Bull. Austral. Math. Soc. Vol. 39 (1989) [353-359]

WEAKLY COMPACT OPERATORS AND THE STRICT TOPOLOGIES

JOSÉ AGUAYO AND JOSÉ SÁNCHEZ

Let X be a completely regular space. We denote by $C_b(X)$ the Banach space of all real-valued bounded continuous functions on X endowed with the supremum-norm.

In this paper we prove some characterisations of weakly compact operators defined from $C_b(X)$ into a Banach space E which are continuous with respect to β_t , β_τ and β_σ introduced by Sentilles.

We also prove that $(C_b(X), \beta_i)$, $i = t, \tau, \sigma$, has the Dunford-Pettis property.

INTRODUCTION AND NOTATIONS

In this paper, E denotes a Banach space, X a completely regular Hausdorff space, $C_b(X)$ the set of all continuous bounded real-valued functions on X, \mathcal{F} the algebra generated by zero sets, that is, sets of the form $f^{-1}(0)$, $f \in C_b(X)$, and Ba(X) the σ -algebra generated by zero-sets.

On $C_b(X)$ there are three important topologies, the so-called strict topologies, which are denoted by β_t , β_τ , β_σ ; the dual of $(C_b(X), \beta_i)$ is $M_i(X)$, for $i = t, \tau, \sigma$ (these topologies and duals are discussed in [5]). It is known that $\beta_t \leq \beta_\tau \leq \beta_\sigma \leq || \parallel_{\infty}$ and they have the same bounded sets [5].

Let \mathcal{A} be an algebra of subsets of X and let $m: \mathcal{A} \to E$ a finite additive vectormeasure. We shall say that m is strongly additive if the series $\Sigma m(A_n)$ converges for every disjoint sequence $(A_n)_{n \in N}$ of elements of \mathcal{A} .

The set-functions of \mathcal{A} into \mathbb{R} defined by $v(m)(A) = \sup\{\Sigma || m(A_i) || A_i \in \mathcal{A}, A_i \cap A_j = \emptyset, i \neq j, A = \cup A_i, i = 1 \dots n, n \in N\}$ and by

 $\|m\|(A) = \sup\{\|\Sigma\alpha_i m(A_i)\| A_i \in \mathcal{A}, A_i \cap A_j = \emptyset, i \neq j, A = \cup A_i, i = 1...n, n \in N, |\alpha_i| \leq 1\}$

are called the variation and semi-variation of m, respectively. If v(m)(X)(||m||(X))is finite, we shall say that m is of bounded variation (semi-variation). It is known ([1]) that $||m||(A) = \sup\{|x' \circ m|(A) \mid x' \in E', ||x'|| \leq 1\}$. We will denote by $ba(\mathcal{A}, E)$ the space of all bounded semi-variation vector measures m of \mathcal{A} into E. $ba(\mathcal{A}, E)$ is a Banach space with the norm $m \to ||m||(X)$.

If $S(\mathcal{A})$ denotes the space of all simple functions with the supremum-norm, then for each $m \in ba(\mathcal{A}, E)$, we define $T_m(f) = \Sigma \alpha_i m(A_i)$, where $f = \Sigma \alpha_i \chi_{A_i} \in S(\mathcal{A})$. Hence

Received 15 July 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

 T_m is a continuous linear operator of $S(\mathcal{A})$ into E and ||T|| = ||m||(X). Conversely, each continuous linear operator T of $S(\mathcal{A})$ into E defines a bounded vector measure of semi-variation m, with $m(A) = T(\chi_A)$.

Let $B(\mathcal{A})$ denote the completion of $S(\mathcal{A})$ in the supremum-norm. It is proved in [1] that the mapping $m \to T_m$ is an isomorphism of the space $ba(\mathcal{A}, E)$ with the space $L(B(\mathcal{A}), E)$. $T_m(f)$ is denoted by $\int f dm$.

We shall say that an operator T in $L(B(\mathcal{A}), E)$ is weakly compact if T maps any bounded subset of $B(\mathcal{A})$ to a relatively weakly compact subset of E. The following theorem is proved in [1].

THEOREM 1.1. Let $T: B(\mathcal{A}) \to E$ be a bounded linear operator. Then the following are equivalent:

- (i) T is weakly compact
- (ii) m is strongly additive

The space of all finite, finitely additive, zero set regular, real-valued measures is denoted by M(X) (zero set regular means that for any $\epsilon > 0$ and any $F \in \mathcal{F}$, there exist a zero set Z and a cozero set U, with $Z \subseteq F \subseteq U$, such that $|\mu|(U \setminus Z) < \epsilon$).

Alexandroff's Theorem ([6]) establishes that M(X) is the dual of $C_b(X)$ with the supremum-norm.

As in the case when X is a compact Hausdorff space we can identify $B(\mathcal{F})$ with M(X)' by the isometry $f \to \lambda_f$ where $\lambda_f(\mu) = \int_X f d\mu$.

LEMMA 1.2. Each $f \in C_b(X)$ is the uniform limit of simple functions, that is $C_b(X) \subseteq B(\mathcal{A})$.

PROOF: First note that if $f \in C_b(X)$, $\{x \in X : f(x) \ge \alpha\}$ is a zero set. Let $\epsilon > 0$; since f(X) is totally bounded, there is a finite subset $\{x_1, x_2, \ldots x_n\}$ of X such that $f(X) \subseteq \cup f(x_i) + (-\epsilon, \epsilon)$.

Write $U_i = f(x_i) + (-\epsilon, \epsilon)$ and $A_i = f^{-1}(U_i)$. If the family $\{A_i : i = 1, ..., n\}$ is not disjoint, then we define $B_1 = A_1$ and $B_i = A_i \setminus B_i$, i = 2, ..., n; thus, $\{B_i \mid i = 1, ..., n\}$ is a \mathcal{F} -partition of X. If $f_0 = \Sigma f(x_i)\chi_{B_i}$ and if $x \in X$, then there exists $i \in \{1, ..., n\}$ such that $x \in A_i \setminus B_i$ and $f(x) = f(x_i) + u$, with $|u| < \epsilon$, which implies that $|f(x) - f(x_i)| < \epsilon$. Thus, $|f(x) - f_0(x)| < \epsilon$ and then $||f - f_0|| < \epsilon$ since x was arbitrary.

THEOREM 1.3. Let $T: C_b(X) \to E$ be a bounded linear operator. Then, there exists a unique finitely additive vector measure $m: \mathcal{F} \to E''$ of bounded semi-variation such that:

(a) for any $x' \in E'$, $x' \circ m \in M(X)$;

'Weakly compact operators

- (b) the mapping of E into M(X) defined by $x' \to x' \circ m$ is $\sigma(E', E) \sigma(M(X), C_b(X))$ continuous;
- (c) $T(f) = \int_X f dm$, $\forall f \in C_b(X)$;
- (d) ||T|| = ||m||(X).

Conversely, if $m: \mathcal{F} \to E''$ is a finitely additive vector measure of bounded semivariation satisfying (a) and (b), then (c) defines a bounded linear operator $T: C_b(X) \to E$ such that ||T|| = ||m||(X).

PROOF: Since $T'': C_b(X)'' \to E''$ is a bounded linear operator and $B(\mathcal{F}) \subset C_b(X)''$, there is a vector measure associated with $\overline{T} = T''_{|B(F)}$. Since $C_b(X) \subseteq B(\mathcal{F})$, we have that, for each $f \in C_b(X)$,

$$T(f) = \overline{T}(f) = \int_X f dm \text{ and } ||T|| \leq \left||\overline{T}|| = ||m|| (X) \leq ||T''|| = ||T||.$$

Part (a) and (b) follow easily from the continuity of T and T'.

Conversely, since $\{x' \circ m \colon ||x'|| \leq 1\}$ is $\sigma(M(X), C_b(X))$ relatively compact, we have that

$$\left\|m
ight\|\left(X
ight)=\sup\{\left|x'\circ m
ight|\left(X
ight)\colon \left\|x'
ight\|\leqslant1\}<\infty$$

and then m is of bounded semi-variation. The result follows from this.

2. WEAKLY COMPACT OPERATORS AND STRICT TOPOLOGIES

In this section we shall study the weakly compact operators of $C_b(X)$ into E which are continuous in the strict topologies β_t , β_τ and β_σ , respectively, and their associated vector measures.

We already know that if T is weakly compact, then T' from E' into M(X) is also weakly compact; thus, $T'(B_{E'}) = \{x' \circ m : ||x'|| \leq 1\}$ is relatively $\sigma(M(X), C_b(X)'')$ -compact and then $\{|x' \circ m| : ||x'|| \leq 1\}$ is relatively $\sigma(M(X), C_b(X)'')$ -compact ([1]) which implies that $\{|x' \circ m| : ||x'|| \leq 1\}$ is relatively $\sigma(M(X), C_b(X))$ -compact.

The following theorems characterise the β_i -continuous, weakly compact linear operators, where $i = t, \tau, \sigma$.

From now on, we will assume that $T: C_b(X) \to E$ is a weakly compact operator.

THEOREM 2.1. If m is the associated vector measure of T, then the following are equivalent:

- (i) m is σ -additive vector measure;
- (ii) if $\{f_n\}_{n \in N}$ is any decreasing sequence in $C_b(X)$, with

$$f_n(x) \to 0$$
 for each $x \in X$, then $||Tf_n|| \to 0$;

(iii) T is β_{σ} -continuous.

[4]

356

PROOF: (i) \Rightarrow (ii) Let $\{f_n\}_{n\in N}$ be a sequence in $C_b(X)$ such that $f_n \downarrow 0$ pointwise and $\epsilon > 0$. By the Caratheodory-Hahn Extension Theorem ([1]), there exists a nonnegative real-valued σ -additive measure μ on Ba(X) such that $m \ll \mu$. Thus, for the given ϵ , there exists $\delta > 0$ such that $\mu(A) < \delta$ implies $|x' \circ m|(A) < \epsilon$ uniformly in $x' \in B_{E'}$.

On the other hand, Egoroff's Theorem gives us a subset $F \in Ba(X)$ such that $f_n \to 0$ uniformly on $X \setminus F$ and $\mu(F) < \delta$. Therefore, there exists $n_0 \in N$ such that $n \ge n_0$ implies $||f_n|| < \epsilon/2M$ on $X \setminus F$, where M = ||m||(X).

Now, if $n \ge n_0$, then

$$\begin{aligned} |x' \circ T(f_n)| &\leq \int_X |f_n| \, d \, |x' \circ m| \\ &= \int_{X \setminus F} |f_n| \, d \, |x' \circ m| + \int_F |f_n| \, d \, |x' \circ m| \\ &< (\epsilon/2m) \, |x' \circ m| \, (X \setminus F) + |x' \circ m| \, (F) \\ &< \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

uniformly in $x' \in B_{E'}$.

The conclusion follows from the fact that

$$||Tf|| = \sup\{|x' \circ T(f)| : ||x'|| \le 1\}.$$

(ii) \Rightarrow (iii) If $||Tf_n|| \rightarrow 0$ for any sequence $\{f_n\}_{n \in N}$ in $C_b(X)$, then $|x' \circ m| \in M_{\sigma}(X)$ for all $x' \in B_{E'}$. Since $\{|x' \circ m| : ||x'|| \leq 1\}$ is relatively $\sigma(M(X), C_b(X))$ -compact, we have $\{|x' \circ m| : ||x'|| \leq 1\}$ is relatively compact and then β_{σ} -equicontinuous [5, Theorem 5.2, p.322].

Let $\{f_{\alpha}\}_{\alpha \in I}$ be a net in $C_b(X)$ such that $f_{\alpha} \to 0$ with respect to β_{σ} . Hence $|x' \circ T|(f_{\alpha}) \to 0$ uniformly in $x' \in B_{E'}$; since $|x' \circ T(f_{\alpha})| \leq |x' \circ T|(f_{\alpha})$, we get $|x' \circ T(f_{\alpha})| \to 0$ uniformly in $x' \in B_{E'}$ and then $||Tf_{\alpha}|| = \sup\{|x' \circ T(f_{\alpha})|: ||x'|| \leq 1\} \to 0$. Consequently, T is continuous with respect to β_{σ} .

(iii) \Rightarrow (i) Since $|x' \circ T(f)| \leq ||Tf|| ||x'||$ for all $x' \in B_{E'}$ and T is continuous with respect to β_{σ} for any $x' \in B_{E'}$; hence $|x' \circ m|$ is a real-valued σ -additive measure for any $x' \in B_{E'}$. The conclusion follows from [1, Theorem 2 p.27].

The next theorem characterises the weakly compact operators which are continuous with respect to β_t . By Sentilles [5], β_t is the finest locally convex topology on $C_b(X)$ agreeing with the compact-open topology on the norm-bounded subsets of $C_b(X)$.

THEOREM 2.2. If m is the associated vector measure of T, then the following are equivalent:

(i)
$$(\forall \epsilon > 0)(\exists K \subset X, K \text{ compact})(\|m\|(X \setminus K) < \epsilon);$$

- (ii) T is continuous with respect to β_t ;
- (iii) T is continuous on the unit ball with respect to the compact-open topology.

PROOF: (i) \Rightarrow (ii) If $\epsilon > 0$ is given, then there exists a compact subset K of X such that $|x' \circ m| (X \setminus K) < \epsilon$ uniformly in $x' \in B_{E'}$. Therefore $\{|x' \circ m| : ||x'|| \leq 1\}$ and then $\{x' \circ m : ||x'|| \leq 1\}$ is β_t -equicontinuous ([5]). Thus, T is continuous with respect to β_t .

(ii) \Rightarrow (iii) Follows from the definition of β_t .

(iii) \Rightarrow (i) From the fact that T is continuous with respect to β_t , we have that $\{|x' \circ m| : ||x'|| \leq 1\}$ is β_t -equicontinuous. The result follows from [5, Theorem 5.1].

THEOREM 2.3. If m is the associated vector measure of T, then the following are equivalent:

- (i) T is continuous with respect to β_{τ} ;
- (ii) for any decreasing net $\{f_{\alpha}\}_{\alpha \in I}$ in $C_b(X)$ with

 $f_{\alpha}(x) \rightarrow 0$ for each $x \in X$, $||Tf_{\alpha}|| \rightarrow 0$;

(iii) for any net of zero sets Z_{α} decreasing to the null set, $||m||(Z_{\alpha}) \to 0$.

PROOF: (i) \Rightarrow (ii) If $\{f_{\alpha}\}_{\alpha \in I}$ is a decreasing net in $C_b(X)$ such that $f(x)_{\alpha} \to 0$, for each $x \in X$, then $f_{\alpha} \to 0$ in the topology β_{σ} ([6]). Thus, $||Tf_{\alpha}|| \to 0$.

(ii) \Rightarrow (i) Since $|x' \circ T(f)| \leq ||Tf|| ||x'||$, for any $x' \in E'$, we have that $x' \circ T$ is τ -additive and then $\{|x' \circ m| : ||x'|| \leq 1\}$ is relatively $\sigma(M_{\tau}(X), C_b(X))$ -compact. Therefore, $\{|x' \circ m| : ||x'|| \leq 1\}$ is β_{τ} -equicontinuous ([5]). The statement follows easily from this.

(i) \Rightarrow (iii) Let $\{Z_{\alpha}\}_{\alpha \in I}$ be a net of zero sets decreasing to the null set. Consider $D = \{f \in C_b(X) : 0 \leq f(x) \leq 1 \& (\exists \alpha) (f \equiv 1 \text{ in } Z_{\alpha}).$ We index the elements of D as follows: $D = \{f_{\lambda}\}_{\lambda \in A}$ so that $\lambda > \mu$ if and only if $f_{\lambda} \leq f_{\mu}$. Thus $\{f_{\lambda}\}_{\lambda \in A}$ is a net in $C_b(X)$; further $f_{\lambda} \downarrow 0$. Hence $||Tf_{\alpha}|| \to 0$.

Since $|x' \circ T(f)| \leq ||Tf|| ||x'||$, we have that $x' \circ m \in M_{\tau}(X)$ and $\{|x' \circ m| : ||x'|| \leq 1\}$ is β_{τ} -equicontinuous. From this we get that $|x' \circ T|(f_{\lambda}) \to 0$ uniformly in $x' \in B_{E'}$.

Thus, if $\epsilon > 0$ is given, then there exists $\lambda_0 \in A$ such that $\lambda > \lambda_0$ implies $|x' \circ T|(f_{\lambda}) = \int f_{\lambda} d |x' \circ m| < \epsilon$ uniformly in $x' \in B_{E'}$. For this λ_0 there exists a $\alpha_0 \in I$ so that $f \equiv 1$ on Z_{α_0} and

$$|x' \circ m| (Z_{\alpha}) = \int \chi_{Z_{\lambda_0}} d |x' \circ m| \leq \int f_{\lambda_0} d |x' \circ m| < \epsilon$$

uniformly in $x' \in B_{E'}$. Therefore, if $\alpha > \alpha_0$, $|x' \circ m|(Z_{\alpha}) < |x' \circ m|(Z_{\alpha_0}) < \epsilon$ uniformly in $x' \in B_{E'}$. The statement follows from the fact that $||m||(A) = \sup\{|x' \circ m|(A): ||x'|| \leq 1\}$.

[6]

358

(iii) \Rightarrow (ii) Let $\{f_{\lambda}\}_{\lambda \in A}$ be a decreasing net in $C_b(X)$ such that $||f_{\alpha}|| \leq 1$ and $f_{\alpha}(x) \to 0$ for each $x \in X$, and $\epsilon > 0$. Define $Z_{\alpha} = \{x \in X : f_{\alpha}(x) \ge \epsilon/2M \& M = ||m|| (X)\}$. $\{Z_{\alpha}\}_{\alpha \in I}$ is a decreasing net of zero sets such that $Z_{\alpha} \downarrow \emptyset$. Then there exists $\alpha_0 \in I$ so that $\alpha > \alpha_0$ implies $||m|| (Z_{\alpha}) < \epsilon/2$.

Take $x' \in E'$, $||x'|| \leq 1$, and $\alpha > \alpha_0$. Then

$$\begin{aligned} |x' \circ T(f_{\alpha})| &\leq \int_{X} f_{\alpha} d \, |x' \circ m| = \int_{Z_{\alpha}} f_{\alpha} d \, |x' \circ m| + \int_{X \setminus Z_{\alpha}} f_{\alpha} d \, |x' \circ m| \\ &\leq |x' \circ m| \, (Z_{\alpha}) + (\epsilon/2M) \, |x' \circ m| \, (X \setminus Z_{\alpha}) < \epsilon \end{aligned}$$

uniformly in $x' \in B_{E'}$. Thus $Tf_{\alpha} \to 0$.

We shall say that a topological vector space E has the strict Dunford-Pettis property if for any Banach space F and every linear continuous weakly compact operator T from E into F transforms weakly Cauchy sequences into convergent sequences [1].

The following theorem applies the previous result to prove that $(C_b(X), \beta_i), i = t, \tau, \sigma$, possess the strict Dunford-Pettis property. This result was proved by Khurana [4].

THEOREM 2.4. $(C_b(X), \beta_i), i = t, \tau, \sigma$, possess the strict Dunford-Pettis property.

PROOF: Since $\beta_t \leq \beta_\tau \leq \beta_\sigma$, it is enough to show the statement for the case $(C_b(X), \beta_\sigma)$.

Let T be a linear β_{σ} -continuous operator of $C_b(X)$ to E which is weakly compact. Thus, its associated vector measure m is σ -additive and it admits a control measure μ . So if $\epsilon > 0$ is given, there exists $\delta > 0$ such that $\mu(F) < \delta$ implies $||m||(F) < \epsilon$.

Let $\{f_n\}_{n\in N}$ be a weakly Cauchy sequence in $C_b(X)$. Then $\{f_n(x)\}_{n\in N}$ is Cauchy in \mathbb{R} for each $x \in X$. By Egoroff's Theorem, there exists $F_{\delta} \in Ba(X)$ such that $\{f_n\}_{n\in N}$ is Cauchy on $X \setminus F_{\delta}$ and $\mu(F_{\delta}) < \delta$.

Let $n_0 \in \mathbb{N}$ such that for $n, m \ge n_0$ we have $\sup\{\|f_n(x) - f_m(x)\| : x \in X \setminus F_\delta\} < \epsilon/2M$, where $M = \|m\|(X)$. Thus

$$\begin{aligned} \|Tf_n - Tf_m\| &\leq \left\| \int_{X \setminus F_{\delta}} (f_n - f_m) dm \right\| + \left\| \int_{F_{\delta}} (f_n - f_m) dm \right\| \\ &\leq \sup\{ \|f_n(x) - f_m(x)\| : x \in X\} \|m\|(X) + L\|m\|(F_{\delta}) < \epsilon, \end{aligned}$$

where $||f_n|| \leq L$ for all $n \in \mathbb{N}$.

References

 J. Diestel and J. Uhl, Vector Measures (Surveys Number 15, American Math. Soc., Providence, 1977).

359

- [2] A. Grothendieck, 'Sur les applications Lineares faiblement compactes d'espaces du type C(K)', Canad. J. Math. 5 (1953), 129-173.
- [3] P. Halmos, Measure Theory (Van Nostrand, Reinhold Co., 1969).
- [4] S.S. Khurana, 'Dunford-Pettis Property', J. Math. Anal. Appl. 65 (1968), 361-364.
- [5] D. Sentilles, 'Bounded Continuous Functions on a completely regular space', Trans. Amer. Math. Soc. 168 (1972), 311-336.
- [6] R. Wheeler, 'A Survey of Baire measures and strict topologies', Exposition. Math. 1 (1983), 97-190.

Departmento de Matematica Facultad de Ciencias Universidad de Concepcion Casilla 2017 Concepcion, Chile