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The refraction of surface gravity waves by currents leads to spatial modulations in the
wave field and, in particular, in the significant wave height. We examine this phenomenon
in the case of waves scattered by a localised current feature, assuming (i) the smallness
of the ratio between current velocity and wave group speed, and (ii) a swell-like, highly
directional wave spectrum. We apply matched asymptotics to the equation governing the
conservation of wave action in the four-dimensional position–wavenumber space. The
resulting explicit formulas show that the modulations in wave action and significant wave
height past the localised current are controlled by the vorticity of the current integrated
along the primary direction of the swell. We assess the asymptotic predictions against
numerical simulations using WAVEWATCH III for a Gaussian vortex. We also consider
vortex dipoles to demonstrate the possibility of ‘vortex cloaking’ whereby certain currents
have (asymptotically) no impact on the significant wave height. We discuss the role of the
ratio of the two small parameters characterising assumptions (i) and (ii) above, and show
that caustics are significant only for unrealistically large values of this ratio, corresponding
to unrealistically narrow directional spectra.
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1. Introduction

Surface gravity waves (SGWs) play a key role in the exchanges of energy, momentum and
gases between the ocean and the atmosphere (Villas Bôas & Pizzo 2021). SGWs are forced
by the wind and modulated by ocean currents through transport and refraction. Over the
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past few decades, several studies have explored the effects of ocean currents on SGWs.
Early theoretical work focuses on the formation of freak waves and identifies refraction
as a possible mechanism for the generation of large-amplitude waves (White & Fornberg
1998; Dysthe, Krogstad & Müller 2008; Heller, Kaplan & Dahlen 2008).

Recent studies examine how mesoscale and submesoscale ocean variability, such as
fronts, filaments and vortices, induces a corresponding variability in wave amplitudes
(Ardhuin et al. 2017; Romero, Lenain & Melville 2017; Romero, Hypolite & McWilliams
2020; Villas Boâs et al. 2020; Vrećica, Pizzo & Lenain 2022). These studies often
characterise the wave amplitudes using the significant wave height Hs, defined as four
times the standard deviation of the surface displacement. They find that wave–current
interactions at horizontal scales ranging from 10 to 200 km drive spatial gradients of Hs
at similar scales. This indicates that air–sea fluxes might have spatial variability on these
relatively small spatial scales.

One common approach to studying wave–current interactions is the use of ray tracing,
often in its simplest form in which the kinematics of SGWs is tracked by solving the
ray equations, and ray density is used as a proxy for wave amplitude (e.g. Kenyon 1971;
Mapp, Welch & Munday 1985; Quilfen & Chapron 2019). While this simple form of
ray tracing is a valuable tool for understanding wave refraction, it does not provide an
accurate quantification of changes in wave amplitude, in particular changes in Hs. This
quantification requires solving the conservation equation for the density of wave action
in the four-dimensional position–wavenumber phase space. This is challenging, especially
for the wave spectra of realistic sea states, distributed in both wavenumber and direction,
instead of the pure plane waves that are often considered (however, see Heller et al. 2008).
It is possible to solve the action equation numerically, albeit at great computational cost,
either by discretising the phase space or by sampling its full four-dimensionality with a
large ensemble of rays.

This paper proposes a complementary approach. It develops an asymptotic solution
of the wave-action equation, leading to explicit formulas for the changes in action and
Hs induced by localised currents. Motivated by their ubiquity in the ocean, we focus on
swell, that is, SGWs characterised by a spectrum that is narrow banded in both frequency
(equivalently, wavenumber) and direction. We exploit the smallness of two parameters
reflecting the narrowness of the spectrum and the weakness of the current relative to the
wave speed. We approximate the wave-action equation to leading order, and solve it in
closed form by integration along its characteristics (the approximate ray equations) by
inspection. The formulas that we obtain show that the changes in action and Hs depend on
the currents through a ‘deflection function’ Δ given by the integral of the vorticity along
the primary direction of wave propagation. We apply these formulas to simple flows –
vortices and dipoles – and compare their predictions with the results of full integrations of
the action conservation equation by a numerical wave model.

We formulate the problem, relate action and Hs, and introduce a model spectrum for
swell in § 2. We detail our scaling assumptions and carry out the (matched) asymptotics
treatment of the wave-action equation in § 3. We compare asymptotic and numerical
results for vortices and dipoles in § 4. For vortices, we consider four different parameter
combinations that are representative of ocean swell. We consider dipoles with axis along
and perpendicular to the direction of the swell to demonstrate the possibility of a vanishing
deflection function Δ, leading to asymptotically negligible changes in Hs, a phenomenon
that we refer to as ‘vortex cloaking’. In § 5, we explore two limiting regimes of scattering:
a linear regime, corresponding to weak currents and/or swell with relatively large angular
spread, in which the changes in Hs are linear in the current velocity, and a caustic regime
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x = O(rv) x = O(rv/δ)

x = O(rv/ε)x = O(rv)

A�(K, Θ)

A�(K, Θ)

(a)

(b)

Figure 1. The scattering problem: a localised flow, here shown as an axisymmetric vortex with radius rv ,
scatters waves incident from the left (x → −∞) with action spectrum A�(K, Θ). Rays bend significantly only
in the scattering region in which there is non-zero vorticity, i.e. where x = O(rv). In this illustration, rv is
equivalent to �s. (a) The case δ /= 0 (γ = ε/δ � 1): directional spreading in the incident spectrum A� is
indicated schematically by two rays emanating from each source point. (b) The case δ = 0 (or much less than
ε; γ = ε/δ � 1): the incident spectrum A� is a plane wave with little or no directional spreading.

corresponding to strong currents and/or small angular spread. The caustic regime, in which
the changes in Hs are large and concentrated along caustic curves, arises only for parameter
values that are outside the range of typical ocean values. We conclude with a summary of
our findings and discuss prospects for future work on the spatial variability of Hs in § 6.

2. Formulation

We study the scattering problem sketched in figure 1. Deep-water SGWs, with small initial
directional spreading and a well-defined peak frequency (swell), impinge on a spatially
compact coherent flow, such as an axisymmetric vortex or a dipole.

2.1. Action conservation equation
In figure 1, we illustrate the scattering problem by tracing rays through an axisymmetric
vortex. We go beyond ray tracing, however, by using asymptotic methods to obtain
approximate analytic solutions of the conservation equation

∂tA + ∇kω · ∇xA − ∇xω · ∇kA = 0 (2.1)

for the wave-action density A(x, k, t) in the four-dimensional position–wavenumber space
(Komen et al. 1996; Janssen 2004). The action conservation equation (2.1) relies on the
WKB assumption of spatial scale separation between waves and currents. In (2.1), ω(x, k)

is the absolute frequency of deep-water SGWs:

ω(x, k) = σ(k) + k · U(x). (2.2)

We consider deep-water waves so that in (2.2) the intrinsic frequency is σ(k) = √
gk, with

k = |k|. The current velocity is taken to be horizontal and independent of time and depth:

U(x) = U(x, y) x̂ + V(x, y) ŷ. (2.3)

The wave-action equation (2.1) provides a phase-averaged description of the scattering
problem made possible by the scale separation between waves and currents. This places
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our work in contrast to that of Coste, Lund & Umeki (1999), Coste & Lund (1999) and
McIntyre (2019), who examined scattering without the simplification afforded by scale
separation, and discuss phase effects such as the Aharonov–Bohm effect. We also assume
fixed currents and do not consider how these might be modified by the presence of waves
(see e.g. Humbert, Aumaître & Gallet 2017; McIntyre 2019).

2.2. Action spectrum and significant wave height
Denoting the sea-surface vertical displacement by ζ(x, t), with root-mean-square ζrms, and
following Komen et al. (1996), we introduce a spectrum F(k, x, t) such that

ζ 2
rms(x, t) =

∫
F(k, x, t) dk. (2.4)

Later, we use a polar coordinate system (k, θ) in k space so that in (2.4), dk = k dk dθ . The
kinetic and potential energy densities for deep-water SGWs are equipartitioned so that the
energy spectrum is gF and the action spectrum – A(x, k, t) in (2.1) – is A = gF/σ . The
significant wave height 4ζrms (Komen et al. 1996) is therefore

Hs(x, t) =
(

16
g

∫
A(k, x, t) σ (k) dk

)1/2

. (2.5)

The incident swell is characterised by a spatially uniform spectrum F�(k) with constant
significant wave height Hs�. The subscript � denotes quantities associated with the incident
waves. Swell is characterised by a narrow spectrum in both wavenumber k (equivalently,
frequency σ ) and direction θ . The dominant wavenumber of the incident swell is k� with
frequency σ� = √

gk�, and the dominant direction is taken without loss of generality as
θ = 0. Thus, as illustrated in figure 1, the waves arrive from x = −∞ and impinge on
an isolated flow feature, centred at (x, y) = (0, 0). As an example of incident spectrum,
we use a separable construction described in Appendix A. In the narrow-band limit
corresponding to swell, this spectrum simplifies to the Gaussian

F�(k, θ) ≈ ζ 2
rms�

exp(−(k − k�)
2/2δ2

k )

k�

√
2πδ2

k︸ ︷︷ ︸
F�(k)

× exp(−θ2/2δ2
θ )√

2πδ2
θ︸ ︷︷ ︸

D�(θ)

. (2.6)

The two parameters δk and δθ capture the wavenumber and directional spreading (see
Appendix A). The narrow-band limit assumes that δk/k� � 1 and δθ � 1.

3. The scattering problem

We consider an incident spectrum such as (2.6). To make its localisation in k and θ explicit,
we introduce the O(1) independent variables

K = k − k�

δ
and Θ = θ

δ
, (3.1a,b)

where δ � 1 is a small dimensionless parameter. The incident action spectrum has the
form

A(x, y, k, θ) = A�(K, Θ) as x → −∞, (3.2)

with the function A�(K, Θ) localised where both K and Θ are O(1). The example
spectrum (2.6) is of this form provided that δk/k� and δθ are both O(δ). This assumption
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of similarly small spectral widths in k and θ enforces the relevant distinguished limit for
the scattering problem.

We assume that the currents are weak (e.g. Peregrine 1976; Villas Bôas & Young 2020).
This means that the typical speed U of the currents is much less than the intrinsic group
velocity of the incident swell c�:

ε
def= U/c�, (3.3)

� 1. (3.4)

Accordingly, we rewrite the frequency (2.2) as

ω(x, k) = σ(k) + εk · U(x). (3.5)

We indulge in a slight abuse of notation here: we develop the approximation in dimensional
variables, hence the dimensionless parameters ε and δ in expressions such as (3.1a,b) and
(3.5) should be interpreted as bookkeeping parameters to be set to 1 at the end. We examine
the distinguished limit

δ, ε → 0 with γ
def= ε/δ = O(1), (3.6)

and use matched asymptotics to solve the action conservation equation (2.1). We
emphasise that γ = O(1) is a formal assumption that enables us to capture the broadest
range of relative size of ε and δ, including ε � δ and δ � ε (see § 5).

3.1. The scattering region: x = O(�s)

The spatially compact flow has a typical horizontal length scale that we denote by �s. We
refer to the region where x = O(�s) as the ‘scattering region’. The solution in this region
has the form

A(K, Θ, x, y), (3.7)

and must limit to A�(K, Θ) in (3.2) as x → −∞.
With A in (3.7), the transport term in (2.1) is approximated as

∇kω · ∇xA = c�

(
cos(δΘ)Ax + sin(δΘ)Ay

) + εU · ∇xA
= c�Ax + O(δ, ε). (3.8)

In particular, transport by the current εU · ∇xA is negligible compared with transport by
the intrinsic group velocity c�. With the approximations

∇kA = δ−1(∂KA x̂ + k−1
∗ ∂ΘA ŷ

) + O(1), (3.9)

∇xω = εk�(Uxx̂ + Uyŷ) + O(εδ), (3.10)

the refraction term in (2.1) simplifies to

∇xω · ∇kA = γ
(
k�Ux ∂KA + Uy ∂ΘA) + O(ε). (3.11)

Thus in the scattering region, the leading-order approximation to (2.1) is

c� ∂xA − γ
(
k�Ux ∂KA + Uy ∂ΘA) = 0. (3.12)

One might solve (3.12) using its characteristics – the ray equations – or by inspection. By
either method, the solution to (3.12) that matches the incident action spectrum (3.2) as
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x → −∞ is found to be

A(x, y, K, Θ) = A�

(
K + γ k�

c�

U(x, y), Θ + γ

c�

∫ x

−∞
Uy(x′, y) dx′

)
. (3.13)

It is insightful to introduce the vorticity Z def= Vx − Uy and write (3.13) as

A(x, y, K, Θ) = A�

(
K + γ k�

c�

U(x, y), Θ + γ

c�

V(x, y) − γ

c�

∫ x

−∞
Z(x′, y) dx′

)
. (3.14)

For reference, we rewrite this expression in terms of the original independent variables,
setting the bookkeeping parameters ε, δ and hence γ to 1 to obtain

A(x, y, k, θ) = A�

(
k + k�

c�

U(x, y), θ + 1
c�

V(x, y) − 1
c�

∫ x

−∞
Z(x′, y) dx′

)
. (3.15)

3.2. The intermediate region: O(�s) � x � O(�s/δ)

The outer limit of the inner solution (3.14) follows from taking x → ∞:

A(x, y, K, Θ) → A� (K, Θ − γ Δ( y)) , (3.16)

where we have introduced the dimensionless ‘deflection’

Δ( y) def= 1
c�

∫ ∞

−∞
Z(x′, y) dx′. (3.17)

According to (3.16), the effect of the flow on the dependence of A on K is reversible: after
passage through the scattering region, this dependence reverts to the incident form. In
contrast, there is a net change in Θ , quantified by the deflection Δ( y). This can be related
to classical scattering of particles by viewing y as the impact parameter of a wavepacket.
The scattering cross-section, defined as dy/dθ∞, where θ∞ is the angle of propagation of
the wavepacket as x → ∞, is then −1/(ε Δ′( y)).

To interpret (3.16) and Δ( y) physically, recall that if ε is small, then

ray curvature ≈ vorticity
group velocity

, (3.18)

≈ Z(x, y)
c�

. (3.19)

The approximation in (3.18) requires only ε � 1 (e.g. Kenyon 1971; Dysthe 2001; Landau
& Lifshitz 2013; Gallet & Young 2014). Passing from (3.18) to (3.19) requires the further
approximation that k is close to k� so that the group velocity in the denominator of (3.18)
can be approximated by the constant c�. On the left-hand side of (3.18), ray curvature is
dθ/d�, where � is arc length along a ray. But within the compact scattering region, we
approximate � with x. Thus the deflection Δ( y) in (3.17) is the integrated ray curvature,
accumulated as rays pass through the scattering region in which x = O(�s) and vorticity
Z(x, y) is non-zero.

From (3.17) and (3.18), we conclude that the scattering region is best characterised as the
region with O(1) vorticity, e.g. the vortex core in figure 1 (hence �s = rv , with rv a typical
vortex radius). The region with palpably non-zero velocity is much larger. In figure 1,
the rays are straight where x = O(rv/ε), despite the slow (∝ r−1) decay of the azimuthal
vortex velocity.

975 A1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.686


Scattering of swell by currents

3.3. The far field: x = O(�s/δ)

Far from the scattering region, where x � �s, we introduce the slow coordinate X def= δx. In
the far field, the currents and hence the refraction term ∇xω · ∇kA in (2.1) are negligible.
The steady action conservation equation collapses to

∇kσ · ∇xA = c�

(
δ cos(δΘ)AX + sin(δΘ)Ay

) = 0, (3.20)

i.e. propagation along straight rays. Retaining only the leading-order term gives

∂XA + Θ ∂yA = 0. (3.21)

By inspection, the solution of (3.21) that matches the intermediate solution (3.16) is

A(X, y, K, Θ) = A� (K, Θ − γ Δ ( y − XΘ)) . (3.22)

This formula, which converts the incident spectrum into the far-field spectrum, is a key
result of the paper. In terms of the original independent variables and with the bookkeeping
parameters set to 1, it takes the convenient form

A(x, y, k, θ) = A� (k, θ − Δ ( y − xθ)) . (3.23)

3.4. Significant wave height
Significant wave height Hs is the most commonly reported statistic of wave amplitudes,
being observed routinely by satellite altimeters and wave buoys. We obtain an
approximation for Hs by performing the k and θ integrals in (2.5) using the approximations
(3.15) and (3.23) for A(x, k).

The scattering region is simple. We can approximate σ and dk in (2.5) by σ� = σ(k�)

and k� dk dθ to find

Hs(x, t) ∼
(

16σ�k�

g

∫∫
A(k, x, t) dk dθ

)1/2

(3.24)

∼ Hs�. (3.25)

The second equality holds because, according to (3.15), A(x, k) is obtained from A�(x, k)

by an x-dependent shift of k and θ that does not affect the integral. Thus Hs in the scattering
region is unchanged from the incident value Hs�. This conclusion also follows directly
from steady-state wave-action conservation under the assumptions ε, δ � 1: multiplying
(3.12) by σ�k� and integrating over k and θ , we find

c� ∂x

(
σ�k�

∫∫
A(x, k) dk dθ

)
︸ ︷︷ ︸

≈g H2
s (x)/16

= 0. (3.26)

Hence Hs(x) = Hs� throughout the scattering region.
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In the far field, Hs is obtained by substituting (3.23) into (2.5). The result is

Hs(x) = 4

√
k�σ�

g

∫
dθ

∫
dkA�(k, θ − Δ( y − xθ)). (3.27)

The k integral can be evaluated in terms of the incident directional spectrum, which, in the
general case of a non-separable spectrum, is defined as

D�(θ)
def= 1

ζ 2
rms�

∫
F�(k) k dk. (3.28)

We summarize the results above with

Hs(x) = Hs�

⎧⎨
⎩

1 in the scattering region,√∫
D� (θ − Δ( y − xθ)) dθ in the far field.

(3.29)

4. Applications to simple flows

4.1. Gaussian vortex
As an application, we consider scattering by an axisymmetric Gaussian vortex with
circulation κ , vorticity

Z(x, y) = κ exp(−r2/2r2
v)

2πr2
v

, (4.1)

and velocity

(U(x, y), V(x, y)) = κ

2π

1 − exp(−r2/2r2
v)

r2 (−y, x), (4.2)

where r2 = x2 + y2. The vortex radius rv can be taken as the scattering length scale �s.
The maximum azimuthal velocity is Um = 0.072 κ/rv at radius 1.585 rv . The deflection
(3.17) resulting from this Gaussian vortex is

Δ( y) = κ exp(−y2/2r2
v)√

2π rvc�

. (4.3)

The asymptotic solution in the scattering region is obtained from (3.15) as

A(x, y, k, θ) = A�

(
k + k∗c−1

∗ U(x, y), θ + c−1
∗ V(x, y) − 1

2

(
erf(x/

√
2rv) + 1

)
Δ( y)

)
,

(4.4)

where erf is the error function. Equation (4.4) can be combined with the far-field
approximation (3.23) into a single, uniformly valid approximation:

A(x, y, k, θ)

= A�

(
k + k∗c−1

∗ U(x, y), θ + c−1
∗ V(x, y) − 1

2

(
erf(x/

√
2rv) + 1

)
Δ( y − xθ)

)
. (4.5)

The significant wave height is approximated by (3.29), which can be written as the uniform
expression

Hs(x, y) = Hs�

√∫
D�

(
θ − Δ( y − x+θ)

)
dθ, (4.6)

where x+ is equal to x for x > 0 and to 0 for x < 0, and (4.3) is used for Δ.
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Figure 2. Wavenumber-integrated action density
∫ A(x, y, k, θ) dk as a function of y and θ at x-values

(a,b) −5rv , (c,d) 0, (e, f ) rv , (g,h) 3rv , and (i,j) 5rv , from (a,c,e,g,i) WW3 and (b,d, f,h,j) MA (see (4.5)),
for swell impinging on a Gaussian vortex with Um = 0.8 m s−1. The directional spreading of the incident
spectrum is s = 40.

We now compare the matched asymptotic (MA) predictions (4.5)–(4.6) with numerical
solutions of the wave-action equation (2.1) obtained with the wave height, water depth, and
current hindcasting third-generation wave model (WAVEWATCH III, hereafter WW3).
The incident spectrum used for WW3 is described in Appendix A. The directional function
for this spectrum is the Longuet-Higgins, Cartwright & Smith (1963) model

D�(θ) ∝ cos2s θ

2
. (4.7)

The parameter s > 0 controls the directional spreading: for s � 1, (4.7) reduces to the
Gaussian in (2.6) with directional spreading δθ = √

2/s. The configuration of WW3 and
spectrum parameters are detailed in Appendix B. The most important parameter is the peak
frequency of the incident spectrum, taken fixed for all simulations as σ� = 0.61 rad s−1.
This corresponds to the period 10.3 s, wavelength 166 m and group speed c� = 8 m s−1.
Because the problem is linear in the action density, the values of ζrms�, or equivalently Hs�,
are less important. For definiteness, we set Hs� = 1 m.

Figure 2 compares the wavenumber-integrated wave action
∫ A(x, y, k, θ) dk obtained

from (4.5) and WW3 for a Gaussian vortex with maximum velocity Um = 0.8 m s−1

and directional spreading parameter s = 40, showing good agreement, especially in the
far-field region (x � 3rv). The most noticeable difference between MA and WW3 is in
figures 2(c,d), which show a section through the middle of the vortex. The MA action
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s Um (m s−1) δ = √
2/s ε = Um/c� γ = ε/δ

10 0.4 0.447 (25.6◦) 0.05 0.112
40 0.4 0.224 (12.8◦) 0.05 0.224
10 0.8 0.447 (25.6◦) 0.1 0.224
40 0.8 0.224 (12.8◦) 0.1 0.447

Table 1. Parameters corresponding to each configuration in § 4.1, arranged in the order of the rows in figure 3.
In all cases, the group speed is c� = 8 m s−1, corresponding to wavelength 166 m and period 10.3 s. Here, Um
is the maximum vortex velocity, and the vortex radius is rv = 25 km.

spectrum in figure 2(d) is obtained via a y-dependent shift in A�(k, θ); there is no change
in the intensity of A associated with this shift. In figure 2(c), on the other hand, the
intensity of the WW3 action spectrum varies with y/rv . We attribute this difference to
asymptotically small effects such as the contribution U · ∇xA to wave-action transport.

In the remainder of this section, we assess the dependence of significant wave height
Hs on the directional spreading parameter s and flow strength Um. We consider the four
different combinations of s and Um given in table 1. The corresponding values of the
dimensionless parameters, taken as

δ = δθ =
√

2/s and ε = Um/c�, (4.8a,b)

are also in the table.
Typically, observations of the directional spreading for swell are in the range 10◦–20◦

(Ewans 2002), which corresponds to a range for s between 16 and 66. In our experiments,
setting s = 10 and s = 40 leads to directional spreading of 24◦ and 12◦, respectively, which
correspond to very broad and very narrow swells.

Figures 3 and 4 show the significant wave height anomaly

hs(x)
def= Hs(x) − Hs� (4.9)

for each combination of s and Um. Because of our choice Hs� = 1 m, hs in cm can be
interpreted as the fractional change in significant wave height expressed as a percentage.
A control run of WW3 in the absence of currents shows that hs is not exactly zero but
decreases slowly with x. This is caused by the finite y-extent of the computational domain
that leads to a wave forcing with compact support. To mitigate this numerical artefact, we
compute the WW3 significant wave height anomaly as hs(x) = Hs(x) − Hctrl

s (x), where
Hctrl

s (x) is the significant wave height of the current-free control run. See Appendix B for
details.

Figures 3 and 4 show that hs has a wedge-like pattern in the wake of the vortex
resulting from wave focusing and defocusing, with hs > 0 mainly for y > 0, and hs < 0
for y < 0. The pattern is not antisymmetric about y = 0, and positive anomalies are larger
than negative anomalies. These characteristics, which indicate a nonlinear response, are
increasingly marked as s and Um increase. Specifically, the parameter

γ = ε

δ
= Um

c�

√
s
2

(4.10)

controls the degree of nonlinearity and hence of asymmetry. We discuss the two limiting
regimes γ � 1 and γ � 1 in § 5.
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Figure 3. Significant wave height anomaly hs(x, y) from (a,c,e,g) WW3 and (b,d, f,h) MA, for swell impinging
on a Gaussian vortex. Each row corresponds to the indicated values of the directional spreading parameter s
of the incident wave spectrum, and the maximum velocity Um (in m s−1). The corresponding non-dimensional
parameters are given in table 1. The dashed circles have radius rv around the vortex centre. The solid lines in
(b,d, f ,h) indicate the caustics computed from (D6). The colour bars differ between rows but are the same within
each row. White corresponds to hs = 0 in all plots. The customizable notebook that generates (h) by default
can be accessed at https://www.cambridge.org/S0022112023006869/JFM-Notebooks/files/Figure-3.ipynb.

There is good overall agreement between WW3 and MA, even though in the case s = 10,
the parameter δ = 0.447 is only marginally small. The pattern is more diffuse for WW3
than for MA, with a less sharply defined wedge and a non-zero hs over a larger proportion
of the domain. We attribute the differences to the finiteness of δ (they are more marked
for s = 10, δ = 0.447 than for s = 40, δ = 0.224), and to the limited spectral resolution
of WW3 (simulations with degraded angular resolution lead to an even more diffuse hs).
The most conspicuous differences between WW3 and MA appear in the scattering region,
where the non-zero hs obtained with WW3 appears to contradict the MA prediction that
hs = 0. The non-zero hs results from O(ε, δ) terms neglected by MA. Relaxing some of
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Figure 4. Significant wave height anomaly hs as a function of y for (a,d) x = rv , (b,e) x = 5rv , (c, f ) x = 15rv ,
and from WW3 (solid lines) and MA (see (4.5), dashed lines) in the set-up of figure 3. Results are shown for
two sets of parameters s and Um as indicated in (a,d). The range of hs differs between plots.

the approximations leading to (3.24) gives a heuristic correction to MA that captures the
bulk of the difference with WW3 in the scattering region. We explain this in Appendix C.

As further demonstration of the MA approach, we provide a Jupyter notebook accessible
at https://www.cambridge.org/S0022112023006869/JFM-Notebooks/files/Figure-3.ipynb,
where users can customize the form of the current and the incoming wave spectrum to
experiment with the resulting

∫ A(x, y, k, θ) dk and hs.

4.2. Vortex dipole
A striking feature of the far-field spectrum and hence of Hs is that, according to MA,
they depend on the flow only through the deflection Δ( y) in (3.17), proportional to the
integral of the vorticity along the direction of dominant wave propagation (the x-direction
in our set-up). This implies that if the integrated vorticity vanishes because of cancellations
between positive and negative contributions, the differences between far-field and incident
fields are asymptotically small. This can be interpreted as a form of ‘vortex cloaking’,
whereby an observer positioned well downstream of a flow feature is unable to detect
its presence through changes in wave statistics. We demonstrate this phenomenon by
examining the scattering of swell by vortex dipoles.

We consider two cases, corresponding to dipoles whose axes (the vectors joining the
centres of positive and negative vorticity) are, respectively, perpendicular and parallel to
the direction of wave propagation. The corresponding vorticity fields are chosen, up to a
constant multiple, as the derivative of the Gaussian profile (4.1) with respect to y or x.
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Figure 5. Swell impinging on vortex dipoles with axes (a–c) perpendicular and (d–f ) parallel to the dominant
direction of wave propagation (x-axis). The vorticity (colour) and velocity (vectors) are shown in (a,d), together
with the significant wave height anomaly hs from WW3 in (b,e) and MA in (c, f ). The directional spreading
parameter is s = 40, and the maximum flow velocity is 0.8 m s−1.

Figure 5 shows the significant wave height anomaly obtained for the incident spectrum of
§ 4.1 with s = 40 and dipoles with maximum velocity Um = 0.8m s−1.

When the dipole axis is in the y-direction (figures 5a–c), the deflection Δ( y) does
not vanish identically. As a result, Hs is affected strongly by the flow, for our choice of
parameters. This applies to both the MA and WW3 predictions, which match closely in
the far field. When the dipole axis is in the x-direction (figures 5d–f ), Δ( y) = 0. The
MA prediction is then that Hs = Hs�, i.e. hs = 0 everywhere. The WW3 simulation is
consistent with this, with only a weak signal in hs.

In general, for a dipole with axis making an angle α with the direction of wave
propagation, the deflection Δ( y) is proportional to sin α, and the cloaking effect is partial
unless α = 0.

5. Limiting cases

In this section, we return to the far-field asymptotics (3.22) for A in terms of the scaled
dependent variables in order to examine two limiting regimes characterised by extreme
values of γ = ε/δ. The regime γ � 1 corresponds to a weak flow and/or relatively broad
spectrum, leading to a linear dependence of hs on the currents. The opposite regime γ � 1
corresponds to strong flow and/or a highly directional spectrum. The wave response is then
highly nonlinear in the currents and, as we show below, controlled by the caustics that exist
for pure plane incident waves (γ = ∞). The ‘freak index’ of Heller et al. (2008), given by
ε2/3/δ, is the analogue of γ for spatially extended, random currents.

5.1. Linear regime: γ � 1
For γ � 1, we can expand (3.22) in Taylor series to obtain

A(X, y, K, Θ) = A�(K, Θ) − γ Δ( y − XΘ) ∂ΘA�(K, Θ) + O(γ 2). (5.1)
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Figure 6. Significant wave height anomaly hs(x, y) for swell impinging on a Gaussian vortex: comparison
between the predictions of (a,c) MA and (b,d) its γ → 0 limit (see (5.3)). The set-up is as in figure 3, with
parameters s and Um (in m s−1) as indicated. Dashed lines indicates the curves y = ±√

r2
v + 2x2/s where hs

reaches maximum amplitudes according to (5.3).

This indicates that the flow induces the small correction −γ Δ( y − XΘ) ∂ΘA�(K, Θ) to
the action of the incident wave. We deduce an approximation for Hs by integrating (5.1)
with respect to K and Θ to obtain H2

s followed by a Taylor expansion of a square root.
Alternatively, we can carry out a Taylor expansion of the far-field approximation (3.29) of
Hs, treating Δ( y) as small. The result is best expressed in terms of the anomaly hs, found
to be

hs(x, y) = −Hs�

2

∫
D′

s(θ)Δ( y − xθ) dθ (5.2)

after reverting to the unscaled variables and setting γ = 1. This simple expression is
evaluated readily once the flow, hence Δ( y), and directional spectrum D�(θ) are specified.
For the Gaussian vortex of § 4.1 and the directional spectrum in (2.6), the integration can
be carried out explicitly, yielding

hs(x, y) = Hs�κ

c�

√
π

x+y exp
(−y2/(2r2

v + 4x2/s)
)

(2r2
v + 4x2/s)3/2 . (5.3)

This formula makes it plain that hs depends on space through (x/
√

s, y), is antisymmetric
about the x-axis, and is maximised along the curves y = ±√

r2
v + 2x2/s. Decay as |x| →

∞ is slowest along these curves and proportional to x−1.
We illustrate (5.3) and assess its range of validity by comparing it with MA for two

sets of parameters in figure 6. The match is very good for s = 10 and Um = 0.4 m s−1

(figures 6a,b), corresponding to γ = 0.112. It is less good for s = 40 and Um = 0.8 m s−1

(figures 6c,d), unsurprisingly since γ = 0.447 is not particularly small and the MA
prediction is obviously far from linear, with a pronounced asymmetry. The curves y =
±√

r2
v + 2x2/s shown in the figure are useful indicators of the structure of hs for small

enough γ .
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Figure 7. Caustics for swell impinging on a Gaussian vortex: the caustics (D6) (solid lines) are superimposed
onto the MA prediction of hs for Um = 0.8 m s−1 and the indicated values of s. The dashed vertical lines
correspond to the values x = rv , 3rv and 5rv used in figure 8.

5.2. Caustic regime: γ � 1
The limit γ → ∞ corresponds to an incident wave field that is almost a plane wave. It is
natural to rescale variables according to Θ → γΘ and X → γ −1X so that (3.22) becomes

A(X, y, K, Θ) = A� (K, γ S(X, y, Θ)) , (5.4)

where

S(X, y, Θ)
def= Θ − Δ( y − XΘ). (5.5)

In (X, y, Θ)-space, the K-integrated action is concentrated in a thin O(γ −1) layer around
the surface S(X, y, Θ) = 0. Quantities such as Hs obtained by integrating the action with
respect to Θ can be obtained by approximating the dependence of the right-hand side of
(5.4) on S by δ(S). This fails, however, when (X, y, Θ) satisfy both

S(X, y, Θ) = 0 and ∂ΘS(X, y, Θ) = 1 + X Δ′(y − XΘ) = 0. (5.6a,b)

The corresponding curves in the (X, y)-plane are caustics near which
∫ A(X, y, K, Θ)

dK dΘ is an order γ 1/2 larger than elsewhere; correspondingly, Hs = O(γ 1/4). In figure 7,
the two caustics meet at a cusp point from opposite sides of a common tangent. The cusp
point is located by the condition ∂2

ΘS = 0, and the integrated action at the cusp point
is O(γ 2/3) so that Hs = O(γ 1/3). We have verified numerically these γ scalings at the
caustics and at the cusp point by varying s in the MA solutions.

For the Gaussian vortex (4.1), the system (5.6a,b) can be solved to obtain an explicit
equation for the caustics. This equation is derived in Appendix D and given by (D6).
It describes two curves y(x) emanating from the cusp point at x = xc given by (D5). The
caustics (which depend on Um but not on s) are indicated in figures 3(b,d, f,h). For the
parameters of the figure, the caustics do not map regions of particularly large hs. This is
unsurprising since γ is at most 0.447.

To assess how large γ , or equivalently s, needs to be for caustics to be the dominant
feature of Hs, in figure 7 we show hs computed from MA for Um = 0.8 m s−1 and s = 200
(γ = 1, figure 7a) and s = 4000 (γ = 4.47, figure 7b). It is only for s = 4000 that the
caustics are evidently controlling the significant wave height pattern. We emphasise that
s = 200 and a fortiori s = 4000 are unrealistically large values: observational estimates
for s in the open ocean seldom exceed s = 80. We conclude that caustics are unlikely to
play a role in real ocean conditions.

With academic rather than practical interest in mind, then, we show in figure 8 the
integrated action

∫ A dk as a function of y for three different values of x (identified by

975 A1-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.686


H. Wang, A.B. Villas Bôas, W.R. Young and J. Vanneste

1

0

1

0

1

0

1

0

1

0

1

0

–4 –2 0 2 4 –4 –2 0 2 4

–4 –2 0 2 4 –4 –2 0 2 4

–4 –2 0 2 4 –4 –2 0 2 4

y/rv y/rv

x = 5rv x = 5rv

x = 3rv x = 3rv

x = rv x = rv (m4 s–1)
1.0

0.8

0.6

0.4

0.2

0

P1

P2 P3

θ

θ

θ

(a) (b)

(c) (d )

(e) ( f )

Figure 8. Wavenumber-integrated action density
∫ A(x, y, k, θ) dk as a function of y and θ for x = rv, 3rv, 5rv

corresponding to the significant wave height shown in figure 7 for (a,c,e) s = 200 and (b,d, f ) s = 4000. Line P1
in (d) corresponds to the values of (x, y) of the cusp from where the caustics emanate; P2 and P3 are associated
with points on each of the two caustics.

dashed vertical lines in figure 7). The figure illustrates how caustics emerge from a fold
singularity in the surface S(x, y, θ) = 0 along which action is concentrated in the (x, y, θ)

phase space. For x = rv , the surface is a graph over (x, y), and there are no caustics;
for x = xc ≈ 3rv , the surface has a single point of vertical tangency (P1 in figure 8f )
corresponding to the birth of caustics at a cusp in the (x, y)-plane; for x = 5rc, there
are two points of vertical tangency, P2 and P3 in figure 8(h), corresponding to the two
caustic curves. The picture is increasingly blurred as s decreases (compare figures 8(a,c,e)
with figures 8(b,d, f ) and with figure 2), explaining the diminishing importance of caustics
for Hs.

6. Discussion and conclusion

The main results in this study are obtained by approximate solution of the wave-action
equation in the four-dimensional position–wavenumber space. The organizing principle
identified by the analysis is that scattering of SGWs by spatially compact currents results
in the deflection function Δ( y) in (3.17). Although Δ varies linearly with the vertical
vorticity of the currents, it figures in a nonlinear transformation of the action density.
This nonlinear transformation produces the modulation of the significant wave height Hs
behind the scattering region, e.g. the expression for Hs in (3.29). Quantities that depend
on other moments (e.g. Stokes drift) behave similarly and could be inferred readily from
our explicit forms (3.15) and (3.22) for the wave-action density.

While we have obtained these results for deep-water SGWs, they apply essentially
unchanged to other two-dimensional waves with isotropic dispersion relation such as
finite-depth SGWs or Poincaré waves. The conclusions that we draw about Hs can also
be rephrased in terms of other root-mean-square quantities relevant to waves other than
SGWs. With a little effort, the approach that we adopt, based on the matched asymptotics
treatment of the wave-action equation, could be extended further to three-dimensional
waves and to anisotropic dispersion relations. Our results could be extended easily to
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account for vertically sheared currents using the modified dispersion relation of Kirby
& Chen (1989) (which involves a Doppler shift term that is nonlinear in k).

In addition to the WKB approximation used to derive the action conservation equation
(2.1), there are two independent approximations involved:

(a) the current speed is much less than the group velocity of the incident swell;
(b) swell with small directional spreading is incident on a region of spatially compact

currents, e.g. an axisymmetric vortex or a vortex dipole.

Provided that (a) and (b) are satisfied, the approximate solution of the wave-action
equation compares well with numerical solutions provided by WW3.

Approximation (a) is usually justified. To challenge (a), one must consider current
speeds such as 2 m s−1, e.g. observed as a peak current speed in the Agulhas system
(Quilfen & Chapron 2019). Swell with 100 m wavelength has group velocity ∼6 m s−1, so
the small parameter in (a) is as large as 1/3. In less extreme cases, approximation (a) will
be satisfied.

Approximation (b) is less secure: ocean swell is not sufficiently unidirectional to
strongly justify (b) – e.g. see the δ column in table 1. Over long distances, the continuous
scattering by uncorrelated currents leads to a broadening of the angular spectrum. When
approximation (a) applies, this broadening is described by the directional diffusion
equation for wave action derived by Villas Bôas & Young (2020). This diffusion process
is one of the mechanisms that makes swell with very small values of δ unlikely. However,
our computations for a Gaussian vortex indicate that our asymptotic results are reliable for
the moderately small values of δ typical of swell.

Because of the relatively large directional spreading of ocean swell, the mathematical
ideal of a sharp wave caustic is not realised. Instead, the caustic singularity is ‘washed out’
(Heller et al. 2008). Behind a vortex, we find instead an elongated streaky pattern in Hs.

Our results show that Hs behind an axisymmetric vortex with parameters in table 1
has spatial variation as large as ±30 % of the incident constant value Hs�. Spatial
inhomogeneities in Hs of this magnitude are important for wave breaking and exchange
of momentum, heat and gas between the ocean and atmosphere. For example, airborne
observations of the ocean surface by Romero et al. (2017) indicate that ±30 % variations
in Hs are associated with an order of magnitude increase in whitecap coverage.

The directional diffusion equation of Villas Bôas & Young (2020) uses only
approximation (a). One does not need to assume that the wave field is strongly
unidirectional or that the currents are spatially compact. Moreover, the directional
diffusion equation is obtained without detailed consideration of the perturbations to the
action spectrum that accompany wave scattering. But there is useful information hiding
in these unexamined perturbations to the action spectrum. We are engaged currently
in extracting these perturbations, calculating the attendant spatial variability to Hs, and
relating the statistics of these fluctuations in Hs to those of the surface currents. These
future developments promise to explain numerical experiments that identify relations
between the spectral slopes of surface-current spectra and those of significant wave height
(Villas Boâs et al. 2020).

Supplementary material. Computational Notebook files are available as supplementary material at https://
doi.org/10.1017/jfm.2023.686 and online at https://www.cambridge.org/S0022112023006869/JFM-Notebooks/
files/Figure-3.ipynb.
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Appendix A. Incident spectrum

We use the separable spectrum

F�(k, θ) = ζ 2
rms� F�(k) D�(θ). (A1)

The wavenumber function in (A1) is

F�(k)
def= 2

erfc(−σ�/
√

2 δσ )

exp(−(σ − σ�)
2/2δ2

σ )√
2πδ2

σ

1
k

dσ

dk
, (A2)

where erfc is the complementary error function. It corresponds to a Gaussian spectrum in
frequency truncated at σ = 0. The angular part of the spectrum in (A1) is

D�(θ)
def= Γ (s + 1)

2
√

π Γ (s + 1
2 )

cos2s
(

θ

2

)
(A3)

(Longuet-Higgins et al. 1963), which corresponds to incoming waves spread around
θ = 0. The four parameters in this model spectrum are the root-mean-square sea-surface
displacement ζrms�, the peak radian frequency σ� = √

gk�, the spectral width δσ , and the
directional spreading parameter s. Normalisation is ensured with

∫ π

−π

D�(θ) dθ = 1 and
∫ ∞

0
F�(k) k dk = 1. (A4a,b)

In the narrow-band limit δσ /σ� � 1 and s � 1, the spectrum is approximated by (2.6)
with δk = 2δσ

√
k�/g and δθ = √

2/s. The parameter δθ captures the standard deviation
in the angular distribution, which is the definition of ‘directional spreading’ (Kuik, Van
Vledder & Holthuijsen 1988). We note that the expressions for directional spreading
are sometimes formally different, but equivalent to our expression for δθ at large s. For
example, another popular way to state the definition for a generic directional distribution
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is

σθ
def= [

2
(
1 − (a2 + b2)1/2)]1/2

, (A5)

where

a =
∫

cos θ D�(θ) dθ and b =
∫

sin θ D�(θ) dθ (A6a,b)

(Villas Boâs et al. 2020). Using the expression for D� in (2.6), we can compute the integrals
in (A6a,b) analytically, getting a = e−1/s and b = 0. Therefore,

σ 2
θ = 2(1 − e−1/s) → 2/s as s → ∞. (A7)

Thus the definition of σθ in (A5) indeed agrees with the parameter δθ at large s.

Appendix B. Set-up of WAVEWATCH III

We compare our results with numerical simulations from an idealised set-up of WW3
that integrates the action balance equation (2.1). Here, we focus on freely propagating
swell-type waves, so the effects of wind forcing, nonlinear interactions and wave breaking
are ignored (e.g. Villas Boâs et al. 2020). We use WW3 version v6.07.1 (https://github.
com/NOAA-EMC/WW3/releases/tag/6.07.1) to solve (2.1) on a 1000 km × 1000 km
Cartesian domain with 5 km grid spacing. To resolve swells with s = 10 and 40, the
spectral grid has 80 directions and 32 frequencies. Larger values of s (i.e. narrower
directional spreading) would require higher directional resolution for the model to
converge. We use the global integration time step 200 s, spatial advection time step 50 s,
spectral advection time step 12 s, and minimum source term time step 5 s. We verified that
decreasing the time stepping or the spatial grid spacing does not significantly change the
results (not shown).

All simulations are initialised with the narrow-banded wave spectrum in (A1). Waves
enter the domain from the left boundary with initial mean direction θ = 0◦ (propagating
from left to right), directional spreading parameter s = 10 or s = 10, peak frequency
σ� = 0.61rad s−1 (peak period 10.3 s), spectral width δσ = 0.04, and Hs� = 1 m. The
boundary condition at the left boundary is kept constant throughout the experiment, and
each experiment is run until steady state is reached.

As mentioned in § 4.1, a control run is conducted in the absence of currents. Although
there is no scattering from the currents, a non-uniform hctrl

s = Hctrl
s − Hs� arises, due to

the limited domain size in y, which leads to a reduction of incident wave action from waves
arriving from large |y| – an effect that is more pronounced at large x. As s increases, the
action density in the incident spectrum is more concentrated in the x-direction, leading to
less leakage of wave action through the top and bottom boundaries, and a more spatially
uniform hctrl

s . This leakage of wave action corresponds to a reduction of 5 % in hctrl
s for

s = 10, and 2 % for s = 40 towards the right-hand side boundary.

Appendix C. MA–WW3 mismatch in the scattering region

We develop a heuristic correction to MA that we show captures the non-zero hs in the
scattering region. First, we note that the non-zero hs in the scattering region from WW3
appears localised, likely caused by the term proportional to ∂kA in (3.9), as the terms
proportional to ∂θA result in non-local effects. This observation is confirmed by a WW3
run, which we refer to as WW3−, where the term in ∂kA is suppressed in the wave-action
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equation, yielding a more uniform hs in the scattering region (see figure 9d). We then recall
that in the MA solution, the insignificance of the ∂kA term is due to the approximation
of a single dominant wavenumber in the steps leading to (3.24). We thus return to the
approximation (3.12) of the wave-action transport equation in the scattering region and
relax the approximation of replacing k by k�. We focus on the θ -integrated action

B(x, k) =
∫

A(x, k) dθ, (C1)

which satisfies

c(k) ∂xB − Ux(x) k ∂kB = 0. (C2)

Noting that c(k) = g1/2k−1/2/2, we solve this equation using the method of characteristics
to find

B(x, k) = B�

((
k−1/2 − g−1/2 U(x)

)−2)
. (C3)

The significant wave height is deduced by integration as

Hs(x) =
(

16
g1/2

∫
B�

((
k−1/2 − g−1/2 U(x)

)−2)k3/2 dk
)1/2

. (C4)

We now change the integration variable, taking advantage of the localisation of B�(k) to
ignore the corresponding change in the lower limit of integration, and obtain

Hs(x) =
(

16
g1/2

∫
B�(k)(k−1/2 + g−1/2 U(x))−6k−3/2 dk

)1/2

=
(

16
g1/2

∫
B�(k) k3/2(1 + k1/2g−1/2 U(x))−6 dk

)1/2

=
(

16
g1/2

∫
B�(k) k3/2

(
1 + U(x)

2 c(k)

)−6

dk
)1/2

. (C5)

At this point, we can approximate c(k) by c� in the small O(ε) term U(x)/(2 c(k)) and use
two binomial expansions to obtain

Hs(x) ≈ Hs�

(
1 − 3U(x)

2c�

)
. (C6)

We emphasise the heuristic nature of this approximation (MA+), which is formally no
more accurate than the MA approximation Hs(x) = Hs� since it neglects some, though
not all, O(δ) terms. Nonetheless, it captures most of the significant wave height anomaly
close to the Gaussian vortex, as figure 9 demonstrates under parameters s = 40 and
Um = 0.8 ms−1.
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Figure 9. Significant wave height anomaly hs computed from (a) WW3, (b) MA (same as figures 3g,h),
(d) WW3− (where the term proportional to ∂kA is switched off) and (e) MA+ as in (C6). Panels (c) and
(f ) show the differences between (a) and (b), and (a) and (e), respectively. All plots have the same colour bar.

Appendix D. Caustics for the Gaussian vortex

In the Gaussian vortex example, we can derive the locations of the caustics in the
(x, y)-plane analytically. Using expression (4.3) for Δ( y), and introducing the functions

w(x, y) def= −( y − xθ)2/r2
v (D1)

and

q(x) def= −2πr4
vc2

�/(x
2κ2), (D2)

we can write (5.6a,b) defining the caustics as

θ − κ√
2π rvc�

ew/2 = 0 (D3)

and

w ew = q. (D4)

Equation (D4) relates w to q, and takes the standard form defining the Lambert
W-functions (see Olver 2010, (4.13.1)). This equation has two branches of solutions w =
Wi(q), i = 0, −1, when 0 < −q < e, and no solutions when −q > e (q < 0 by definition
(D2)). The two branches meet at q = −e−1, which corresponds to

x = xc
def=

√
2πe r2

vc�/κ. (D5)

Physically, the two branches w = Wi(q) correspond to two caustic lines in the (x, y)-plane
that emanate from a cusp point with x = xc. The equation of the caustics is found using
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(D1) and (D3) as

y = κx exp(Wi(q(x))/2)√
2π rvc�

+
√

−Wi(q(x)) rv, x � xc. (D6)

The cusp point is at (x, y) = (xc, 2rv).
The asymptotic form of the caustics for x → ∞ is obtained readily by noting that

q(x) → 0− as x → ∞, and then that W0(q) → 0 and W−1(q) ∼ ln(−q). Thus the i = 0
caustic asymptotes to a straight line, and the i = −1 caustic to y ∼ (2 ln x)1/2.
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VREĆICA, T., PIZZO, N. & LENAIN, L. 2022 Observations of strongly modulated surface wave and wave
breaking statistics at a submesoscale front. J. Phys. Oceanogr. 52 (2), 289–304.

WHITE, B.S. & FORNBERG, B. 1998 On the chance of freak waves at sea. J. Fluid Mech. 355, 113–138.

975 A1-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.686

	1 Introduction
	2 Formulation
	2.1 Action conservation equation
	2.2 Action spectrum and significant wave height

	3 The scattering problem
	3.1 The scattering region: x = O(s)
	3.2 The intermediate region: O(s)x O(s/)
	3.3 The far field: x = O(s/)
	3.4 Significant wave height

	4 Applications to simple flows
	4.1 Gaussian vortex
	4.2 Vortex dipole

	5 Limiting cases
	5.1 Linear regime: 1
	5.2 Caustic regime: 1

	6 Discussion and conclusion
	Appendix A. Incident spectrum
	Appendix B. Set-up of WAVEWATCH III
	Appendix C. MA--WW3 mismatch in the scattering region
	Appendix D. Caustics for the Gaussian vortex
	References

