META-CENTRALIZERS OF NON-LOCALLY COMPACT GROUP ALGEBRAS

S. V. LUDKOVSKY
Department of Applied Mathematics, Moscow State Technical University MIREA, av. Vernadsky 78, Moscow 119454, Russia
e-mail: sludkowski@mail.ru

(Received 28 April 2013; accepted 20 January 2014; first published online 18 December 2014)

Abstract

Meta-centralizers of non-locally compact group algebras are studied. Theorems about their representations with the help of families of generalized measures are proved. Isomorphisms of group algebras are investigated in relation with metacentralizers.

2010 Mathematics Subject Classification. 17A01, 17A99, 22A10, 43A15, 43A22.

1. Introduction. Locally compact group algebras are rather well investigated and play very important role in mathematics $[\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{1 8}, \mathbf{2 6}]$. Left centralizers of locally compact group algebras were studied in [29]. In all those works, Haar measures on locally compact groups were used. Haar measures are invariant or quasiinvariant relative to left or right shifts of the entire locally compact group [6, 10, 13, 26]. According to the A.Weil theorem, if a topological group has a non-trivial borelian measure quasi-invariant relative to left or right shifts of the entire group, then it is locally compact. Moreover, it is well-known that the compactification of a topological group may have no group structure so that the theory of non-locally compact groups cannot be reduced to that of compact or locally compact groups.

On the other hand, the theory of non-locally compact groups and their representations differ drastically from that of the locally compact case (see $[\mathbf{2}, \mathbf{3}, \mathbf{1 1}$, $\mathbf{2 0}, \mathbf{2 1}, \mathbf{2 3}]$ and references therein). Measures on non-locally compact groups quasiinvariant relative to proper dense subgroups were constructed in $[\mathbf{4}, \mathbf{7}, \mathbf{8}, \mathbf{2 0}, \mathbf{2 1}, \mathbf{2 2}, 23$, 25].

This article continues investigations of non-locally compact group algebras [19, 21, 24]. The present paper is devoted to centralizers of non-locally compact group algebras, which are substantially different from that of locally compact groups. Their definition in the non-locally compact groups setting is rather specific and they are already called meta-centralizers. Theorems about their representations with the help of families of generalized measures are proved. Isomorphisms of group algebras are investigated in relation with meta-centralizers. The main results of this paper are Theorems 8-10 and 14. They are obtained for the first time.

Henceforth, definitions and notations of [19] are used.
2. Group algebra. To avoid misunderstandings, we first present our definitions and notations.

Definition 1. Let Λ be a directed set and let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a family of topological groups with completely regular (i.e. $T_{1} \cap T_{3 \frac{1}{2}}$) topologies τ_{α} satisfying the following restrictions:
(1) $\theta_{\alpha}^{\beta}: G_{\beta} \rightarrow G_{\alpha}$ is a continuous algebraic embedding, $\theta_{\alpha}^{\beta}\left(G_{\beta}\right)$ is a proper subgroup in G_{α} for each $\alpha<\beta \in \Lambda$;
(2) $\tau_{\alpha} \cap \theta_{\alpha}^{\beta}\left(G_{\beta}\right) \subset \theta_{\alpha}^{\beta}\left(\tau_{\beta}\right)$ and $\theta_{\alpha}^{\beta}\left(G_{\beta}\right)$ is dense in G_{α} for each $\alpha<\beta \in \Lambda$; then $\left(\theta_{\alpha}^{\beta}\right)^{-1}$: $\theta_{\alpha}^{\beta}\left(G_{\beta}, \tau_{\beta}\right) \rightarrow\left(G_{\beta}, \tau_{\beta}\right)$ is considered as the continuous homomorphism;
(3) G_{α} is complete relative to the left uniformity with entourages of the diagonal of the form $\mathcal{U}=\left\{(h, g): h, g \in G_{\alpha} ; h^{-1} g \in U\right\}$ with neighbourhoods U of the unit element e_{α} in $G_{\alpha}, U \in \tau_{\alpha}, e_{\alpha} \in U$;
(4) for each $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$ the embedding $\theta_{\alpha}^{\beta}:\left(G_{\beta}, \tau_{\beta}\right) \hookrightarrow\left(G_{\alpha}, \tau_{\alpha}\right)$ is precompact, that is by our definition for every open set U in G_{β} containing the unit element e_{β} a neighbourhood $V \in \tau_{\beta}$ of e_{β} exists so that $V \subset U$ and $\theta_{\alpha}^{\beta}(V)$ is precompact in G_{α}, i.e. its closure $\operatorname{cl}\left(\theta_{\alpha}^{\beta}(V)\right)$ in G_{α} is compact, where $\phi: \Lambda \rightarrow \Lambda$ is an increasing marked mapping.

Conditions 2. Henceforward, it is supposed that Conditions $(1-5)$ are satisfied:
(1) $\mu_{\alpha}: \mathcal{B}\left(G_{\alpha}\right) \rightarrow[0,1]$ is a probability measure on the Borel σ-algebra $\mathcal{B}\left(G_{\alpha}\right)$ of a group G_{α} from Section 1 with $\mu_{\alpha}\left(G_{\alpha}\right)=1$ so that
(2) μ_{α} is quasi-invariant relative to the right and left shifts on $h \in \theta_{\alpha}^{\beta}\left(G_{\beta}\right)$ for each $\alpha<$ $\beta \in \Lambda$, where $\rho_{\mu_{\alpha}}^{r}(h, g)=\left(\mu_{\alpha}^{h}\right)(d g) / \mu(d g)$ and $\rho_{\mu_{\alpha}}^{l}(h, g)=\left(\mu_{\alpha, h}\right)(d g) / \mu(d g)$ denote quasi-invariance μ_{α}-integrable factors, $\mu_{\alpha}^{h}(S)=\mu\left(S h^{-1}\right)$ and $\mu_{\alpha, h}(S)=\mu_{\alpha}\left(h^{-1} S\right)$ for each Borel subset S in G_{α};
(3) a density $\psi_{\alpha}(g)=\mu_{\alpha}\left(d g^{-1}\right) / \mu_{\alpha}(d g)$ relative to the inversion exists and it is $\mu_{\alpha^{-}}$ integrable;
(4) a subset $W_{\alpha} \in \mathcal{A}\left(G_{\alpha}\right)$ exists such that $\rho_{\mu_{\alpha}}^{r}(h, g)$ and $\rho_{\mu_{\alpha}}^{l}(h, g)$ are continuous on $\theta_{\alpha}^{\beta}\left(G_{\beta}\right) \times W_{\alpha}$ and $\psi_{\alpha}(g)$ is continuous on W_{α} with $\mu_{\alpha}\left(W_{\alpha}\right)=1$ for each $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$;
(5) each measure μ_{α} is Borel regular and radonian,
where the completion of $\mathcal{B}\left(G_{\alpha}\right)$ by all μ_{α}-zero sets is denoted by $\mathcal{A}\left(G_{\alpha}\right)$.

Notation 3. Denote by $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ the subspace in $L^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$, which is the completion of the linear space $L^{0}\left(G_{\alpha}, \mathbf{F}\right)$ of all (μ_{α}-measurable) simple functions

$$
f(x)=\sum_{j=1}^{n} b_{j} \chi_{B_{j}}(x)
$$

where $b_{j} \in \mathbf{F}, \quad B_{j} \in \mathcal{A}\left(G_{\alpha}\right), \quad B_{j} \cap B_{k}=\emptyset$ for each $j \neq k, \quad \chi_{B}$ denotes the characteristic function of a subset $B, \chi_{B}(x)=1$ for each $x \in B$ and $\chi_{B}(x)=0$ for every $x \in G_{\alpha} \backslash B$, $n \in \mathbf{N}$, where $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$. A norm on $L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ is by our definition given by the formula:

$$
\begin{equation*}
\|f\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}:=\sup _{h \in \theta_{\alpha}^{\beta}\left(G_{\beta}\right)}\left\|f_{h}\right\|_{L^{1}\left(G_{\alpha}\right)}<\infty, \tag{1}
\end{equation*}
$$

where $f_{h}(g):=f\left(h^{-1} g\right)$ for $h, g \in G_{\alpha}, L^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ is the usual Banach space of all μ_{α}-measurable functions $u: G_{\alpha} \rightarrow \mathbf{F}$ such that

$$
\begin{equation*}
\|u\|_{L^{1}\left(G_{\alpha}\right)}=\int_{G_{\alpha}}|u(g)| \mu_{\alpha}(d g)<\infty . \tag{2}
\end{equation*}
$$

Suppose that

(3) $\phi: \Lambda \rightarrow \Lambda$ is an increasing mapping, $\alpha<\phi(\alpha)$ for each $\alpha \in \Lambda$. We consider the space,
(4) $L^{\infty}\left(L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right): \alpha<\beta \in \Lambda\right):=\left\{f=\left(f_{\alpha}: \alpha \in \Lambda\right) ; \quad f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)\right.$ for each $\alpha \in \Lambda ;\|f\|_{\infty}:=\sup _{\alpha \in \Lambda}\left\|f_{\alpha}\right\|_{L_{\sigma_{\beta}}^{1}\left(G_{\alpha}\right)}<\infty$, where $\left.\beta=\phi(\alpha)\right\}$.

When measures μ_{α} are specified, spaces are denoted shortly by $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mathbf{F}\right)$ and $L^{\infty}\left(L_{G_{\beta}}^{1}\left(G_{\alpha}, \mathbf{F}\right): \alpha<\beta \in \Lambda\right)$ respectively.

Definition 4. Let the algebra $\mathcal{E}:=L^{\infty}\left(L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right): \alpha<\beta \in \Lambda\right)$ be supplied with the multiplication $f \tilde{\star} u=w$ such that

$$
\begin{equation*}
w_{\alpha}(g)=\left(f_{\beta} \tilde{\star} u_{\alpha}\right)(g)=\int_{G_{\beta}} f_{\beta}(h) u_{\alpha}\left(\theta_{\alpha}^{\beta}(h) g\right) \mu_{\beta}(d h), \tag{1}
\end{equation*}
$$

for every $f, u \in \mathcal{E}$ and $g \in G=\prod_{\alpha \in \Lambda} G_{\alpha}$, where $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}, \beta=\phi(\alpha), \alpha \in \Lambda$.
If a bounded linear transformation $T: \mathcal{E} \rightarrow \mathcal{E}$ satisfies Conditions (2, 3):
(2) $T f=\left(T_{\alpha} f_{\alpha}: \alpha \in \Lambda\right), T_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right) \rightarrow L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ for each $\alpha \in \Lambda$,
(3) $T(f \tilde{\star} u)=f \tilde{\star}(T u)$,
for each $f, u \in \mathcal{E}$, then T is called a left meta-centralizer.
Definition 5. Let X be a topological space, let $C(X, \mathbf{R})$ be the space of all continuous functions $f: X \rightarrow \mathbf{R}$, while $C_{b}(X, \mathbf{R})$ be the space of all bounded continuous functions with the norm
(1) $\|f\|:=\sup _{x \in X}|f(x)|<\infty$.

Suppose that \mathcal{F} is the least σ-algebra on X containing the algebra \mathcal{Z} of all functionally closed subsets $A=f^{-1}(0), f \in C_{b}(X, \mathbf{R})$. A finitely additive nonnegative mapping $m: \mathcal{F} \rightarrow[0, \infty)$ such that
(2) $m(A)=\sup \{m(B): B \in \mathcal{Z}, B \subset A\}$,
for each $A \in \mathcal{F}$ is called (a finitely additive) measure. A generalized measure is the difference of two measures. Denote by $M(X)=M(X, \mathbf{R})$ the family of all generalized (finitely additive) measures.
For short "generalized" may be omitted, when m is considered with values in \mathbf{R}.
Theorem 6 (A.D. Alexandroff [28]). $M(X)$ is the topologically dual space to $C_{b}(X, \mathbf{R})$, that is for each bounded linear functional J on $C_{b}(X, \mathbf{R})$ there exists a unique generalized (finitely additive) measure $m \in M(X)$ such that
(1) $J(f)=\int_{X} f d m$ for each $f \in C_{b}(X, \mathbf{R})$,
each measure $m \in M(X)$ defines a unique continuous linear functional by Formula
(1). Moreover,
(2) $\|J\|=\|m\|$.

Definitions 7. A bounded linear functional J on $C_{b}(X, \mathbf{R})$ is called σ-smooth, if (1) $\lim _{n} J\left(f_{n}\right)=0$
for each sequence f_{n} in $C_{b}(X, \mathbf{R})$ such that $0 \leq f_{n+1}(x) \leq f_{n}(x)$ and $\lim _{n} f_{n}(x)=0$ for each point $x \in X$. The linear space of all σ-smooth linear functionals is denoted by $M_{\sigma}(X)=M_{\sigma}(X, \mathbf{R})$.

A bounded linear functional J on $C_{b}(X, \mathbf{R})$ is called tight, if Formula (1) is fulfilled for each net f_{α} in $C_{b}(X, \mathbf{R})$ such that $\left\|f_{\alpha}\right\| \leq 1$ for each α and f_{α} tends to zero uniformly on each compact subset K in X. The space of all tight linear functionals is denoted by $M_{t}(X)=M_{t}(X, \mathbf{R})$.

If $m_{1}, m_{2} \in M(X)$, then $m=m_{1}+i m_{2}$ is a complex-valued measure, their corresponding spaces are denoted by $M(X, \mathbf{C}), M_{\sigma}(X, \mathbf{C})=M_{\sigma}(X)+i M_{\sigma}(X)$ and $M_{t}(X, \mathbf{C})=M_{t}(X)+i M_{t}(X)$.

Theorem 8. Let \mathcal{E} be a real $\mathbf{F}=\mathbf{R}$ or complex $\mathbf{F}=\mathbf{C}$ algebra (see Section 4), let also T be a left meta-centralizer on \mathcal{E}. Then there exists a family $\nu=\left(\nu_{\alpha}: \alpha \in \Lambda\right)$ of generalized \mathbf{F}-valued measures v_{α} on G_{α} of bounded variation such that

$$
\begin{equation*}
T f=v \tilde{\star} f, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(T_{\alpha} f_{\alpha}\right)(g)=\left(v_{\beta} \tilde{\star} f_{\alpha}\right)(g)=\int_{G_{\beta}} v_{\beta}(d h) f_{\alpha}\left(\theta_{\alpha}^{\beta}(h) g\right) \tag{2}
\end{equation*}
$$

for each $\alpha \in \Lambda$ and $g \in G_{\alpha}$ with $\beta=\phi(\alpha)$.
Proof. For each $\beta \in \Lambda$ and a neutral element $e_{\beta} \in G_{\beta}$, we consider a basis of its neighbourhoods $\left\{V_{a, \beta}: a \in \Psi_{\beta}\right\}$ such that $\operatorname{cl}_{G_{\alpha}} \theta_{\alpha}^{\beta}\left(V_{a, \beta}\right)$ is compact in $\left(G_{\alpha}, \tau_{\alpha}\right)$, where Ψ_{β} is a set, $c l_{X} A$ denotes the closure of a set A in a topological space X. The set Ψ_{β} is directed by the inclusion: $a \leq b \in \Psi_{\beta}$ if and only if $V_{b, \beta} \subseteq V_{a, \beta}$.

There is a natural continuous linear restriction mapping $p_{V}^{U}: C_{b}(U, \mathbf{F}) \rightarrow C_{b}(V, \mathbf{F})$ for each closed subsets U and V in G_{β} such that $V \subset U$, where $p_{V}^{U}(f)=\left.f\right|_{V}$ for each $f \in C_{b}(U, \mathbf{F})$. At the same time, if U is compact, then each continuous bounded function g on V with values in \mathbf{F} has a continuous extension $\pi_{U}^{V}(g)$ on U with values in \mathbf{F} such that

$$
\|g\|_{C_{b}(V, \mathbf{F})} \leq\left\|\pi_{U}^{V}(g)\right\|_{C_{b}(U, \mathbf{F})} \leq 2\|g\|_{C_{b}(V, \mathbf{F})}
$$

due to Tietze-Uryson Theorem 2.1.8 [9], since G_{β} is T_{0} and hence, completely regular by Theorem 8.4 [13] and each Huasdorff compact space is normal by Theorems 5.1.1 and 5.1.5
[9]. Thus, there exists a linear continuous embedding $\pi_{U}^{V}: C_{b}(V, \mathbf{F}) \hookrightarrow C_{b}(U, \mathbf{F})$.
The probability measure μ_{β} on G_{β} is Borel regular and radonian. Hence, there exists a σ-compact subset X_{β} in G_{β} such that $\mu_{\beta}\left(X_{\beta}\right)=1$, i.e. X_{β} is the countable union of compact subsets $X_{\beta, n}$ in $\left(G_{\beta}, \tau_{\beta}\right)$ with $X_{\beta, n} \subset X_{\beta, n+1}$ for each natural number n.

We put

$$
\begin{equation*}
q_{a, \beta}:=\chi_{V_{a, \beta}} / \mu_{\beta}\left(V_{a, \beta}\right), \tag{3}
\end{equation*}
$$

where χ_{A} denotes the characteristic function of a subset A in $G_{\beta}, \chi_{A}(x)=1$ for each $x \in A$, while $\chi_{A}(x)=0$ for each $x \notin A$. In view of Proposition 17.7 [21] (see also Lemma 13 [19]), the net $\left\{q_{a, \beta}: a \in \Psi_{\beta}\right\}$ is an approximation of the identity relative to

META-CENTRALIZERS OF NON-LOCALLY COMPACT GROUP ALGEBRAS 353
the convolution:

$$
\begin{equation*}
\lim _{a} q_{a, \beta} \tilde{\star} f_{\alpha}=f_{\alpha} \tag{4}
\end{equation*}
$$

for each $f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$. From Formulas $(2,4)$ and 4(1-3), it follows that

$$
\begin{equation*}
T_{\alpha} f_{\alpha}=T_{\alpha}\left[\lim _{a} q_{a, \beta} \tilde{\star} f_{\alpha}\right]=\lim _{a} q_{a, \beta} \tilde{\star}\left[T_{\alpha} f_{\alpha}\right] . \tag{5}
\end{equation*}
$$

Then $q_{a, \beta} \tilde{\star}\left[T_{\alpha} \cdot\right]: L_{G_{\beta}}^{1}\left(G_{\alpha}\right) \rightarrow L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ is a continuous linear operator for each $a \in \Psi_{\beta}$ and $\alpha \in \Lambda$, particularly, for each f_{α} in the space $C_{b}\left(G_{\alpha}, \mathbf{F}\right)$ of all bounded continuous functions on G_{α} with values in the field \mathbf{F}, where

$$
\begin{equation*}
\left\|f_{\alpha}\right\|_{C_{b}}:=\sup _{x \in G_{\alpha}}\left|f_{\alpha}(x)\right|<\infty \tag{6}
\end{equation*}
$$

for each $f_{\alpha} \in C_{b}\left(G_{\alpha}, \mathbf{F}\right)$. The restriction of each $f_{\alpha} \in C_{b}\left(G_{\alpha}, \mathbf{F}\right)$ on $\theta_{\alpha}^{\beta}\left(G_{\beta}\right)$ is bounded and continuous, while $C_{b}\left(G_{\beta}, \mathbf{F}\right)$ is dense in $L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)$ with $\gamma=\phi(\beta)$ (see also Lemma 17.8 and Proposition 17.9 [21]).

This implies that an adjoint operator $B=T^{*}$ exists relative to the \approx multiplication according to the formula:

$$
\begin{align*}
\left(v_{\beta} \tilde{\star}\left[T_{\alpha} \bar{f}_{\alpha}\right]\right)(x) & =\int_{G_{\beta}} v_{\beta}(h)\left[T_{\alpha} \bar{f}_{\alpha}\right]\left(\theta_{\alpha}^{\beta}(h) x\right) \mu_{\beta}(d h) \\
& =\int_{G_{\beta}}\left(B_{\beta} v_{\beta}\right)(h) \bar{f}_{\alpha}\left(\theta_{\alpha}^{\beta}(h) x\right) \mu_{\beta}(d h), \tag{7}
\end{align*}
$$

for each $v, f \in \mathcal{E}$, where $x \in G_{\alpha}, \bar{z}$ denotes the complex conjugated number of $z \in \mathbf{C}$. The operator B_{β} is bounded and linear from $L_{G_{\gamma}}^{1}\left(G_{\beta}\right)$ into itself, since from Formula (7) the estimate follows:

$$
\begin{align*}
& \left\|B_{\beta}\right\| \leq \sup _{s \in \theta_{\beta}^{\gamma}\left(G_{\gamma}\right), t \in \theta_{\alpha}^{\beta}\left(G_{\beta}\right), 0 \neq v_{\beta} \in L_{G_{\gamma}}^{1}\left(G_{\beta}\right), 0 \neq f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right)} \\
& \frac{\left|\int_{G_{\alpha}} \int_{G_{\beta}} v_{\beta}(s h)\left[T_{\alpha} \bar{f}_{\alpha}\right]\left(\theta_{\alpha}^{\beta}(h) t x\right) \mu_{\beta}(d h) \mu_{\alpha}(d x)\right|}{\left\|v_{\beta}\right\|_{L_{G_{\gamma}}^{1}\left(G_{\beta}\right)} \mid f_{\alpha} \|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}} \leq\left\|T_{\alpha}\right\|<\infty . \tag{8}
\end{align*}
$$

The family of bounded linear operators $\left\{\left(B_{\beta} q_{a, \beta}\right) \tilde{\star}: a \in \Psi_{\beta}\right\}$ from $L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ into $L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ is pointwise bounded and hence by the Banach-Steinhaus Theorem (11.6.1) [27] it is uniformly bounded:

$$
\begin{equation*}
\sup _{a \in \Psi_{\beta}}\left\|\left(B_{\beta} q_{a, \beta}\right) \tilde{\star}\right\|<\infty \tag{B1}
\end{equation*}
$$

Therefore, inequality (8) leads to the conclusion that $B_{\beta} q_{a, \beta}=: h_{a, \beta} \in L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)$ for every $a \in \Psi_{\beta}$ and $\beta \in \Lambda$. Each function $h_{a, \beta}$ induces the linear functional

$$
\begin{equation*}
F_{a, \beta}\left(g_{\beta}\right):=\int_{G_{\beta}} g_{\beta}(x) \bar{h}_{a, \beta}(x) \mu_{\beta}(d x) \tag{9}
\end{equation*}
$$

Without loss of generality, we choose $V_{a, \beta}$ such that $\operatorname{cl}_{G_{\alpha}} V_{a, \beta}$ is compact in $\left(G_{\alpha}, \tau_{\alpha}\right)$ for each $a \in \Psi_{\beta}$. Certainly, if $f \in L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)$, then $f \in L^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)$ and

$$
\begin{equation*}
\|f\|_{L^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)} \leq\|f\|_{L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)}<\infty . \tag{10}
\end{equation*}
$$

There is the embedding $C_{b}\left(G_{\beta}, \mathbf{F}\right) \subset L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)$ and

$$
\begin{equation*}
\|f\|_{L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)} \leq\|f\|_{C_{b}\left(G_{\beta}, \mathbf{F}\right)}<\infty \tag{11}
\end{equation*}
$$

for each $f \in C_{b}\left(G_{\beta}, \mathbf{F}\right)$, since μ_{β} is the probability measure on G_{β}.
If $f \in L_{G_{\gamma}}^{1}\left(G_{\beta}\right)$, then $s \mapsto f \tilde{\star} s$ is a continuous linear operator from $C_{b}\left(G_{\beta}, \mathbf{F}\right)$ into $C_{b}\left(G_{\beta}, \mathbf{F}\right)$. This follows from the formulas:

$$
\begin{equation*}
(f \tilde{\star} s)(g)=\int_{G_{\beta}} f(h) s(h g) \mu_{\beta}(d h), \tag{12}
\end{equation*}
$$

where $g \in G_{\beta}$ and

$$
\sup _{g}|(f \tilde{\star} s)(g)| \leq\|s\|_{C_{b}} \int_{G_{\beta}}|f(h)| \mu_{\beta}(d h) \leq\|s\|_{C_{b}}\|f\|_{L^{1}\left(G_{\beta}\right)} \leq\|s\|_{C_{b}}\|f\|_{L_{G_{\gamma}}^{1}\left(G_{\beta}\right)} .
$$

It remains to verify that the function $(f \tilde{\star} s)(g)$ is continuous for each f and s as just above. For the proof consider the term

$$
\begin{equation*}
\left|(f \tilde{\star} s)\left(g_{1}\right)-(f \tilde{\star} s)\left(g_{2}\right)\right|=\left|\int_{G_{\beta}} f(h)\left[s\left(h g_{1}\right)-s\left(h g_{2}\right)\right] \mu_{\beta}(d h)\right| . \tag{13}
\end{equation*}
$$

From $f \in L_{G_{\gamma}}^{1}\left(G_{\beta}\right)$ and $s \in C_{b}\left(G_{\beta}, \mathbf{F}\right)$, it follows that for each $\epsilon>0$ there exists a compact subset V in G_{β} such that $\int_{G_{\beta} \backslash V}|f(h)| \mu_{\beta}(d h)<\epsilon$ and hence $\int_{G_{\beta} \backslash V} \mid f(h)\left[s\left(h g_{1}\right)-\right.$ $\left.s\left(h g_{2}\right)\right] \mid \mu_{\beta}(d h)<\delta$, where $0<\delta=\epsilon 2\|S\|_{C_{b}}$. Indeed, for each $\delta>0$, there exists a simple function $q \in L_{G_{\gamma}}^{1}\left(G_{\beta}\right)$ such that $\|f-q\|_{L_{G_{\gamma}}^{1}\left(G_{\beta}\right)}<\delta$ and hence the measure $|f(h)| \mu_{\beta}(d h)$ is radonian together with $|q(h)| \mu_{\beta}(d h)$. At the same time, certainly, $\int_{V}|f(h)| \mu_{\beta}(d h) \leq$ $\|f\|_{L^{1}\left(G_{\beta}\right)}$.

On the other hand, $\left[s\left(h g_{1}\right)-s\left(h g_{2}\right)\right]$ is uniformly continuous on V by the variable h, since V is compact and s is the continuous function. For each symmetric open neighbourhood $U=U^{-1}$ of the neutral element e_{β} in G_{β}, there exists a finite family of elements $p_{1}, \ldots, p_{n} \in G_{\beta}$ such that $V \subset p_{1} U \cup \ldots \cup p_{n} U$, since V is compact. Thus $V U \subset p_{1} U^{2} \cup \ldots \cup p_{n} U^{2}$. Consider a family of symmetric open neighbourhoods $U_{k}=$ U_{k}^{-1} of e_{β} such that $\left\{p_{k} U_{k}: k \in \omega\right\}$ is a covering of V and $\left|s\left(h g_{1}\right)-s\left(h g_{2}\right)\right|<\epsilon$ for each $h \in p_{k} U_{k}$ and $g_{1}, g_{2} \in U_{k}$, where $p_{k} \in G_{\beta}$ for each k, whilst ω is an ordinal. The covering $p_{k} U_{k}$ of V has a finite subcovering for $k \in M$, where M is a finite subset in ω. Thus for each $\epsilon>0$ there exists a symmetric neighbourhood $U \subseteq \bigcap_{k \in M} U_{k}$ of e_{β} such that $\left|s\left(h g_{1}\right)-s\left(h g_{2}\right)\right|<\epsilon$ for each $h \in V$ and $g_{1}, g_{2} \in U$. Therefore,

$$
\left|(f \tilde{\star} s)\left(g_{1}\right)-(f \tilde{\star} s)\left(g_{2}\right)\right| \leq \delta+\epsilon\|f\|_{L^{1}}=\epsilon\left(\|f\|_{L^{1}}+2\|s\|_{C_{b}}\right),
$$

for each $g_{1}, g_{2} \in U$. Thus

$$
\begin{equation*}
f \tilde{\star} s \in C_{b}\left(G_{\beta}, \mathbf{F}\right) \tag{14}
\end{equation*}
$$

for each $f \in L_{G_{\gamma}}^{1}\left(G_{\beta}, \mathbf{F}\right)$ and $s \in C_{b}\left(G_{\beta}, \mathbf{F}\right)$.
This implies that

$$
\begin{equation*}
C_{b}\left(G_{\beta}, \mathbf{F}\right) \ni s \mapsto(f \tilde{\star} s)\left(e_{\beta}\right) \in \mathbf{F}, \tag{15}
\end{equation*}
$$

is the continuous linear functional on $C_{b}\left(G_{\beta}, \mathbf{F}\right)$. In particular each operator $\left(B_{\beta} q_{a, \beta}\right) \tilde{\star}$ indices the continuous linear functional

$$
\begin{equation*}
J_{a, \beta}(s)=\left[\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} s\right]\left(e_{\beta}\right) \operatorname{on} C_{b}\left(G_{\beta}, \mathbf{F}\right) . \tag{16}
\end{equation*}
$$

There are the inclusions $M_{t}(X) \subset M_{\sigma}(X) \subset M(X)$ (see Section 1.4 [28] and Definitions 5, 7 and Theorem 6 above) and for $X=G_{\beta}$ in particular. On the other hand, each $w_{a, \beta}(d x):=\left(B_{\beta} q_{a, \beta}\right)(x) \mu_{\beta}(d x)$ is the radonian measure on G_{β}, i.e. belongs to the space $M_{t}\left(G_{\beta}, \mathbf{F}\right)$ of radonian measures on G_{β}.

Let Φ_{β} be a family of all left-invariant pseudo-metrics on $\left(G_{\beta}, \tau_{\beta}\right)$ providing its left uniformity denoted by \mathcal{L}_{β} (see Section 8.1.7 [9] and Condition 1(3)). This means that each $\kappa \in \Phi_{\beta}$ satisfies the restrictions:
$(P 1) \kappa(x, y) \geq 0$,
$(P 2) \kappa(x, x)=0$,
$(P 3) \kappa(x, y)=\kappa(y, x)$,
$(P 4) \kappa(x, y) \leq \kappa(x, z)+\kappa(z, y)$,
$(P 5) \kappa(z x, z y)=\kappa(x, y)$ for each $x, y, z \in G_{\beta}$.
The family Φ_{β} is directed: $\kappa_{1} \leq \kappa \in \Phi_{\beta}$ if and only if $\kappa_{1}(x, y) \leq \kappa(x, y)$ for each $x, y \in G_{\beta}$; without loss of generality for each $\kappa, \kappa_{1} \in \Phi_{\beta}$, there exists $\kappa_{2} \in \Phi_{\beta}$ such that $\kappa \leq \kappa_{2}$ and $\kappa_{1} \leq \kappa_{2}$, since $\kappa+\kappa_{1} \in \Phi_{\beta}$. Each pseudo-metric $\kappa \in \Phi_{\beta}$ defines the equivalence relation: $x \Xi_{\kappa} y$ if and only if $\kappa(x, y)=0$. Then as the uniform space $\left(G_{\beta}, \mathcal{L}_{\beta}\right)$ has the projective limit decomposition (i.e. the limit of the inverse mapping system)

$$
G_{\beta}=\lim \left\{G_{\beta, \kappa}, \pi_{\omega}^{\kappa}, \Phi_{\beta}\right\},
$$

where, $G_{\beta, \kappa}:=G_{\beta} / \Xi_{\kappa}$ denotes the quotient uniform space with the quotient uniformly, π_{κ} is a uniformly continuous mapping from G_{β} onto $G_{\beta, \kappa}, \pi_{\omega}^{\kappa}$ are uniformly continuous mappings from $G_{\beta, \kappa}$ onto $G_{\beta, \omega}$ for each $\omega \leq \kappa \in \Psi_{\beta}$ such that $\pi_{\xi}^{\omega} \circ \pi_{\omega}^{\kappa}=\pi_{\xi}^{\kappa}$ and $\pi_{\omega}=\pi_{\omega}^{\kappa} \circ \pi_{\kappa}$ for each $\xi \leq \omega \leq \kappa \in \Phi_{\beta}$ (see Sections 8.2.B, 2.5.F and Proposition 2.4.2 [9] or [14]). Moreover, the equality is satisfied: $\left\{y \in G_{\beta}: x \Xi_{\kappa} y\right\}=x \Omega_{\beta, \kappa}$ with $\Omega_{\beta, \kappa}:=\left\{y \in G_{\beta}: e_{\beta} \Xi_{\kappa} y\right\}$, since $\kappa(x, y)=0$ if and only if $\kappa\left(e_{\beta}, x^{-1} y\right)=0$ by Property $(P 5)$, where e_{β} denotes the neutral element in the group G_{β}. That is, $G_{\beta, \kappa}$ is called the homogeneous quotient uniform space.

At the same time the σ-compact subset X_{β} is dense in G_{β}, since $\mu_{\beta}(U)>0$ for each open subset U in G_{β}, but $\mu_{\beta}\left(X_{\beta}\right)=\mu_{\beta}\left(G_{\beta}\right)=1$ (see the proof above). Therefore, $\pi_{\kappa}\left(X_{\beta}\right)$ is dense in $G_{\beta, \kappa}$. Then $\pi_{\kappa}\left(X_{\beta, n}\right)$ is compact for each $\kappa \in \Phi_{\beta}$ as the continuous image of the compact space according to Theorem 3.1.10 [9], consequently, $\pi_{\kappa}\left(X_{\beta}\right)=$ $\bigcup_{n=1}^{\infty} \pi_{\kappa}\left(X_{\beta, n}\right)$ is σ-compact. On the other hand, $G_{\beta, \kappa}$ is metrizable and complete, since $\left(G_{\beta}, \mathcal{L}_{\beta}\right)$ is complete. Therefore, the topological space $\pi_{\kappa}\left(X_{\beta}\right)$ is separable, since each $\pi_{\kappa}\left(X_{\beta, n}\right)$ is separable by Theorems 4.3.5 and 4.3.27 [9] and $\pi_{\kappa}\left(X_{\beta}\right)=\bigcup_{n=1}^{\infty} \pi_{\kappa}\left(X_{\beta, n}\right)$. This implies that each metrizable space $G_{\beta, \kappa}$ is separable and complete.

The spaces $C_{b}\left(G_{\beta}, \mathbf{F}\right)$ and $C_{b}^{*}\left(G_{\beta}, \mathbf{F}\right)$ form the dual pair (see Sections 9.1 and 9.2 [27]). Then we get that the space of bounded continuous functions $C_{b}\left(G_{\beta}, \mathbf{F}\right)$ has the inductive limit representation $C_{b}\left(G_{\beta}, \mathbf{F}\right)=$ ind $-\lim _{\Phi_{\beta}} C_{b}\left(G_{\beta, \kappa}, \mathbf{F}\right)$, while its topologically dual space has the projective limit decomposition $C_{b}^{*}\left(G_{\beta}, \mathbf{F}\right)=p r-$ $\lim _{\Phi_{\beta}} C_{b}^{*}\left(G_{\beta, \kappa}, \mathbf{F}\right)$ (see Sections 9.4, 9.9, 12.2, 12.202 [27] and also the note after Theorem 2.5 .14 in [9]). This implies that $v_{\beta} \in M\left(G_{\beta}, \mathbf{F}\right)$ if and only if

$$
\begin{equation*}
v_{\beta}=\lim \left\{v_{\beta, \kappa}, \pi_{\omega}^{\kappa}, \Phi_{\beta}\right\}, \tag{M1}
\end{equation*}
$$

where, $v_{\beta, \kappa} \in M\left(G_{\beta, \kappa}, \mathbf{F}\right)$ for each $\kappa \in \Phi_{\beta}$ so that

$$
\begin{equation*}
v_{\beta}\left(\pi_{\omega}^{-1}(C)\right)=v_{\beta, \omega}(C) \text { and } v_{\beta, \kappa}\left(\left(\pi_{\omega}^{\kappa}\right)^{-1}(C)\right)=v_{\beta, \omega}(C) \tag{M2}
\end{equation*}
$$

for every $C \in \mathcal{B}\left(G_{\beta, \omega}\right)$ and $\omega \leq \kappa \in \Phi_{\beta}$.
Then we consider the measure net $\left\{w_{a, \beta, \kappa}: a \in \Psi_{\beta}\right\}$ for each $\kappa \in \Phi_{\beta}$ corresponding to measures $w_{a, \beta}(d x)=\left(B_{\beta} q_{a, \beta}\right)(x) \mu_{\beta}(d x)$ according to Formula (M2), where $x \in G_{\beta}$. Since the measure $w_{a, \beta}(d x)$ is absolutely continuous relative to the radonian measure μ_{β}, then $w_{a, \beta}$ is also radonian. Therefore, there is the inclusion $\left\{w_{a, \beta, \kappa}: a \in \Psi_{\beta}\right\} \subset$ $M_{t}\left(G_{\beta, \kappa}, \mathbf{F}\right)$ and it is known that $M_{t}(Y, \mathbf{F}) \subset M_{\sigma}(Y, \mathbf{F}) \subset M(Y, \mathbf{F})$ for a completely regular topological space Y. Thus the measure net $\left\{w_{a, \beta}: a \in \Psi_{\beta}\right\}$ weakly converges to some measure ν_{β} in $M\left(G_{\beta}, \mathbf{F}\right)$ if and only if the net $\left\{w_{a, \beta, k}: a \in \Psi_{\beta}\right\}$ weakly converges in $M\left(G_{\beta, \kappa}, \mathbf{F}\right)$ for each $\kappa \in \Phi_{\beta}$ according to Theorem 2.5.6 and Corollary 2.5.7 [9]. The net $\left\{w_{a, \beta}: a \in \Psi_{\beta}\right\}$ is norm bounded, since

$$
\begin{gathered}
\left\|B_{\beta} q_{a, \beta}\right\|_{L^{1}\left(G_{\beta}\right)} \leq \sup \left\{\left\|\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}: f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right),\left\|f_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)} \leq 1\right\} \\
=\sup \left\{\left\|q_{a, \beta} \tilde{\star}\left(T_{\alpha} f_{\alpha}\right)\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}: f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right),\left\|f_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)} \leq 1\right\} \leq \\
\left\|T_{\alpha}\right\| \sup \left\{\left\|q_{a, \beta} \tilde{\star} g_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}: g_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right),\left\|g_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)} \leq 1\right\} \\
\leq\left\|T_{\alpha}\right\|<\infty, \text { since } \\
\left\|u_{\beta} \tilde{\star} g_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)} \leq\|u\|_{L^{1}\left(G_{\beta}\right)}\left\|g_{\alpha}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right),}
\end{gathered}
$$

for each $u \in L^{1}\left(G_{\beta}\right)$ and $g_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ (see Lemma 17.2 [21]). This implies that for each $\epsilon>0$ and $\kappa \in \Phi_{\beta}$ there exists a compact set $K_{\epsilon, \kappa}$ in $G_{\beta, \kappa}$ such that $w_{a, \beta, \kappa}\left(G_{\beta, \kappa} \backslash K_{\epsilon, \kappa}\right)<$ ϵ for each $a \in \Psi_{\beta}$, since $\mu_{\beta, k}$ as the image of μ_{β} is the radonian measure on the complete separable metric space $G_{\beta, \kappa}$ and each measure $w_{a, \beta, \kappa}$ is absolutely continuous relative to $\mu_{\beta, \kappa}$ (see also Theorem 1.2 [7] and Formulas ($M 1, M 2$)).

Applying theorems either 2.24 and 2.27 or 2.30 [28], we get that a measure $\nu_{\beta, \kappa} \in$ $M_{\sigma}\left(G_{\beta, \kappa}, \mathbf{F}\right)$ exists such that the net $w_{a, \beta, \kappa}$ weakly converges to $v_{\beta, \kappa}$ for each $\beta \in \Lambda$ and $\kappa \in \Phi_{\beta}$. Thus, using Formulas (M1, M2) we have deduced that

$$
\begin{equation*}
\lim _{a} J_{a, \beta}(f)=\int_{G_{\beta}} f d \nu_{\beta,} \tag{17}
\end{equation*}
$$

for each $f \in C_{b}\left(G_{\beta}, \mathbf{F}\right)$. The variation of ν_{β} is finite and $M\left(G_{\beta}, \mathbf{F}\right)$ is the Banach space relative to the variation norm according to Theorems 1.2 and 1.3 [28].

META-CENTRALIZERS OF NON-LOCALLY COMPACT GROUP ALGEBRAS 357
Let $x \in C_{b}\left(G_{\beta}, \mathbf{F}\right)$ and $y \in C_{b}\left(G_{\gamma}, \mathbf{F}\right)$, we consider the function

$$
\begin{equation*}
z(g)=\int_{G_{\gamma}} y(h) x\left(\theta_{\beta}^{\gamma}(h) g\right) \mu_{\gamma}(d h) \tag{18}
\end{equation*}
$$

It evidently exists and is μ_{β}-measurable, since $\mu_{\gamma}\left(G_{\gamma}\right)=1$, consequently,

$$
\sup _{g \in G_{\beta}}\left|\int_{G_{\gamma}} y(h) x\left(\theta_{\beta}^{\gamma}(h) g\right) \mu_{\gamma}(d h)\right| \leq\|y\|_{C_{b}\left(G_{\gamma}, \mathbf{F}\right)}\|x\|_{C_{b}\left(G_{\beta}, \mathbf{F}\right)} .
$$

Moreover, $z \in C_{b}\left(G_{\beta}, \mathbf{F}\right) \subset L_{G_{\nu}}^{1}\left(G_{\beta}\right)$ due to the latter inequality and Properties (11, 14) (see above). Since ν_{β} is the weak limit of the net $J_{a, \beta}$, then for each $\epsilon>0$, there exists $b \in \Psi_{\beta}$ such that

$$
\begin{equation*}
\left|\int_{G_{\beta}} z(g) \nu_{\beta}(d g)-\int_{G_{\beta}} z(g)\left(B_{\beta} q_{a, \beta}\right)(g) \mu_{\beta}(d g)\right|<\epsilon, \tag{19}
\end{equation*}
$$

for each $a>b$. In view of the Fubini theorem the latter inequality implies that

$$
\begin{align*}
& \mid \int_{G_{\gamma}} y(h) \mu_{\gamma}(d h) \int_{G_{\beta}} x\left(\theta_{\beta}^{\gamma}(h) g\right) v_{\beta}(d g) \\
& \quad-\int_{G_{\gamma}} y(h) \mu_{\gamma}(d h) \int_{G_{\beta}} x\left(\theta_{\beta}^{\gamma}(h) g\right)\left(B_{\beta} q_{a, \beta}\right)(g) \mu_{\beta}(d g) \mid \leq \epsilon \tag{20}
\end{align*}
$$

for each $a>b$. Therefore, $T_{\alpha} x(g)=\left(\nu_{\beta} \tilde{\star} x\right)(g)$ for each $x \in C_{b}\left(G_{\beta}, \mathbf{F}\right) \cap$ $\left[\left(\theta_{\alpha}^{\beta}\right)^{-1}\left(C_{b}\left(G_{\alpha}, \mathbf{F}\right)\right)\right]$ and $g \in G_{\beta}$. If $f_{\alpha} \in C_{b}\left(G_{\alpha}, \mathbf{F}\right)$, then its restriction $\left.f_{\alpha}\right|_{\theta_{\alpha}^{\beta}\left(G_{\beta}\right)}$ is continuous and bounded, that is $f_{\alpha} \circ\left(\theta_{\alpha}^{\beta}\right)^{-1}$ is continuous and bounded on $\left(G_{\beta}, \tau_{\beta}\right)$ due to $1(2)$. Moreover, the function $\psi_{g}(h):=f_{\alpha}\left(\theta_{\alpha}^{\beta}(h) g\right)$ is continuous and bounded by $h \in G_{\beta}$ for each $g \in G_{\alpha}$. Hence,

$$
\begin{equation*}
\left(v_{\beta} \tilde{\star} \psi_{g}\right)(s)=\int_{G_{\beta}} f_{\alpha}\left(\theta_{\alpha}^{\beta}(h s) g\right) v_{\beta}(d h)=\left[v_{\beta} \tilde{\star} f_{\alpha}\right]\left(\theta_{\alpha}^{\beta}(s) g\right), \tag{21}
\end{equation*}
$$

is defined for each $s \in G_{\beta}$ and $g \in G_{\alpha}$, particularly for $s=e_{\beta}$.
By the conditions of this theorem $T_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}\right) \rightarrow L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ is a continuous linear operator. There is also the inclusion $C_{b}\left(G_{\alpha}, \mathbf{F}\right) \subset L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ so that $C_{b}\left(G_{\alpha}, \mathbf{F}\right)$ is dense in $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$, since $\mu_{\alpha}\left(X_{\alpha}\right)=\mu_{\alpha}\left(G_{\alpha}\right)=1$ with the σ-compact subset X_{α} in G_{α} (see also Lemma 17.8 and Proposition 17.9 [21] and Property (14) above). Let $f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ and we take any sequence of bounded continuous functions $f_{\alpha, n} \in C_{b}\left(G_{\alpha}, \mathbf{F}\right)$ converging to f_{α} in $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$. We have

$$
\begin{equation*}
\lim _{a}\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha, n}=f_{\alpha} \text { and } \lim _{n} f_{\alpha, n}=f_{\alpha,} \tag{22}
\end{equation*}
$$

in $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$. Then

$$
\begin{align*}
& \left\|\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha, n}-\left(B_{\beta} q_{b, \beta}\right) \tilde{\star} f_{\alpha, m}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)} \\
& \quad \leq\left\|\left(B_{\beta} q_{a, \beta}-B_{\beta} q_{b, \beta}\right) \tilde{\star} f_{\alpha, n}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}+\left\|\left(B_{\beta} q_{b, \beta}\right) \tilde{\star}\right\|\left\|f_{\alpha, n}-f_{\alpha, m}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}, \tag{23}
\end{align*}
$$

consequently, for each $\epsilon>0$ there exist $a_{0} \in \Psi_{\beta}$ and $n_{0} \in \mathbf{N}$ such that

$$
\begin{equation*}
\left\|\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha, n}-\left(B_{\beta} q_{b, \beta}\right) \tilde{\star} f_{\alpha, m}\right\|_{L_{G_{\beta}}^{1}\left(G_{\alpha}\right)}<\epsilon, \tag{24}
\end{equation*}
$$

for each $a, b>a_{0}$ and $n, m>n_{0}$ (see Lemma 17.2 and Proposition 17.7 [21] and Formula ($B 1$) above). That is the net $\left\{\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha, n}:(a, n)\right\}$ is fundamental (i.e. of the Cauchy type) in the Banach space $L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$, where $(a, n) \leq(b, m)$ if $a \leq b$ and $n \leq m$. Therefore the limit exists

$$
\begin{equation*}
T_{\alpha} f_{\alpha}=\lim _{a, n}\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha, n}=\lim _{n} \lim _{a}\left(B_{\beta} q_{a, \beta}\right) \tilde{\star} f_{\alpha, n}=\lim _{n} v_{\beta} \tilde{\star} f_{\alpha, n}=v_{\beta} \tilde{\star} f_{\alpha} . \tag{25}
\end{equation*}
$$

Thus

$$
T_{\alpha} f_{\alpha}=v_{\beta} \tilde{\star} f_{\alpha},
$$

for each $f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ as well, that is, Formulas $(1,2)$ are fulfilled.
Theorem 9. Let the assumptions of Theorem 8 be satisfied. Then the statement of Theorem 8 is equivalent to the following:
(1) relative to the strong operator topology the set of all convolution operators of the form $8(1,2)$ on $\mathcal{E}:=L^{\infty}\left(L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right): \alpha<\beta \in \Lambda\right)$ with values in \mathcal{E} is a closed subset of the ring of all bounded linear operators from \mathcal{E} into \mathcal{E}.

Proof. $(8 \Rightarrow 9)$. Let $\nu_{a, \beta} \tilde{\star}$ be a net of convolution operators converging to an operator $T_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}\right) \rightarrow L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ in the strong operator topology for each $\alpha \in \Lambda$, hence T is the left meta-centralizer on \mathcal{E}, since each operator $\left\{\nu_{a, \beta^{\star}}: \alpha \in \Lambda, \beta=\phi(\alpha)\right\}$ is the left meta-centralizer.
$(9 \Rightarrow 8)$. From the proof of Theorem 8, we analogously get

$$
T_{\alpha} f_{\alpha}=\lim _{a} v_{a, \beta} \tilde{\star} f_{\alpha}
$$

for each $\alpha \in \Lambda$ and $f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ with $\beta=\phi(\alpha)$, where $v_{a, \beta} \in M\left(G_{\beta}, \mathbf{F}\right)$ for each $\beta \in \Lambda$ and $a \in \Psi_{\beta}$ consequently, $T=\left(T_{\alpha}: \alpha\right)$ is the convolution operator.

Theorem 10. Let S be a bounded linear mapping of \mathcal{E} (see Section 4) into itself such that $S f=\left(S_{\alpha} f_{\alpha}: \alpha \in \Lambda\right)$ with $S_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}\right) \rightarrow L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ for each $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$. Then the following statements (i) and (ii) are equivalent:
(i) an operator S has the form
(1) $S=p \hat{U}_{a}$ for some marked elements $a \in G:=\prod_{\alpha \in \Lambda} G_{\alpha}$ and $p=\left\{p_{\alpha}:\left|p_{\alpha}\right|=\right.$ $1 \forall \alpha \in \Lambda\} \in \mathbf{F}^{\Lambda}$, that is
(2) $S_{\alpha} f_{\alpha}(x)=p_{\alpha} \hat{U}_{a_{\beta}} f_{\alpha}(x)$ for any $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$ and each $x \in G_{\alpha}$, where
(3) $\hat{U}_{g_{\beta}} f_{\alpha}(x)=f_{\alpha}\left(\theta_{\alpha}^{\beta}\left(g_{\beta}\right) x\right)$ for each $g_{\beta} \in G_{\beta}$ and $x \in G_{\alpha}$;
(ii) (4) S is a left meta-centralizer and
(4) $\left\|S_{\alpha} f_{\alpha}\right\|=\left\|f_{\alpha}\right\|$ for every $f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$ and $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$.

Proof. The \mathbf{F}-linear span of the set of all non-negative functions $f \in L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ is dense in $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$. Therefore, each bounded linear operator S_{α} can be written in the form $S_{\alpha}=S_{1, \alpha}+i S_{2, \alpha}=S_{1, \alpha}^{+}-S_{1, \alpha}^{-}+i S_{2, \alpha}^{+}-i S_{2, \alpha}^{-}$, where $S_{k, \alpha}^{+} f \geq 0$ and $S_{k, \alpha}^{-} f \geq 0$ for $k=1,2$ and each $f \in P_{\alpha}, \quad S_{k, \alpha}=S_{k, \alpha}^{+}-S_{k, \alpha}^{-}$, where P_{α} denotes the cone of functions in $L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$ non-negative μ_{α}-almost everywhere on G_{α}.

Certainly over the real field additives $S_{2, \alpha}^{ \pm}$vanish. In view of Theorem 11 [19], there exist $a_{k}^{+} \in G$ and $p_{k}^{+}=\left\{p_{k, \alpha}^{+}: p_{k, \alpha}^{+}>0 \forall \alpha \in \Lambda\right\} \in \mathbf{R}^{\Lambda}$ such that $S_{k, \alpha}^{+} f_{\alpha}(x)=p_{k, \alpha}^{+} \hat{U}_{a_{k, \beta}^{+}} f_{\alpha}(x)$ and analogously for $S_{k, \alpha}^{-}$for each $k=1,2$.

Suppose that $a_{k}^{t} \neq a_{l}^{s}$ for some $t, s \in\{+,-\}$ and $k, l \in\{1,2\}$, then there exists $\alpha \in \Lambda$ such that $a_{k, \beta}^{t} \neq a_{l, \beta}^{s}$ with $\beta=\phi(\alpha)$. On the other hand, we have $S_{k, \alpha} f_{\alpha}=S_{k, \alpha}^{+} f_{\alpha}-$ $S_{k, \alpha}^{-} f_{\alpha}=p_{k, \alpha}^{+} f_{\alpha}\left(\theta_{\alpha}^{\beta}\left(a_{k, \beta}^{+}\right) x\right)-p_{k, \alpha}^{-} f_{\alpha}\left(\theta_{\alpha}^{\beta}\left(a_{k, \beta}^{-}\right) x\right)$ for each $f_{\alpha} \in L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right)$, since $f_{\alpha}=$ $\left[f_{1, \alpha}^{+}-f_{1 \alpha}^{-}\right]+i\left[f_{2, \alpha}^{+}-f_{2, \alpha}^{-}\right]$, where $f_{k, \alpha}^{+}(x)=\max \left(f_{k, \alpha}(x), 0\right)$ for every $k=1,2$ and $x \in G_{\alpha}$, $f_{k, \alpha}^{+}, f_{k, \alpha}^{-} \in P_{\alpha}$. Then if U is an open subset in G_{α} such that $\theta_{\alpha}^{\beta}\left(a_{k, \beta}^{s}\right) U \cap \theta_{\alpha}^{\beta}\left(a_{l, \beta}^{t}\right) U=\emptyset$ for every $k, l=1,2$ and $t, s \in\{+,-\}$, then $\left\|S_{\alpha} \chi_{U}\right\|=\sum_{k=1}^{2} \sum_{t \in\{+,-\}}\left(\left|p_{k, \alpha}^{t}\right|\left\|\hat{U}_{a_{k, \beta}^{t}} \chi_{U}\right\|\right)$. If the interior of the intersection $\cap_{k=1}^{2} \cap_{t \in\{+,-\}}\left(\theta_{\alpha}^{\beta}\left(a_{k, \beta}^{t}\right) U\right)$ is non-void, then $\left\|S_{\alpha} \chi_{U}\right\|<$ $\sum_{k=1}^{2} \sum_{t \in\{+,-\}}\left(\left|p_{k, \alpha}^{t}\right|\left\|\hat{U}_{a_{k, \beta}^{t}} \chi_{U}\right\|\right)$, since $\mu_{\alpha}(V)>0$ for each open subset V in G_{α}, consequently, S_{α} is not an isometry.

Therefore, if S satisfies Conditions $i i(4,5)$, then $a_{k, \beta}^{t}=a_{l, \beta}^{s}$ for each $t, s \in\{+,-\}$ and $k, l \in\{1,2\}$. Thus $\left(S_{\alpha} f_{\alpha}\right)=p_{\alpha} \hat{U}_{a_{\beta}} f_{\alpha}(x)$ for any $\alpha \in \Lambda$ and each $x \in G_{\alpha}$, where $p_{\alpha}=p_{1, \alpha}^{+}-p_{1, \alpha}^{-}+\dot{p}_{2, \alpha}^{+}-i p_{2, \alpha}^{-}$. Naturally, in the case $\mathbf{F}=\mathbf{R}$ the terms $p_{2}^{ \pm}$vanish. In view of Lemma 7 [19] \hat{U}_{a} is the isometry. Since S preserves norms, then $\left|p_{\alpha}\right|=1$ for each α.

Vice versa Conditions i(1-3) imply $i i(4,5)$ due to Lemma 7 [19].
Lemma 11. Let \hat{U}_{c} be a left translation on \mathcal{E} as in Section 10, let also $T: \mathcal{E} \rightarrow \mathcal{F}$ be an isomorphism of normed algebras such that $T f=\left(T_{\alpha} f_{\alpha}: \alpha \in \Lambda\right), T_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right) \rightarrow$ $L_{H_{\beta}}^{1}\left(H_{\alpha}, \lambda_{\alpha}, \mathbf{F}\right)$ and $\left\|T_{\alpha}\right\| \leq 1$ for each α, where $\mathcal{F}=L^{\infty}\left(L_{H_{\beta}}^{1}\left(H_{\alpha}, \lambda_{\alpha}, \mathbf{F}\right): \alpha<\beta \in \Lambda\right)$. If $\hat{K}_{c}=T \hat{U}_{c} T^{-1}$, then there exist mappings of groups $\xi: G \rightarrow H$ and $p: G \rightarrow \mathbf{F}^{\Lambda}$ such that
(1) $\hat{K}_{c}=p_{c} \hat{V}_{t}$ for $t=\xi(c)$ and
(2) $p_{c}=\left\{p_{c, \alpha}:\left|p_{c, \alpha}\right|=1 \forall \alpha \in \Lambda\right\} \in \mathbf{F}^{\Lambda}$, where \hat{V}_{d} denotes the left translation operator on $\mathcal{F}, c \in G$.

Proof. We have $T(f \tilde{\star} u)=(T f) \tilde{\star}(T u)$ for each $u, f \in \mathcal{E}$ and $T^{-1}(g \tilde{\star} v)=$ $\left(T^{-1} g\right) \tilde{\star}\left(T^{-1} v\right)$ for each $v, g \in \mathcal{F}$. One can take the approximate identity $\left\{q_{a, \beta}: a \in \Psi_{\beta}\right\}$ as in Section 8 and consider functions $s_{a, \beta}=T_{\beta} q_{a, \beta}$. The operator T is bijective and continuous from \mathcal{E} onto \mathcal{F}, where \mathcal{E} and \mathcal{F} as linear normed spaces are complete. According to the Banach theorem 4.5.4.3 [17] (or see [1]) the inverse operator T^{-1} is also bounded. Due to Formulas $8(7,8)$ there exists the adjoint operator $\left(\hat{K}_{c_{\gamma}}\right)^{*}$ relative to the $\tilde{\star}$ multiplication for each $c \in G$ and $\gamma \in \Lambda$. For each $f, g \in \mathcal{F}, \gamma=\phi(\beta)$ and $\beta=\phi(\alpha)$ the limit exists

$$
\begin{gathered}
\left(\hat{K}_{c_{\gamma}} f_{\beta}\right) \tilde{\star} g_{\alpha}=f_{\beta} \tilde{\star}\left[\left(\hat{K}_{c_{\gamma}}\right)^{*} g_{\alpha}\right]=\lim _{a} f_{\beta} \tilde{\star}\left\{s_{a, \beta} \tilde{\star}\left[\left(\hat{K}_{c_{\gamma}}\right)^{*} g_{\alpha}\right]\right\} \\
=f_{\beta} \tilde{\star}\left\{\lim _{a}\left(\hat{K}_{c_{\gamma}} s_{a, \beta}\right) \tilde{\star} g_{\alpha}\right\}=f_{\beta} \tilde{\star}\left\{\lim _{a}\left(T_{\beta} \hat{U}_{c_{\gamma}} T_{\beta}^{-1} T_{\beta} q_{a, \beta}\right) \tilde{\star} g_{\alpha}\right\} \\
=f_{\beta} \tilde{\star}\left\{\lim _{a}\left(T_{\beta} \hat{U}_{c_{\gamma}} q_{a, \beta}\right) \tilde{\star}_{\alpha}\right\} \text { and hence } \\
\left\|\left(\hat{K}_{c_{\gamma}} f_{\beta}\right) \tilde{\star} g_{\alpha}\right\| \leq \\
\varlimsup_{a}\left\|f_{\beta} \tilde{\star}\left(\left[T_{\beta} \hat{U}_{c_{\gamma}} q_{a, \beta}\right] \tilde{\star} g_{\alpha}\right)\right\| \leq\left\|f_{\beta}\right\|\left\|T_{\beta}\right\|\left\|g_{\alpha}\right\| \overline{\lim }_{a}\left\|\left[\hat{U}_{c_{\gamma}} q_{a, \beta}\right] \tilde{\star}\right\| \leq\left\|f_{\beta}\right\|\left\|g_{\alpha}\right\|,
\end{gathered}
$$

for each $f, g \in \mathcal{E}$, since $\|T\| \leq 1$. On the other hand, $\hat{K}_{c_{\gamma}^{-1}}=\left(\hat{K}_{c_{\gamma}}\right)^{-1}$. Thus the inequalities $\left\|\hat{K}_{c_{\gamma}}\right\| \leq 1$ and $\left\|\left(\hat{K}_{c_{\gamma}}\right)^{-1}\right\| \leq 1$ are satisfied for each $\gamma \in \Lambda$ and $c \in G$, consequently, \hat{K}_{c} is the isometry for each $c \in G$.

Applying Theorem 10 we get the statement of this lemma.
Lemma 12. The mappings $\left(G, \tau_{G}^{b}\right) \ni c \rightarrow p_{c} \in\left(B^{\Lambda}, \tau_{B}^{b}\right)$ for each β and $\left(G, \tau_{G}^{b}\right) \ni c \mapsto$ $\xi(c) \in\left(H, \tau_{H}^{b}\right)$ of Lemma 11 are continuous homomorphisms, where $B=\{x \in \mathbf{F}:|x|=$ $1\}$ is the multiplicative group, the product B^{Λ} is in the box topology τ_{B}^{b}, where τ_{G}^{b} denotes the box topology on G (see Section 9 [19]).

Proof. These mappings are homomorphisms, since

$$
p_{c h, \gamma} \hat{V}_{\xi_{\gamma}\left(c_{\gamma} h_{\gamma}\right)}=T_{\beta} \hat{U}_{c_{\gamma} h_{\gamma}} T_{\beta}^{-1}=T_{\beta} \hat{U}_{c_{\gamma}} T_{\beta}^{-1} T_{\beta} \hat{U}_{h_{\gamma}} T_{\beta}^{-1}=p_{c, \gamma} \hat{V}_{\xi_{\gamma}\left(c_{\gamma}\right)} p_{h, \gamma} \hat{V}_{\xi_{\gamma}\left(h_{\gamma}\right)},
$$

for each $c, h \in G, \beta \in \Lambda$ with $\gamma=\phi(\beta)$, where $\xi(c)=\left\{\xi_{\alpha}\left(c_{\alpha}\right): \alpha \in \Lambda\right\}, \xi_{\alpha}: G_{\alpha} \rightarrow H_{\alpha}$ for each $\alpha \in \Lambda$. The mapping ξ is bijective, since for $\xi(c)=e_{H} \in H$, where e_{H} is the neutral element in H, one gets $p_{c, \gamma} I_{\mathcal{F}}=T_{\beta} \hat{U}_{c_{\gamma}} T_{\beta}^{-1}$ and hence $\hat{U}_{c_{\gamma}}=p_{c, \gamma} I_{\mathcal{E}}$, where $I_{\mathcal{E}}$ denotes the unit operator on \mathcal{E}. Therefore, $c=e_{G}$ and hence $p_{c, \gamma}=1$ for each γ.

Then the mapping $G \ni c \mapsto \hat{U}_{c}$ is continuous from G in the box topology τ_{G}^{b} and relative to the strong operator topology according to Proposition 10 [19], consequently, the mapping $H \ni t \mapsto \hat{V}_{t}$ is also continuous, since T and T^{-1} are bounded linear operators.

Then for each $\epsilon=\left(\epsilon_{\alpha}>0: \alpha \in \Lambda\right)$, there exists a neighbourhood $Y=\prod_{\alpha \in \Lambda} Y_{\alpha}$ of e_{H} in $\left(H, \tau_{H}^{b}\right)$ such that each Y_{α} is an (open) neighbourhood of the neutral element e_{α} in H_{α} for which $\epsilon_{\alpha} / 2<\lambda_{\alpha}\left(Y_{\alpha}\right)<\epsilon_{\alpha}$ for each $\alpha \in \Lambda$, since λ_{α} is the quasi-invariant borelian measure on H_{α} relative to the dense subgroup H_{β} and hence non-atomic. Moreover, if Z is an arbitrary neighbourhood of e_{H} in $\left(H, \tau_{H}^{b}\right)$, then there exists Y such that $Y Y^{-1} \subseteq Z$. Then the function $g=\left(g_{\alpha}=\chi_{Y_{\alpha}}: \alpha \in \Lambda\right)$ belongs to \mathcal{F}, where $\chi_{A_{\alpha}}$ denotes the characteristic function of a subset A_{α} in H_{α}. Suppose that p is a marked element in B^{Λ}. Let $t \in H$ be such that

$$
\begin{align*}
& \left\|p_{\beta} g_{\beta} \tilde{\star}\left(\hat{V}_{t_{\beta}}^{*} g_{\alpha}\right)-g_{\beta} \tilde{\star} g_{\alpha}\right\|<\left[\left.\lambda_{\beta}\right|_{Y_{\beta}} \tilde{\star} \lambda_{\alpha}\right]\left(Y_{\alpha}\right), \text { where } \\
& \quad\left[\lambda_{\beta} \mid Y_{\beta} \tilde{\star} \lambda_{\alpha}\right]\left(Y_{\alpha}\right):=\int_{Y_{\beta}} \int_{Y_{\alpha}} \lambda_{\beta}\left(d x_{\beta}\right) \lambda_{\alpha}\left(\theta_{\alpha}^{\beta}\left(x_{\beta}\right) d x_{\alpha}\right), \tag{1}
\end{align*}
$$

where $\theta_{\alpha}^{\beta}: H_{\beta} \hookrightarrow H_{\alpha}$ are embeddings (see Section 1). If $t_{\beta} \notin Z_{\beta}$, then $s_{\beta} Y_{\beta}$ and $s_{\beta} t_{\beta} Y_{\beta}$ are the disjoint subsets in the group H_{β} for each element s_{β} in H_{β}, consequently,

$$
\begin{aligned}
& \left\|p_{\beta} g_{\beta} \tilde{\star}\left[\hat{V}_{t_{\beta}}^{*} g_{\alpha}\right]-g_{\beta} \tilde{\star} g_{\alpha}\right\|=\sup _{s_{\beta} \in H_{\beta}} \int_{H_{\alpha}}\left|p_{\beta}\left[\hat{V}_{s_{\beta} t_{\beta}} g_{\beta}\right] \tilde{\star}_{\alpha}\left(x_{\alpha}\right)-\left[\hat{V}_{s_{\beta}} g_{\beta}\right] \tilde{\star} g_{\alpha}\left(x_{\alpha}\right)\right| \lambda_{\alpha}\left(d x_{\alpha}\right) \\
& \quad=\sup _{s_{\beta} \in H_{\beta}} \int_{H_{\beta}} \int_{H_{\alpha}}\left|p_{\beta} g_{\beta}\left(s_{\beta} t_{\beta} x_{\beta}\right) g_{\alpha}\left(\theta_{\alpha}^{\beta}\left(x_{\beta}\right) x_{\alpha}\right)\right| \lambda_{\beta}\left(d x_{\beta}\right) \lambda_{\alpha}\left(d x_{\alpha}\right) \\
& \quad+\sup _{s_{\beta} \in H_{\beta}} \int_{H_{\beta}} \int_{H_{\alpha}}\left|g_{\beta}\left(s_{\beta} x_{\beta}\right) g_{\alpha}\left(\theta_{\alpha}^{\beta}\left(x_{\beta}\right) x_{\alpha}\right)\right| \lambda_{\beta}\left(d x_{\beta}\right) \lambda_{\alpha}\left(d x_{\alpha}\right) \geq\left[\left.\lambda_{\beta}\right|_{Y_{\beta}} \tilde{\star} \lambda_{\alpha}\right]\left(Y_{\alpha}\right) .
\end{aligned}
$$

Thus Inequality (1) implies that $t_{\beta} \in Z_{\beta}$. Hence, the mapping $p \hat{V}_{\xi_{\beta}\left(c_{\beta}\right)} \mapsto \xi_{\beta}\left(c_{\beta}\right)=t_{\beta} \in$ H_{β}, with H_{β} in the topology τ_{β}, is continuous for each β, when linear operators $p \hat{V}$ are considered relative to the strong operator topology, since the set of all ($\mu_{\alpha^{-}}$ measurable) simple functions is dense in $L_{G_{\beta}}^{1}\left(G_{\alpha}\right)$. The mapping $c_{\beta} \mapsto \xi_{\beta}\left(c_{\beta}\right)$ is the
composition of three mappings $c_{\beta} \mapsto \hat{U}_{c_{\beta}} \mapsto T_{\alpha} \hat{U}_{c_{\beta}} T_{\alpha}^{-1}=p_{c, \beta} \hat{V}_{\xi_{\beta}\left(c_{\beta}\right)} \mapsto \xi_{\beta}\left(c_{\beta}\right)=t_{\beta}$ which are continuous for each $\beta \in \Lambda$ as it was proved above, consequently, the mapping $\xi:\left(G, \tau_{G}^{b}\right) \rightarrow\left(H, \tau_{H}^{b}\right)$ is also continuous.

The mapping $c \mapsto p_{c}$ is continuous, since $c \mapsto p_{c} I$ is continuous as the composition of two uniformly bounded and continuous mappings $T \hat{U}_{c} T^{-1}$ and $\hat{K}_{\xi(c)}$.

Lemma 13. The mapping $\xi: G \rightarrow H$ is the homeomorphism of $\left(G, \tau_{G}^{b}\right)$ onto $\left(H, \tau_{H}^{b}\right)$.
Proof. If $\left\{\xi_{\beta}\left(x_{\beta, b}\right): b\right\}$ is a net converging to $y_{\beta} \in H_{\beta}$, where $x_{\beta, b} \in G_{\beta}$, then $\left\{\hat{V}_{\xi_{\beta}\left(x_{\beta, b}\right)}: b\right\}$ converges to $\hat{V}_{y_{\beta}}$ in the strong operator topology. Therefore, $\left\{T_{\alpha}^{-1} \hat{V}_{\xi_{\beta}\left(x_{\beta, b}\right)} T_{\alpha}: b\right\}$ converges to $T_{\alpha}^{-1} \hat{V}_{y_{\beta, b}} T_{\alpha}$. From Lemma 11 we have the equality

$$
T_{\alpha}^{-1} \hat{V}_{\xi_{\beta}\left(x_{\beta, b}\right)} T_{\alpha}=p_{x_{b}, \beta}^{-1} \hat{U}_{x_{\beta, b},},
$$

hence, the net of operators $\left\{p_{x_{b}, \beta}^{-1} \hat{U}_{x_{\beta, b}}: b\right\}$ strongly converges to $p_{\beta} \hat{U}_{x_{\beta}}$ for some $p_{\beta} \in B$ and $x_{\beta} \in G_{\beta}$. Thus the equality

$$
p_{\beta} T_{\alpha} \hat{U}_{x_{\beta}} T_{\alpha}^{-1}=\hat{V}_{y_{\beta}},
$$

is fulfilled with $y_{\beta}=\xi_{\beta}\left(x_{\beta}\right)$ and $p_{\beta}=p_{x, \beta}^{-1}$ for each $\beta \in \Lambda$. This implies that $\xi_{\beta}\left(G_{\beta}\right)$ is closed in H_{β} for each β and hence $\xi(G)$ is closed in $\left(H, \tau_{H}^{b}\right)$.

The inverse operator T^{-1} is bounded (see Section 11). Then $T_{\alpha}^{-1} \hat{V}_{y_{\beta}} T_{\alpha}=$ $\left(s T_{\alpha}\right)^{-1} \hat{V}_{y_{\beta}}\left(s T_{\alpha}\right)$ for each $s \in \mathbf{F} \backslash\{0\}$. Hence, without loss of generality we can consider that $0<\left\|T_{\alpha}^{-1}\right\| \leq 1$ for each $\alpha \in \Lambda$. On the other hand, from the equality $T_{\alpha}^{-1} \hat{V}_{y_{\beta}} T_{\alpha}=p_{x, \beta}^{-1} \hat{U}_{x_{\beta}}$ with $x_{\beta}=\xi_{\beta}^{-1}\left(y_{\beta}\right)$ analogously to ξ in Section 12 the continuity of $\xi_{\beta}^{-1}: \xi_{\beta}\left(G_{\beta}\right) \rightarrow G_{\beta}$ follows.

Applying Lemmas 11 and 12 and the proof in this section above to $T^{-1}: \mathcal{F} \rightarrow \mathcal{E}$, we get that there exists a continuous bijective homomorphism $\eta:\left(H, \tau_{H}^{b}\right) \rightarrow\left(G, \tau_{G}^{b}\right)$ such that $\eta(H)$ is closed in $\left(G, \tau_{G}^{b}\right)$ and
(1) $\hat{Q}_{y}=r_{y} \hat{U}_{t}$ for $t=\eta(y)$ and
(2) $r_{y}=\left\{r_{y, \alpha}:\left|r_{y, \alpha}\right|=1 \forall \alpha \in \Lambda\right\} \in \mathbf{F}^{\Lambda}$, where $\hat{Q}_{y}=T^{-1} \hat{V}_{y} T$ for each $y \in H, r$: $\left(G, \tau_{G}^{b}\right) \rightarrow B^{\Lambda}$ is a continuous homomorphism. The operators \hat{K}_{c} and \hat{Q}_{y} are the left meta-centralizers on \mathcal{F} and \mathcal{E} respectively for each $c \in G$ and $y \in H$. But from 11(1,2) it follows that $\eta=\xi^{-1}$ and $p_{\eta(y)}=r_{y}^{-1}$ for each $y \in H$, since η and ξ are bijective homomorphisms. Therefore, Formulas $(1,2)$ and $11(1,2)$ imply that $\eta(\xi(G))=G$ and hence $\xi(G)=H$.

Theorem 14. Let $T: \mathcal{E} \rightarrow \mathcal{F}$ be an isomorphism of normed algebras such that $T f=$ $\left(T_{\alpha} f_{\alpha}: \alpha \in \Lambda\right), T_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right) \rightarrow L_{H_{\beta}}^{1}\left(H_{\alpha}, \lambda_{\alpha}, \mathbf{F}\right)$ and $\left\|T_{\alpha}\right\| \leq 1$ for each α, where $\mathcal{F}=L^{\infty}\left(L_{H_{\beta}}^{1}\left(H_{\alpha}, \lambda_{\alpha}, \mathbf{F}\right): \alpha<\beta \in \Lambda\right)$ (see Sections 11 and 12). Then a homeomorphism ξ of topological groups exists from $\left(G, \tau_{G}^{b}\right)$ onto $\left(H, \tau_{H}^{b}\right)$ and a continuous homomorphism $\psi: G \rightarrow B^{\Lambda}$ such that
(1) $T \hat{U}_{x} T^{-1}=\psi\left(x^{-1}\right) \hat{V}_{\xi(x)}$ and
(2) $(T f)_{\alpha}(\xi(x))=\psi_{\beta}\left(x_{\beta}\right) f_{\alpha}\left(x_{\alpha}\right)$ for each $x \in G, f \in \mathcal{E}$ and $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$, where $\psi(x)=\left(\psi_{\alpha}\left(x_{\alpha}\right): \alpha \in \Lambda\right), \psi_{\alpha}: G_{\alpha} \rightarrow B$,

$$
T_{\alpha} \hat{U}_{x_{\beta}} T_{\alpha}^{-1}=\psi_{\beta}\left(x_{\beta}^{-1}\right) \hat{V}_{\xi_{\beta}\left(x_{\beta}\right)} .
$$

Moreover, T is an isometry.

Proof. We define a homomorphism $\psi(x)=p_{x}^{-1}$, hence $\psi(x)=\left(\psi_{\alpha}\left(x_{\alpha}\right)=p_{x, \alpha}^{-1}\right.$: $\alpha \in \Lambda\} \in B^{\Lambda}$, hence $\psi_{\alpha}: G_{\alpha} \rightarrow B$ is a character for each $\alpha \in \Lambda$. From Lemmas 1113, Statement (1) of this theorem follows such that $\xi:\left(G, \tau_{G}^{b}\right) \rightarrow\left(H, \tau_{H}^{b}\right)$ and ξ^{-1} : $\left(H, \tau_{H}^{b}\right) \rightarrow\left(G, \tau_{G}^{b}\right)$ and $\psi: G \rightarrow B^{\Lambda}$ are continuous homomorphisms with $\xi(G)=H$.

If $S: \mathcal{E} \rightarrow \mathcal{F}$ is an isomorphism of normed algebras such that $S f=\left(S_{\alpha} f_{\alpha}: \alpha \in \Lambda\right)$, $S_{\alpha}: L_{G_{\beta}}^{1}\left(G_{\alpha}, \mu_{\alpha}, \mathbf{F}\right) \rightarrow L_{H_{\beta}}^{1}\left(H_{\alpha}, \lambda_{\alpha}, \mathbf{F}\right)$ and $\left\|S_{\alpha}\right\| \leq 1$ for each α such that S satisfies Equality (2).
$(S f)_{\alpha}(\xi(x))=\psi_{\beta}\left(x_{\beta}\right) f_{\alpha}\left(x_{\alpha}\right)$ for each $x \in G$ and $f \in \mathcal{E}$, then $\left(S^{-1} g\right)_{\alpha}(x)=$ $\psi_{\beta}\left(x_{\beta}^{-1}\right) g_{\alpha}\left(\xi_{\alpha}\left(x_{\alpha}\right)\right)$ for each $g \in \mathcal{F}$ and $x \in G$. Therefore, one infers that

$$
\begin{aligned}
& \left(S_{\alpha} \hat{U}_{c_{\beta}} S_{\alpha}^{-1} g_{\alpha}\right)\left(\xi_{\alpha}\left(x_{\alpha}\right)\right)=\psi_{\beta}\left(x_{\beta}\right)\left(\hat{U}_{c_{\beta}} S_{\alpha}^{-1} g_{\alpha}\right)\left(x_{\alpha}\right) \\
& \quad=\psi_{\beta}\left(x_{\beta}\right)\left(S_{\alpha}^{-1} g_{\alpha}\right)\left(\theta_{\alpha}^{\beta}\left(c_{\beta}\right) x_{\alpha}\right)=\psi_{\beta}\left(x_{\beta}\right) \psi_{\beta}\left(x_{\beta}^{-1} c_{\beta}^{-1}\right) g_{\alpha}\left(\theta_{\alpha}^{\beta}\left(\xi_{\beta}\left(c_{\beta}\right)\right) \xi_{\alpha}\left(x_{\alpha}\right)\right) \\
& \quad=\psi_{\beta}\left(c_{\beta}^{-1}\right) g_{\alpha}\left(\theta_{\alpha}^{\beta}\left(\xi_{\beta}\left(c_{\beta}\right)\right) \xi_{\alpha}\left(x_{\alpha}\right)\right)=\psi_{\beta}\left(c_{\beta}^{-1}\right)\left(\hat{U}_{\xi_{\beta}\left(c_{\beta}\right)} g_{\alpha}\right)\left(\xi_{\alpha}\left(x_{\alpha}\right)\right),
\end{aligned}
$$

consequently, $S_{\alpha} \hat{U}_{c_{\beta}} S_{\alpha}^{-1}=\psi_{\beta}\left(c_{\beta}^{-1}\right) \hat{U}_{\xi_{\beta}\left(c_{\beta}\right)}$ for each $c \in G, \alpha \in \Lambda$ with $\beta=\phi(\alpha)$, where embeddings $H_{\beta} \hookrightarrow H_{\alpha}$ also are denoted by θ_{α}^{β} for the notation simplicity (see Section 1). This means that $S \hat{U}_{c} S^{-1}=T \hat{U}_{c} T^{-1}$ and hence

$$
\begin{equation*}
T_{\alpha}^{-1} S_{\alpha} \hat{U}_{c_{\beta}}=\hat{U}_{c_{\beta}} T_{\alpha}^{-1} S_{\alpha} \tag{3}
\end{equation*}
$$

for each $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$. In view of Lemmas 11-13 and the conditions of this theorem the linear operators T, T^{-1}, S and S^{-1} are continuous. Thus, the operator

$$
\begin{equation*}
T^{-1} S=: Y \tag{4}
\end{equation*}
$$

is the isomorphism of the algebra \mathcal{E} onto itself commuting with all operators \hat{U}_{c} such that Y and Y^{-1} are continuous. As in Section 13, it is sufficient to consider the case $0<\left\|Y_{\alpha}\right\| \leq 1$ for each $\alpha \in \Lambda$, since $\hat{U}_{c_{\beta}}=Y_{\alpha}^{-1} \hat{U}_{c_{\beta}} Y_{\alpha}=\left(k Y_{\alpha}\right)^{-1} \hat{U}_{c_{\beta}}\left(k Y_{\alpha}\right)$ for every $k \in \mathbf{F} \backslash\{0\}, \alpha \in \Lambda$ with $\beta=\phi(\alpha)$ and $c \in G$. Take $f, q \in \mathcal{E}$ and consider the left metacentralizer A defined by a radonian measure $v_{\alpha} \in M_{t}\left(G_{\alpha}, \mathbf{F}\right)$ such that

$$
\begin{equation*}
v_{\alpha}\left(d x_{\alpha}\right)=q_{\alpha}\left(x_{\alpha}\right) \mu_{\alpha}\left(d x_{\alpha}\right), \tag{5}
\end{equation*}
$$

for each $\alpha \in \Lambda$, that is $A f=v \tilde{\star} f$. On the other hand,

$$
\begin{equation*}
(A f)_{\alpha}\left(x_{\alpha}\right)=\int_{G_{\beta}} q_{\beta}\left(y_{\beta}\right)\left[\hat{U}_{y_{\beta}} f_{\alpha}\left(x_{\alpha}\right)\right] \mu_{\beta}\left(d y_{\beta}\right), \tag{6}
\end{equation*}
$$

that is relative to the strong operator topology

$$
\begin{equation*}
A_{\alpha}=\int_{G_{\beta}} q_{\beta}\left(y_{\beta}\right) \hat{U}_{y_{\beta}} \mu_{\beta}\left(d y_{\beta}\right) \tag{7}
\end{equation*}
$$

for each $\alpha \in \Lambda$ with $\beta=\phi(\alpha)$, where $A f=\left(A_{\alpha} f_{\alpha}: \alpha \in \Lambda\right)$. In each Banach space $L_{G_{\gamma}}^{1}\left(G_{\beta}, \mu_{\beta}, \mathbf{F}\right)$ the space of (μ_{β}-measurable) simple functions $\sum_{j=1}^{n} v_{j} \chi_{Z_{j}}$ is dense, where $v_{j} \in \mathbf{F}$ is a constant and Z_{j} is a μ_{β}-measurable subset in G_{β} for each $j=1, \ldots, n$, $n \in \mathbf{N}$. Therefore, from Formulas (3-7) it follows that

$$
Y A f=Y(q \tilde{\star} f)=(Y q) \tilde{\star}(Y f)=A Y f=q \tilde{\star}(Y f),
$$

META-CENTRALIZERS OF NON-LOCALLY COMPACT GROUP ALGEBRAS 363

consequently, $Y q=q$ for each $q \in \mathcal{E}$, since $f \in \mathcal{E}$ is arbitrary. Thus $Y=I_{\mathcal{E}}$ and hence $T=S$, where $I_{\mathcal{E}}$ denotes the unit operator on \mathcal{E}. From this Formula (2) follows. The last statement follows from Formulas (2) and 3(1).
15. Remark. The results of this paper can be used for further studies of non-locally compact group algebras, representations of groups, completions and extensions of groups, etc.

REFERENCES

1. N. Dunford and J. C. Schwartz, Linear operators. vol. 1-3 (John Wiley and Sons, Inc., New York, USA, 1966).
2. W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Mathematics, vol. 1466 (Spinger-Verlag, Berlin, USA, 1991).
3. W. Banaszczyk, On the existence of exotic Banach-Lie groups, Math. Ann. 264 (4) (1983), 485-493.
4. Ya. I. Belopolskaya and Yu. L. Dalecky, Stochastic equations and differential geometry (Kluwer Academic Publishers, Dordrecht, 1989).
5. V. I. Bogachev, Measure theory. vol. 1, 2 (Springer-Verlag, Berlin, USA, 2007).
6. N. Bourbaki, Integration. Vector integration. Haar measure. Convolution and representations (Moscow, Nauka, 1970), Ch. 6-8.
7. Yu. L. Dalecky and S. V. Fomin, Measures and differential equations in infinitedimensional spaces (Kluwer Academic Publishers, Dordrecht, 1991).
8. Yu. L. Dalecky and Ya. L. Shnaiderman, Diffusion and quasi-invariant measures on infinite-dimensional Lie groups, Funct. Anal. Appl. 3 (2) (1969), 156-158.
9. R. Engelking, General topology (Moscow, Mir, 1986).
10. J. M. G. Fell and R. S. Doran, Representations of $*$-algebras, locally compact groups, and Banach *-algebraic bundles (Boston, Academic Press, 1988).
11. F. Fidaleo, Continuity of Borel actions of Polish groups on standard measure algebras, Atti Sem. Mat. Fiz. Univ. Modena 48 (1) (2000), 79-89.
12. F. Ghahramani, V. Runde and G. Willis, Derivations on group algebras, Proc. London Math. Soc. 80 (2) (2000), 360-390.
13. E. Hewitt and K. A. Ross, Abstract harmonic analysis. vol. 1, 2 (Springer-Verlag, Berlin, USA, 1994).
14. J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12 (American Mathematical Society, Providence, RI, 1964).
15. B. E. Johnson, The derivation problem for group algebras of connected locally compact groups, J. London Math. Soc. 63 (2) (2001), 441-452.
16. Y. Kawada, On the group ring of a topological group, Math. Japonicae 1 (1) (1948), $1-5$.
17. A. N. Kolmogorov and S. V. Fomin, Elements of theory of functions and functional analysis (Moscow, Nauka, 1989).
18. V. Losert, The derivation problem for group algebras, Annals of Math. 168 (1) (2008), 221-246.
19. S. V. Ludkovsky Operators on a non locally compact group algebra, Bull. Sci. Math. (Paris). Ser. 2137 (5) (2013), 557-573; DOI: 10.1016/j.bulsci.2012.11.008
20. S. V. Ludkovsky, Topological transformation groups of manifolds over nonArchimedean fields, representations and quasi-invariant measures, I, J. Math. Sci., N. Y. (Springer) 147 (3) (2008), 6703-6846.
21. S. V. Ludkovsky, Topological transformation groups of manifolds over nonArchimedean fields, representations and quasi-invariant measures, II J. Math. Sci., N. Y. (Springer) 150 (4) (2008), 2123-2223.
22. S. V. Ludkovsky, Stochastic processes on geometric loop groups, diffeomorphism groups of connected manifolds, associated unitary representations, J. Math. Sci., N. Y. (Springer) 141 (3) (2007), 1331-1384.
23. S. V. Ludkovsky, Quasi-invariant measures on a group of diffeomorphisms of an infinitedimensional real manifold and induced irreducible unitary representations, Rend. dell'Istituto di Matem. dell'Università di Trieste. Nuova Serie. 30 (1-2) (1999), 101-134.
24. S. V. Ludkovsky, Properties of quasi-invariant measures on topological groups and associated algebras, Ann. Math. B. Pascal. 6 (1) (1999), 33-45.
25. S. V. Ludkovsky, Semidirect products of loops and groups of diffeomorphisms of real, complex and quaternion manifolds, and their representations, in Focus on Groups Theory Research (Ying, L. M., Editor) (Nova Science Publishers, Inc., New York, 2006), 59-136.
26. M. A. Naimark, Normed Rings (Moscow, Nauka, 1968).
27. L. Narici and E. Beckenstein, Topological vector spaces (Marcel-Dekker Inc., New York, USA, 1985).
28. V. S. Varadarajan, Measures on topological spaces, Mat. Sbornik. 55 (1961), 35-100 (in Russian); English transl.: Amer. Math. Soc. Transl. 48 (2) (1965), 161-228.
29. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pac.J. Math. 2 (2) (1952), 251-261.
