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ON A THEOREM OF SYLVESTER AND SCHUR

BY
D. HANSON

In 1892, Sylvester [7] proved that in the set of integers n, n+1,...,n+k—1,
n>k>1, there is a number containing a prime divisor greater than k. This theorem
was rediscovered, in 1929, by Schur [6]. More recent results include an elementary
proof by Erdds [1] and a proof of the following theorem by Faulkner [2]: Let p,

be the least prime >2k; if n>p, then (Z) has a prime divisor > p, with the ex-
ceptions (2) and (3 ) In that paper the author uses some deep results of Rosser

and Schoenfeld [5] on the distribution of primes. A note by Moser [4] states that a
simple extension of Erdos’ proof leads to the result that the product of k consecu-
tive integers greater than k is divisible by a prime >11k.

The object of this note is to prove by elementary means the following theorem:

THEOREM. The product of k consecutive integers n(n+1) - - - (n+k—1) greater
than k contains a prime divisor greater than $k with the exceptions 3.4, 8.9 and
6.7.8.9.10.

We may reformulate the theorem as follows: If n > 2k then (Z) contains a
prime divisor greater than §k with the above exceptions.

COROLLARY. Forallk>1,n>2k, (Z) has a prime divisor > k.

The result of the corollary is suggested in [4].

The first part of the following proof employs methods similar to those used by
Erdos in [1]. In [3] we proved by elementary means the following: The product of
the prime powers less than or equal to n is less than 3" for n>1, i.e. if e=a(p, n) is
such that p*<n<p*1, then [],_, p*<3". It is this result that enables us to extend
Erdos’ work. "

Since the exponent f, to which a prime occurs in (k) is

= 8 (G-I
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it is easy to see that

Lemma 1. If p | (Z) then p*><n.

Proof of the theorem. (1). Let w(k) denote the number of primes <k. Clearly

for k>8, w(k)<%k. Thus if ( ) has no prime factor greater than $k, Lemma 1
implies

(") < pV/27 3% £ L3/
(n) _n . n—1  n—k+1 N (n)"
k k k—1 1 k

k
n 3/4k
= < n

(k)

which is false if £k <n'/4. Therefore our theorem holds for 8 <k <n'/4,

It is easy to see that 7(k)<ik for k>37 and =(k)<2k for k<300. In a similar
manner as above we then have that the theorem is true for 37<k<n'/? and 300<
k<n*?3 in these cases respectively.

(2). We now consider the case k>n?/3. If (k) contains no prime divisor ex-
ceeding $k then by Lemma 1

However since

we must have

(1) (k)<HpH pILp

p=<3/2k p<n 1/3

In [3] we proved by elementary methods that

() 3>TIp 11 p H A

p<ng p<n0/ p<n

Therefore, since k>n*? implies k'/*>n'/2'-V for I>>2, we have

3) %> T p Il P IL P

1/3 1/5

p<3/2k p<n p<n
Now taking ny=n'/2 in (2), we find
1/2
4 3 >TIrpIlpIlp
p<nll? pzpi/t 1/6

Combining (1), (3) and (4) we have under the assumption that (Z) is not divisible
by any prime exceeding $k& that

5 (n') < 33/2k+n1/2
(5) .
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4k 44\ 1
It is easy to prove by induction that ( ) > (—) —. Assume that n>4k. Then
. k 3%/ 4k
(5) implies

AV
©) g (‘5‘;) e
It now follows from (6) that
(3k+n'/?) log 3>k(4 log 4—3 log 3)—log 4k
and under the initial assumption that k>n?%? that
n'’2 log 3>n%*3(8 log 2—% log 3)—log n

which is false if n>240. 3% 38V 1
We now assume 3k<n<4k. Inductively we can show ( ) > (—) —, then as

above we have k 2%/ 3k
3k 3BV 1
33/2k+n1/ 2 (_) (_) 1
> k > 2%/ 3k

(8k+n'/?) log 3>k (3 log 3—2 log 2)—log 3k.

which implies

But since n<4k, we have
2k'2 log 3> k(3 log 3—2 log 2)—log 3k,

which is false for £>120 and our theorem holds for n>480.
It now only remains to check the cases where 2k <n<3k, k>n?/3, We first prove
the following.

LEMMA 2. There is a prime between 3n and 4n for n>1.

Proof. Assume the contrary. Consider the binomial coefficient (4:) It is easy
4
to see that no prime p, such that 2n<p<3n divides ( n)' Thus our assumption is

that no prime between 2n and 4n occurs in (nn) .
. . [4n
If o, is the exponent of p in " then

“= 5 (-GG

Since each term appearing in this sum is either 0 or 1 for any p, if «,>2 then
p<(4n)'/2. It now follows that under our assumption

™) (")<1m»r 100

n p*<2n pS(4n)1/2
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since if p*» < 2n < p*»+* then 4n < p”»+*. On the other hand we can prove by induction
4n 4\ n,

that >|=)—. By (2) and (7) we then have
n

3%/ 4n
44)n 1 0
==« 3 n+(4n)1/2
(33 4n

which is false for n>2200, and a straight-forward check of a table of primes for
1<n<2200 concludes the proof of Lemma 2.

If we now consider the case 2k <n<3k, k>n?/3, our conclusion holds for k>4 by
Lemma 2 since there is a prime between [$#] and n, and [§n]> $k.

Thus our theorem holds for £ >8 with a finite number of exceptions which may be
checked by a table of primes.

(3) Consider the case k=5, we want to show that n(n—1) - - (n—4) where
n—4>5 is divisable by a prime >11. Assume the contrary and consider the

binomial coefficient (’51) By Lemma 1 we have

nn—1)---(n—4) _ (n

7((3/2)5) 4
n =n
5-4-3-2-1 5)<

which is certainly false for say n>129. A check of tables of primes for n<129
reveals one exception to our theorem i.e. 6.7.8.9.10 has no prime divisor >7.
We may treat the case k=4 in the same manner and no exceptions occur.

The cases k=6 and k=7 now follows from the case k=5 since § - 6<3 - 7<11
and the product of any five consecutive numbers greater than 6 contains a prime
divisor >11.

For k=3, consider the integers n, n+1, n+2, n>3. If n=0 (3), then either n or
n+1 is divisable by a prime greater than 3 since (n, n+41)=1 and n>3. The case
n+2=0 (3) is identical. If n4-1=0 (3) the only time whether neither n or n+42 is
divisable by a prime greater than 3 is when # and n4-2 are powers of 2 i.e. when
n=2. Therefore our theorem holds for k=3.

When k=2, by the same approach we only have the exceptions 3.4 and 8.9,
since the only solutions to 2"—3#=41 are =2, f=1 and a=3, f=2. The case
k=1 is trivially true.

10 . .
The exception ( 5) proves the corollary to the theorem i.e. that Z is the “best

possible” constant ¢ such that Z) is divisable by a prime >ck for n>2k.
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