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Gauge theories in two dimensions – basics

As an introduction to the cast of characters of two-dimensional gauge theories,
we briefly summarize here the basics of pure Maxwell theory, QED, pure YM
theory and QCD. This includes the corresponding actions, symmetries, equations
of motion and their solutions.

The basics of gauge theories in two dimensions is “standard material” which
appears in many books and review articles, for instance [66], [178], [1] and [2].
For treatment in non-covariant gauges see [28].

8.1 Pure Maxwell theory

The simplest theory of gauge fields in two dimensions is obviously the abelian
Maxwell theory defined by the classical action,

S =
∫

d2x

[
−1

4
Fμν Fμν

]
, (8.1)

where the field strength

Fμν = ∂μAν − ∂ν Aμ (8.2)

has, in two dimensions, only one non-trivial component E1 ≡ F10 = −F01 =
∂1A0 − ∂0A1 . The action is invariant under the full global two-dimensional con-
formal symmetry SO(2, 2), discussed in Section 2.1, which includes in particular
the ISO(1, 1), where I stands for inhomogeneous, namely adding the momenta,
thus going over to the Poincare group from the Lorentz group. The action is by
construction also invariant under the gauge transformation,

Aμ(x, t)→ Aμ(x, t) + ∂μΛ(x, t). (8.3)

The canonical dimension of Aμ is clearly zero. The corresponding equation of
motion reads,

∂μFμν = 0 ∂0E1 = ∂1E1 = 0 → E1 = constant. (8.4)

Thus we conclude that the two-dimensional Maxwell theory is an empty theory
on an R1,1 manifold. On such a space-time requiring finite energy implies that
E1 = 0. This is of course not surprising. In d-dimensional space-time the number
of degrees of freedom of an abelian gauge field is d− 2 and hence there are no
degrees of freedom in two dimensions.
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8.2 QED2 – Schwinger’s model

Next we couple the two-dimensional abelian gauge fields to a Dirac fermion. The
Lagrangian density of this model is given by,1

L = −1
4
Fμν Fμν + Ψ̄(i	∂ − e 	A −m)Ψ

=
1
2
(∂̄A− ∂Ā)2 + ψ†∂̄ψ + ψ̃†∂ψ̃ + eψ†ψĀ + eψ̃†ψ̃A−m(ψ†ψ̃ + ψ̃†ψ),

(8.5)

where in the second line the action is expressed in terms of the light-cone deriva-
tives and components of the gauge fields, and the Dirac fermion is decomposed
into its left and right chiral fermions, as discussed in Section 3.8. It is evident
that with the gauge field having a vanishing dimension, the gauge coupling e has
a dimension of mass. Thus the action is not invariant any more under the two-
dimensional global conformal symmetry, but rather only under the ISO(1, 1)
Poincare group. For the massless case, the action is classically invariant under
the global transformations,

Ψ→ eiαΨ Ψ→ eiα̃γ5 Ψ

ψ → ei(α+ α̃)ψ ψ̃ → ei(α−α̃)ψ̃. (8.6)

In fact the left and right chiral transformations, for the massless case, can be
lifted also into holomorphic and anti-holomorphic transformations, as was dis-
cussed in Section 3.7.1. The corresponding vector and axial currents

Jμ = Ψ̄γμΨ Jμ
5 = Ψ̄γμγ5Ψ

J = ψ†ψ J̄ = ψ̃†ψ̃. (8.7)

Again by construction the action is also invariant under the gauge transfor-
mation,

Ψ→ e−iΛ(x,t)Ψ Aμ(x, t)→ Aμ(x, t) +
1
e
∂μΛ(x, t). (8.8)

Quantum mechanically the axial current is not conserved even for the massless
case due to an anomaly,

∂μJμ
5 =

e

2π
εμν Fμν . (8.9)

We will derive this result using the bosonized version, see Section 9.1. Unlike
Maxwell’s theory, this theory has non-trivial degrees of freedom. However, once
again the gauge field is not dynamical. This phenomenon can be easily demon-
strated in the axial gauge A1 = 0, where the other component A0 can be solved

1 The Schwinger model was introduced in [190] and further analyzed in [68] and [64].
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as a function of the electric current. The resulting electric field is,

E1 = −F01 = −e∂−1
1 J0 −

eθ

2π
, J0 =: Ψ†Ψ :, (8.10)

θ is a new parameter in the theory, the vacuum angle.2 In Part 3 of the book
we will describe its four-dimensional analog which is the vacuum angle due to
QCD4 instanton tunneling.

The massless Schwinger model can easily be solved using the anomaly equa-
tion combined with the equation of motion of the system. This will be done in
Section 9.1 using the bosonized version where we also address the massive case.
In Chapter 15 we determine the spectrum of the massless case using a BRST
quantization approach. In Chapter 14 we analyze the nature of the system and
determine when it confines and when it admits a screening behavior.

8.3 Yang–Mills theory

It is straightforward to generalize the action of the Maxwell theory (8.1) to the
non-abelian case.3 The gauge fields are now in the adjoint representation of a
non-abelian gauge group G. We will mainly be interested in the groups SO(Nc),
U(Nc) and SU(Nc). Thus Aμ is an Nc ×Nt either orthogonal, or hermitian or
traceless hermitian matrix of the form Aμ = tB AB

μ where tB are the generators
of the group, B = 1, ...,dimG and dimG is the dimension of the corresponding
algebra [ 1

2 Nc(Nc − 1), N 2
c and N 2

c − 1, respectively]. The field strength is now,

Fμν = ∂μAν − ∂ν Aμ + i[Aμ,Aν ]

Fz̄z = ∂̄A− ∂Ā + i[A, Ā], (8.11)

where again we write it out in light-cone coordinates. The action of two-
dimensional Yang–Mills theory reads,

SY M 2 =
∫

d2x

[
− 1

2e2
c

Tr(Fμν Fμν )
]

=
∫

d2x

[
− 1

4e2
c

F a
μν F aμν

]
, (8.12)

and the corresponding equations of motions are,

DμFμν = ∂μFμν + i[Aμ, Fμν ] = 0. (8.13)

Note that we have rescaled the fields A by a factor of the gauge coupling, as
compared with the abelian case. Note, however, that this does not affect the
dynamical dimensions, namely the space-time behavior of Green’s functions.

In this formulation Aμ has dimension one and so is the dimension of the color
gauge coupling ec . Again since the coupling constant has a dimension of mass
the classical theory is not invariant under the full global conformal symmetry,

2 The θ angle was introduced by Lowenstein and Swieca [152] and also by Coleman [64].
3 The Yang–Mills non-abelian gauge theory was introduced in the seminal paper [229].
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but only with respect to the ISO(1, 1) Poincare transformations. The action is
invariant under a non-abelian gauge transformation, which in infinitesimal form
is,

Aμ → Aμ + DμΛ = Aμ + ∂μΛ + i[Aμ,Λ], (8.14)

where Λ = tAΛA . A priori this is not a free theory, but rather an interacting
one. However, in a similar manner to Maxwell’s theory, this model too on an
R1,1 manifold has no dynamical degrees of freedom just as the abelian model.
This can easily be seen by fixing a gauge, for instance A0 = 0. In this gauge the
equations of motion read,

∂0F
01 = 0 ∂1F

10 + i[A1 , F
01 ] = 0. (8.15)

From the first we get that ∂2
0 A1 = 0, and thus A1 = f1(x1) + x0f2(x1). Using

the residual gauge invariance, of gauge transformations that depend only on x1 ,
we can go to f1 = 0, and then the second equation implies that f2 is a constant
C, which yields F01 = C, and then again the requirement of finite energy results
in C = 0. This will also be shown in a complicated way using a BRST approach
in Chapter 15.

When the underlying manifold has a non-trivial topology like that of a torus
then the theory is not totaly empty but instead has topological degrees of free-
dom. This will be described in Section 16.

Finally, the non-abelian case is different from the abelian in higher dimensions,
as the former is not free there. While the abelian case represents free photons,
the non-abelian case represents interacting gluons, which turn to interacting glue
balls in the physical space.

8.4 Quantum chromodynamics

The theory of non-abelian gauge fields coupled to Dirac quarks in the fundamen-
tal representation of the gauge group, QCD2 , is described by the action,

SQC D2 =
∫

d2x
{
− 1

2e2
c

Tr(Fμν Fμν )− Ψ̄ai [(i	∂− 	A + m)Ψi ]a
}

. (8.16)

The action is invariant under two-dimensional Poincare transformation and
the non-abelian generalization of the gauge transformation of (8.8), which in
infinitesimal form is,

δΨa = −i[Λ(x, t)]baΨb δAμ(x, t) = ∂μΛ(x, t) + i[AμΛ], (8.17)

with the non-abelian Λ = ΛATA . Ψ is in the fundamental representation of
the gauge group which we take to be SU(Nc) where a = 1, . . . , Nc denote
the color indices. As was discussed in Section 6.3.4 flavor degrees of freedom
have been included by assigning a flavor index to the Dirac fermion Ψi , i =
1, . . . , Nf . For this case the theory is obviously invariant classically under a global
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UL(Nf )× UR(Nf ) symmetry. Here there is no anomaly, as in 2d the anomaly
occurs via the abelian gauge field only.

In a similar manner to the transition from the empty Maxwell theory to
the dynamically viable Schwinger model, so is the transition from the two-
dimensional pure Yang–Mills theory to QCD2 . The difference, however, is that
in the non-abelian case, even for the massless case there is no simple way to
solve the theory. Instead we will need to implement various different techniques
developed in the first part of the book. In the next section we will describe both
QED and QCD in two dimensions using the bosonization language. This will
enable us to solve for the baryonic spectrum in the strong coupling limit. In
Chapter 14 the string tension of several two-dimensional dynamical systems will
be computed. An analysis of the spectrum of these theories will be derived using
the BRST quantization approach in Chapter 15. In Chapter 10 we present the
seminal ’t Hooft solution of two-dimensional QCD in the large N limit. A current
algebra generalization of the latter approach will enable us to solve the mesonic
spectra of certain models. Finally in Chapter 12 we will implement a discrete
light-cone quantization approach to solve QCD in two dimensions with quarks
in the fundamental as well as the adjoint representation.
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