbara 2008 The Bronze Age and Early Iron Age in the Margiana Lowlands: Facts and Methodological Proposals for a Redefinition of the Research Strategies. Archaeological Map of the Murghab Delta: Studies and Reports 2. Archaeopress, Oxford.Google Scholar
Searcy, Michael T. 2016 Dealing with Legal Uncertainty in the Use of UAVs in the United States. SAA Archaeological Record 16 (2):4345.Google Scholar
Seitz, Christian, and Altenbach, Holger 2011 Project ArchEye—The Quadracopter as the Archaeologist's Eye. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (1/C22):297302.Google Scholar
Shervais, Katherine, and Dietrich, James 2016 Structure from Motion (SfM) Photogrammetry Data Exploration and Processing Manual. Electronic document, http://kb.unavco.org/kb/file.php?id=781, accessed April 25, 2018.Google Scholar
Sonnemann, Till F., Malatesta, Eduardo Herrera, and Hofman, Corinne L. 2016 Applying UAS Photogrammetry to Analyze Spatial Patterns of Indigenous Settlement Sites in the Northern Dominican Republic. In Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing, edited by Forte, Maurizio and Campana, Stefano R. L., pp. 7187. Quantitative Methods in the Humanities and Social Sciences. Springer International, New York.Google Scholar
Turner, Darren, Lucieer, Arko, and Watson, Christopher 2012 An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing 4:13921410.Google Scholar
Verhoeven, Geert 2009 Providing an Archaeological Bird's-Eye View—An Overall Picture of Ground-Based Means to Execute Low-Altitude Aerial Photography (LAAP) in Archaeology. Archaeological Prospection 16:233249.Google Scholar
Verhoeven, Geert 2011 Taking Computer Vision Aloft—Archaeological Three-Dimensional Reconstructions from Aerial Photographs with PhotoScan. Archaeological Prospection 18:6773.Google Scholar
Verhoeven, Geert, Wieser, Martin, Briese, Christian, and Doneus, Michael 2013 Positioning in Time and Space—Cost-Effective Exterior Orientation for Airborne Archeological Photographs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (5):313318.Google Scholar
Washington University Libraries (St. Louis, Missouri) 2017 Drones/Quadcopters for Data Collection. University Libraries. Electronic document, http://libguides.wustl.edu/c.php?g=645956&p=4558414, accessed December 6, 2017.Google Scholar
Wechsler, Suzanne, Lipo, Carl, Lee, Chris, and Hunt, Terry L. 2016 Technology in the Skies: Benefits of Commercial Uses for Archaeological Applications. SAA Archaeological Record 16 (2):3842.Google Scholar
Wernke, Steven A., Adams, Julie A., and Hooten, Eli R. 2014 Capturing Complexity—Toward an Integrated Low-Altitude Photogrammetry and Mobile Geographic Information System Archaeological Registry System. In “Digital Domains.” Special issue, Advances in Archaeological Practice 2:147163.Google Scholar