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On Gateaux Differentiability of Pointwise
Lipschitz Mappings

Jakub Duda

Abstract. 'We prove that for every function f: X — Y, where X is a separable Banach space and Y is a
Banach space with RNP, there exists a set A € A such that f is Gateaux differentiable at all x € S(f)\A,
where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno.
As a corollary, we obtain that every K-monotone function on a separable Banach space is Hadamard
differentiable outside of a set belonging to C; this improves a result due to Borwein and Wang. Another
corollary is that if X is Asplund, f: X — R cone monotone, g: X — R continuous convex, then there
exists a point in X, where f is Hadamard differentiable and g is Fréchet differentiable.

1 Introduction

The classical Rademacher theorem [9] concerning a.e. differentiability of Lipschitz
functions defined on R"” was extended by Stepanoff to pointwise Lipschitz func-
tions [10,11]. D. Bongiorno [2, Theorem 1] proved a version for infinite-dimensional
mappings; namely, that for every f: X — Y, where X is a separable Banach space
and Y is a Banach space with RNP, there exists an Aronszajn null set A C X (see
[1] for the definition of Aronszajn null sets) such that f is Gateaux differentiable
atall x € S(f) \ A (here, S(f) is the set of points where f is pointwise-Lipschitz).
This generalized results for Lipschitz functions obtained by Aronszajn, Christensen,
Mankiewicz, and Phelps; see [1] for the definitions of various notions of null sets
they used. We prove a stronger version of infinite dimensional Stepanoff-like theo-
rem, which asserts that under the same assumptions as in [2, Theorem 1], the set A
can be taken in the class A defined by Preiss and Zaji¢ek [8]; see Theorem 4.1. By re-
sults of [8], A is a strict subclass of Aronszajn null sets. Recently, Zaji¢ek [12] proved
that the sets in A (and even @) are ['-null, which is a notion of null sets due to Lin-
denstrauss and Preiss [7] (here, a definition and basic properties of this notion can be
found). Thus, Theorem 4.1 has the following corollary: if X is a Banach space with
separable dual (i.e., an Asplund space) and Y is a Banach space with RNP, f: X — Y
is pointwise-Lipschitz at all x € X \ A where A € C, g: X — Ris continuous convex,
then there exists x € X such that f is Gateaux differentiable at x and g is Fréchet
differentiable at x. In some sense, our proof of Theorem 4.1 is simpler than the proof
of [2, Theorem 1]; some of the (rather cumbersome) measurability considerations
from (2] are replaced by Lemma 3.2 and the construction of a total set from [2] is
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replaced by the Lipschitz property of certain restrictions of the given mapping. In
the proof, we use several ideas from [8].

Let X be a Banach space and @ # K C X be a cone. Following [3], we say that
f: X — Ris K-monotone provided f or — f is K-increasing (we say that f: X — R
is K-increasing provided x <g y implies f(x) < f(y) whenever x, y € X; here,
x <k y means y —x € K). Borwein, Burke and Lewis [3] proved that every K-mono-
tone f: X — R is Gateaux differentiable outside of a Haar null set (see [1] for the
definition) provided X is separable and K is closed convex with int(K) # . This was
strengthened by Borwein and Wang [4] who showed that “Haar null” can be replaced
by “Aronszajn null”. In Section 5, as a corollary to Theorem 4.1, we obtain that an
analogous result holds if we replace “Haar null” by the class © defined by Preiss and
Zajicek [8]; see Theorem 5.4 for details. The class @ is a strict subclass of Aronszajn
null sets (see [8, p. 19]) and thus our result improves a result due to Borwein and
Wang [4, Proposition 16(iv)] who showed that instead of “Gateaux differentiable”
we can write “Hadamard differentiable” (see Corollary 5.5). Our result has another
interesting corollary; namely, if X has a separable dual (i.e., X is an Asplund space),
f: X — Ris K-monotone, g: X — R is continuous convex, then there exists x € X
such that f is Hadamard differentiable at x, and g is Fréchet differentiable at x (see
Corollary 5.6). This does not follow from the results of Borwein and Wang since
Aronszajn null sets and I'-null sets are incomparable. It seems to be a difficult open
problem whether € = A (see [8]). If this were true, then our theorem would also
hold with A in place of €. Thus, it remains open, whether we can replace C by A in
Theorem 5.4 and Corollary 5.5. Going in another direction, the author [6] proved
some results about a.e. differentiability of vector-valued cone monotone mappings.

The current paper is organized as follows. Section 2 contains basic definitions and
facts. Section 3 contains auxiliary results. Section 4 contains the proofs of the main
Theorem 4.1, and Corollary 4.2. Section 5 contains the proofs of Theorem 5.4, and
Corollaries 5.5 and 5.6.

2 Preliminaries

All Banach spaces are assumed to be real. By A we will denote the Lebesgue measure
on R. Let X be a Banach space. By B(x, r) we will denote the open ball with center
x € X and radius r > 0, and by Sx we denote {x € X : ||x|| = 1}. If M C X, then by
dy(x) :==inf{]|ly — x|| : y € M}.

Let X, Y be Banach spaces. We say that f: X — Y is pointwise Lipschitz at x € X,
provided limsup,,_, W=Dl o, By S(f), we will denote the set of points of X

=yl
where f is pointwise Lipschitz. By Lip( f) we will denote the usual Lipschitz constant

of f.
In the following, let X be a Banach space. If f is a mapping from X to a Banach
space Y and x, v € X, then we consider the directional derivative f(x, v) defined by

1) 1t v) = lim T 2T

t—

Ifx € X, f'(x,v) exists for all v € X, and T(v) := f’(x,v) is a bounded linear op-
erator from X to Y, then we say that f is Gdteaux differentiable at x. If f is Gateaux
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differentiable at x and the limit in (2.1) is uniform in ||v|| = 1, then we say that f is
Fréchet differentiable at x. If f is Gateaux differentiable at x, and the limit in (2.1) is
uniform with respect to norm-compact sets, then we say that f is Hadamard differ-
entiable at x.

We will need the following notion of “smallness” of sets in Banach spaces from [8].

Definition 2.1 Let X be a Banach space, M C X, a € X. Then we say that

(i) M s porous at a if there exists ¢ > 0 such that for each € > 0 there exist b € X
and r > O such that |la — b|| <&, MN B(b,r) = &, and r > c|la — b||.

(if) M is porous at a in direction v if the b € X from (i) verifying the porosity of M
at a can always be found in the form b = a + tv, where t > 0. We say that M
is directionally porous at a if there exists v € X such that M is porous at a in
direction .

(iii) M is directionally porous if M is directionally porous at each of its points.

(iv) M is o-directionally porous if it is a countable union of directionally porous
sets.

For a recent survey of properties of negligible sets, see [13]. We will also need the
following notion of “null” sets in a Banach space. It was defined in [8].

Definition 2.2 Let X be a separable Banach space and 0 # v € X. Then A(v, ¢) is
the system of all Borel sets B C X such that {¢ : ©(t) € B} is Lebesgue null whenever
@: R — X is such that the function t — (t) — tv has Lipschitz constant at most ¢,
and A(v) is the system of all sets B such that B = U;:il By, where B, € A(v, ;) for
some ¢ > 0.

We define A (resp. €) as the system of those B C X that can be, for every given
complete! sequence (v,),, in X (resp. for some sequence (v,,),, in X), written as B =
Uiil B,,, where each B, belongs to Aw,).

The following simple lemma shows that every directionally porous set is contained
in a set from A. As a corollary, we have the same result for o-directionally porous
sets.

Lemma 2.3 Let X be a separable Banach space, and A C X be directionally porous.
Then there exists a set A € A such that A C A.

Proof This follows from the proof of [8, Theorem 10]; see also [8, Remark 6]. [ |
The following simple lemma is proved in [2].

Lemma 2.4 ([2, Lemma 1]) Given f: X — Y and L,0 > 0, let S be the set of all
points x € X such that || f(x + h) — f(x)|| < L||h|| whenever ||h|| < 6. Then Sisa
closed set.

3 Auxiliary Results

The following is an extension of [4, Lemma 3] to a vector-valued setting.

'We say that (v,), C X \ {0} is a complete sequence provided span(v,) = X.
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Lemma 3.1 LetX,Y be Banach spaces, f: X — Y. Fixv;,v, € X, k,I,m € N, and
v,z € Y. Then the set A(k,l,m, y, z) of all x € X verifying

(i) Hw—yﬂ<%for||u—v1||<1/mand0<t<l/k,
(ii) HM—Z”<%for|\u—vz\|<1/mand0<t<1/k,
(i) [|[Le DI (g 4 2)|| > 3 occurs for arbitrarily small s > 0,

is directionally porous in X.
Proof Letx € A(k,I,m,y,z). Choose 0 < s < 1/k such that the inequality in (iii)

holds. We claim that B(x + svy, --) NA(k,l,m, y,2z) = @.
Indeed, for ||h|| < %, if x + s(v; + h) satisfies (ii), we have

H fx+s(vy +h) +su) — f(x+s(v; +h)) _ZH - ;’

(3.1)
s

for [lu — v,|| < . By (i) we get

H fx+stvi +h) — fx) _)’H < 1

(3.2) Z
s

T
By the triangle inequality, (3.1), and (3.2) we get

+ +h) + su) — 2 1
‘ flat s+ h)+su) f(x)—(y—i-z)H < =, for|lu—mnl| < —.
s I m
Taking u = v, — h, we have
‘ flx+sv+sv,) — f(x) _(J’+Z)H < g
s I
This choice contradicts the choice of s. [ |

Suppose that X, Y are Banach spaces, f: X — Y. Forx € X,0 # v € X, and
€ > 0 by O(f, x, v, ) we denote the expression

qupf{ | LM =10 _ flrr s = F) g g g < ).

We also define O(f,x,v) := lim._o+ O(f, x,v,€). We borrow this definition from
[8]. The following is true in general (in [8, Lemma 11] it is assumed that f is Lips-
chitz, but it is clearly not necessary):

(3.3) f'(x,v) exists if and only if O(f,x,v) = 0.

For the rest of this section, X will be a separable Banach space and Y will be a
Banach space with RNP. Also, G C X will be a closed set and f: X — Y a mapping
such that there exist L, § > 0 with

(3.4) If(y) = f(x)]| < L|ly —x|| whenever y € G, x € B(y,?).

We also assume that D is a Borel subset of G such that the distance function dg(x) is
Géteaux differentiable at each point x € D.
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Lemma 3.2 Let X be separable, 0 # v € X, and we put g(x) := O(f, x,v). Then g|p
is Borel measurable.

Proof Let w € D. Then h = flp,s/4nG is L-Lipschitz by (3.4), and thus Z =
h(B(w, §/4) N G) is separable. Thus, Z can be isometrically embedded into .., and
by [1, Lemma 1.1(ii)], h can be extended to an L-Lipschitz mapping H: X — {
(we identify Z with its isometric representation in ¢, for the moment). By [8,
Lemma 11(ii)], G(x) := O(H,x,v) is a Borel measurable function on X. We will
prove that g(x) = G(x) for all x € B(w, §/4) N D, and conclude that g|p is Borel
measurable (by separability of X).

Let x € B(w,d/4) N D. Fix v > 0 such that B(x,2y) C B(w,4/4). Lete > 0
and find 0 < 7 < ¢ such that dg(x + tv) < 7|t/ and x + tv € B(x,7) whenever
0 < |t| < 7. Take 7y := § min(e, 7, %). For0 < |s|, |t| < nfind y,z € GNB(w,d/4)
such that |[x + tv — y|| < f[t| and ||x + sv — z|| < 7|s|. Then we have

H fx+1tv) — f(y) ‘
t

< iy =yl <e,

L
|t
and similarly || M | < e. Also,

L
< —lx+tv—yl <e

It

t

and ||w|| < e. Thus using f(x) = H(x), f(y) = H(y), and f(z) = H(z),
we obtain

H(x+tv) — H(x)_H(x+sv) — H(x) H
t S

< H flx+1tv) — f(x) B flx+sv) — f(x)H
t s

(3.5) H

N H flx+1tv) —f(y)H N H flx+sv) —f(z)H
t s
H(y) —H(x +tv) H N H H(x+ sv) — H(z2) H
t

< O(f,x,v,€) + 4e.

|
S

By taking a supremum over 0 < |s|,|¢| < n in (3.5), we obtain O(H,x,v,n) <
O(f,x,v,e) + 4e. Send n — 0+ to get O(H,x,v) < O(f,x,v,€) + 4¢, and then
€ — 0+ to see that O(H, x,v) < O(f, x, v).

By (3.4) and H being L-Lipschitz, we can reverse the roles of f and H in the above
argument to show that O(f,x,v) < O(H, x, v). [ |

Lemma 3.3 IfxeD,0#veX O(f,x,v) >0, 0: R— X, r € R, o(r) = x, and
the mappingp: t — ¢(t)—tv has Lipschitz constant strictly less than O(f, ¢(r),v) /8L,
then the mapping f o  is not differentiable at r.
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Proof Denote K := O(f,x,v) > 0. To prove the lemma, let 6’ > 0 be such that

x +tv € B(x,8/2) and dg(x + tv) < £ [t| foreach 0 < |t] < ¢’. Fixe > 0 and let

7 = min(e, §’, $£2). By the assumptions on f, let 0 < [¢[, |s| < 7 such that

H flx+tv) — f(x) B flx+sv) — f(x)
t

3
> -0 s M Vs
| > 00

and estimate

t S

fx+tv)— f(x)  flx+sv)— f(x) fx+1tv) — flo(r+1))
> | =] ; H

D= wa(’”)_fmﬂ(’) fow(rH)—fosO(r)H

B H fx+sv) — flp(r+s) H

N

Find y,z € GN B(x,6) such that |[x + tv — y|| < &[] and ||x + sv — z|| < 15 s]-
Then we have || L&) =/W) < Lillx+tv— < K "and similarl
t It YIS 16 y

H () —f:QO(r+t))H < %||y_<p(r+t)\|

< |L7|||y—<x+tv>|| + |L7|Hso<r>+w—sa<r+t>||
s§+%wm—wHM|
K ) K K 3K
Thus
H f(x+tv)—f(sa(r+t))H <Hf(x+tv)—f(y)H +H f(y)—f(sa(r+t))H
t - t t

_K K _K

16 16 4
Since an analogous estimate holds for H M H , we obtain D > %K — 2% =
W; s0 O(f o p,1,1) > O(f, p(r),v)/4 is strictly positive as required. ]

Lemma 3.4 Foreach 0 # u € X, theset A = {x € D : f'(x,u) does not exist}
belongs to A(u).

Proof Since A = {x € D: O(f,x,u) > 0} by (3.3), and by Lemma 3.2 we have that
g(x) = O(f,x,u) is Borel on D, we obtain that A is Borel. By the same reasoning,
each Ay = {x € A: O(f,x,u) > 1} is Borel for k € N, and we have A = (J, Ax. To
finish the proof of the lemma, it is enough to show that Ay € Au, 1 /16kL) for each
keN.
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Let k € N be fixed. If ¢p: R — X is such that the function t — (t) — tu
has Lipschitz constant at most 1/16kL, then Lemma 3.3 implies that f o ¢ is not
differentiable at any ¢ for which () € Ay. Hence By := {t € R: o(t) € A} isa
subset of the set of points at which f o ¢ is not differentiable. Since f o ¢ is pointwise
Lipschitz at all ¢ such that ¢(¢) € A, and since Y has RNP, [2, Proposition 1] implies
that A\(Bx) = 0 as required for showing that A, € A(u, 1/16kL). [ |

Lemma 3.5 Let X be separable. Then there exists a set R € A such that (N fND)\R €
A, where Ny is the set of all points x € X at which f is not Gateaux differentiable.

Proof Let w € D, and denote D,, = D N B(w,0/4). If g := f|p(w,5/4nc> then g is
L-Lipschitz on its domain (by (3.4)). Since T := g(B(w, d/4) N G) is separable, we
will show that

Z:=spanfu €Y :u= f'(x,v) for somex € D,,,v € X\ {0}}

is a subset of W := span(T) (and thus is separable). Suppose thatx € D,,, 0 # v € X,
and f’(x,v) exists. Fix v > 0 such that B(x,2v) C B(w,d/4). Lete > 0 and find
7 > 0 such that for 0 < [t| < 7 we have dg(x + tv) < |t|, x +tv € B(x,7),
and HM — x| < e Letn = min(T,g—Z) and 0 < |t| < 7. Find
y € GNB(w,0/4) with ||x +tv — y|| < |t[. Then

Hf/(x’ y - IO ; f(x)H <ot H f(x+tvt) — ) fB) ; f(x)H

L
§5+m||x+tv—y|| < 2e.

Since M € W, send & — 0+ to obtain dy (f'(x,v)) = 0, and thus f'(x,v) €
w.

Since X,Z are separable, by R, denote the set obtained as a union of all
A(k,l,m,y,y") N D (see Lemma 3.1) where k,I,m € N, y,y’ are chosen from a
countable dense subset of Z and vy, v, are chosen from a countable dense subset of
X. By Lemmas 3.1 and 2.3, there exists R/, € A such that R,, C R/,. We have the
following: if x € D,, \ R,,, then the following implication holds *:

If the directional derivative f'(x, u) exists in all directions u fromaset U, C X
(x) whose linear span is dense in X, then f'(x,v) exists for all v € spang, Uy;
furthermore, f'(x, -) is bounded and linear on span, U,.

The proof of (x) is similar to the proof of [8, Theorem 2] and so we omit it.

For the rest of the proof, let (v,), be a complete sequence in X. Let A, = A, (w)
be the set A from Lemma 3.4 applied to v,; the lemma implies that A, is Borel and
A, € A(v,) foreachn € N. Denote F,, = Dy \ (U, An). It follows that H,, := F,/\R,,
is Borel. We will show that f is Gateaux differentiable at each x € H,,.

Here, spany V = {37 | qvi:qi € Q, vi € V,i=1,...,n, n € N}.
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Let x € H,. Fixy > 0 such that B(x,2y) C B(w,d/4). Let Q := spanQ{vn :
n € N}. By (%) we have a bounded linear mapping T: Q — Z such that T(q) =
f’(x, q) for each g € Q. By the density of Q, T" extends to a bounded linear mapping
T: X — Y. We must show that f/(x,v) = T(v) foreach0 # v € X. Given0 # v € X
and € > 0, by the density of Q and continuity of T, there exists g € Q such that

(36) lv—all < 57 and T —g)] < 3.

By the existence of f'(x, q) and by the differentiability of the distance function dg(x)
at the point x, there exists 7. > 0 such that

(3.7) H flx+ tqt) — f(x)

~ || <3,

x +tv € B(x,7), and dg(x + tv) < g;|t| foreach 0 < [t| < 7.. Let0 < [t| <
min(7.,9vL/2¢) and let y € G N B(w, §/4) be such that [|x + tv — y|| < g7[t|. Then
[[x +tq — y|| < &|t|. Thus we have

(3.8)

H flx+1tv) —f(x+tq)H H flx+1tv) —f(y)H N H f(x+1tq) —f(y)H
t t t

5
< -.
-3

Now since f'(x,q) = T(g), by (3.6), (3.7), and (3.8) it follows that

[ =0 gy o Lot =10 g )
‘ fle+tv) — fx+1tq)
t

+| |+ -0l <,
for each 0 < |¢| < 7.. This proves that f'(x, v) exists and f’(x,v) = T(v). Thus f is
Gateaux differentiable at x.

Since there exist wy € D such that D = |J,(D N B(wy,6/4)), let R = |J, Ry, we
have that R is Borel and since

(3.9)  (NfND)\R= (L%J((NfﬂDwk)\Rlvk)) \R= (LkJ(Dwk \ Hy)) \ R,

we also obtain that (NyND)\ R is Borel (strictly speaking, the right-hand side of (3.9)
depends on the complete sequence (v,), but the left-hand side does not, so (Ny N
D)\ R is indeed Borel since a complete sequence in X clearly exists by the separability

of X).
Since we haye the following simple observation: if A € A(v) and~B C X is Borel,
then A \ B € A(v); we can conclude that (Ny N D) \ Ris indeed in A. [ |
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4 Main Theorem

Theorem 4.1 Let X be a separable Banach space and let Y be a Banach space with the
RNP. Given f: X — Y, let S(f) be the set of all points x € X at which f is pointwise
Lipschitz. Then there exists a set E € A such that f is Gateaux differentiable at every

point of S(f) \ E.

Proof We follow the proof from [2]. For each n € N let G, be the set of all x € X
such that || f(x+h) — f(x)|| < n||h|| whenever ||h|| < 1. Lemma 2.4 implies that each
G, is closed, and S(f) = J,, G,. Since the distance function dg, (x) is Lipschitz on X,
by [8, Theorem 12] there exists a Borel set M,, such that X \ M,, € A and dg,(x) is
Gateaux differentiable on M,,. Let D, := G, N M,,. Thus, in particular, G, \ D, € A.
By 2, denote the set of all points x € D,, at which f is not Gateaux differentiable. By
Lemma 3.5 applied to D, we obtain R,, € A such that €2, \R, € A.

Define E := (|, (£, \ R,) UR,) U (U, (Gn \ D,,)). Then E € A by the previous
paragraph. If x € S(f) \ E, then there exists n € N such that x € G, \ E. The
condition x ¢ E implies that x ¢ G, \ D, and x ¢ ,,. Therefore x € D, \ €2, and
hence f is Gateaux differentiable at x. ]

Corollary 4.2 Let X be a Banach space with X* separable, Y be a Banach space with
RNP, f: X — Y be pointwise Lipschitz outside some set C € C (or even some set D
which is I'-null), g: X — R be continuous convex. Then there exists a point x € X such
that f is Gateaux differentiable at x and g is Fréchet differentiable at x.

Proof Assume that f is pointwise Lipschitz outside some C € C. By Theorem 4.1,

there exists A € A such that f is Gateaux differentiable at each x € X \ (A U C).

By [7, Corollary 3.11] there exists a I'-null B C X such that g is Fréchet differentiable

at each x € X\ B. Since AUC is I'-null by [12, Theorem 2.4], we have that AUBUC
is T-null and thus there exists x € X \ (AUBUC).

If f is pointwise Lipschitz outside a I'-null set D, then the proof proceeds similarly.

|

5 Cone Monotone Functions

Lemma 5.1 Let X be a Banach space and K C X a closed convex cone with 0 # v €
int(K), and let f: X — R be K-monotone. If limsup, _, [t|~!|f(x+1tv) — f(x)| < oo,
then f is pointwise-Lipschitz at x.

Proof Without any loss of generality, we can assume that v + B(0,1) C K; then
the proof is identical to the proof of [6, Lemma 2.5] (note that there we assume
that f is Gateaux differentiable at x, but, in fact, we are only using that f satisfies
limsup, _, [t| 7! f(x+tv) — f(x)]| < 00). [

Let (X, || - ||) be a normed linear space. We say that || - || is LUR at x € Sx provided

x, — x whenever ||x,]| = 1, and ||x, + x|| — 2. For more information about
rotundity and renormings, see [5].
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Lemma 5.2 Let X be a separable Banach space, K C X be a closed convex cone,
v € int(K)NSx. Then there exists anorm || - ||; on X whichis LUR atv, x* € (X, |- |[1)*
withx*(v) = ||v||1 = ||x*|| = L, and « € (0, 1) such that

Ki={xeX: x| <ax*(x)}

is contained in K.

Proof The conclusion follows from [5, Lemma I1.8.1] (see the proof of [6, Proposi-
tion 15]). [ |

Lemma 5.3 Let X be a Banach space, v € Sx, x* € X* such that ||v|]| = ||x*| =
x*(v) = L a € (0,1). Let Knor = {x € X : afx|]| < x*(x)}. Then there exists
e =e(K,v) € (0,1) such that if p: R — X is a mapping such that : t — @(t) — tv
has Lipschitz constant less than e, then s < t implies p(s) <k, . ¢(t).

Proof Since x*(v) = 1, for each & < o’ < 1 we have v € int(K, ). Fix o’ €

(a,1). Lete := min( 1, 2(:,/(1_3)) . Take s < t,s,t € R. Then

(5.1)  alle) = @) < a'llpt) = tv = (p(s) = sv)|| +a’[t —s[[|v]
< alelt —s| + |t — s|x*(v)
= a’elt —s| + x"(tv — p(t) — (sv — p(s))
+x"(p(t) — 0(5))
< alelt — s+ [[tv — (1) = (sv = @(5)|
+x*(p(t) — ¢(s))
< (1+a')elt —s| +x*(o(t) — p(s)).

As in (5.1), we show that x*(tv — @(t) — (sv — ¢(s5))) < et — s|, and from this we
obtain |r — s|(x*(v) — &) < x*((t) — ¢(s)). Then (5.1) implies that

(1+a')e

o/llp) — o) < (1+
— &

JEXCORTEON

The choice of ¢ shows that a|p(t) — @(s)]| < x*(¢(t) — ¢(s)), and therefore
o(t) 2k, . ©(s). u

We prove the following theorem, which improves [4, Theorem 9]:

Theorem 5.4 Let X be a separable Banach space, K C X be a closed convex cone with
int(K) # @. Suppose that f: X — R is K-monotone. Then f is Gateaux differentiable
on X except for a set belonging to C.

Remark It is not knowg whether C: C A (see [8, p. 19]). If it is true, then Theo-
rem 5.4 holds also with A instead of C.
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Proof Without any loss of generality, we can assume that f is K-increasing and lower
semicontinuous (we can work with f instead by [4, Proposition 17 and Proposi-
tion 16(iii)], where f(x) = sup;., ElfzeB(m;) f(2) is the Ls.c. envelope of f). By
Lemma 5.2, we can also assume that the norm on X is LUR at v € Sy and
K=Ky, ={x € X:|x|| < ax*(x)} for some x* € X* and o € (0, 1) with
lx*]] = x*(v) = 1.

Find 1 > 0 such that B(v,) C int(v/2 + K, ++) (such an 7 exists since obviously
v € int(v/2 + K, 4+)). Let x € X be such that ||x]| = 1 and §|x|| < x*(x) for some
0 <3< 1. Sincel+ 8 = 1+0]x|| <x*(v)+x*(x) < |x+v|, and the norm on X is
LUR at v, there exists 8’ € (o, 1) such that K/ x» N S(0,1) C B(v,n) C v/2 + Kg »~
and thus

(5.2) K/ o« N S(0,8) C B(tv,mt) C tv/2 + Ky x

for each t > 0. Put B := {x € X :limsup,_,, W = oo} . Then Lemma 5.1
shows that S(f) = X \ B, and Lemma 2.4 shows that B is Borel. We will show that
Be A(w). Let o: R — Xbea mapping such that ¢ (t) = ¢(t) — tv has Lipschitz
constant strictly less than € > 0, where ¢ is given by application of Lemma 5.3 to
Kps/ x+. Suppose that r € R satisfies () = x € B. Without any loss of generality,

we can assume that there exist t; — 0+ such that w > k (otherwise work

with — f(—-)). For each k, find i € R such that p(rx) € (x+Kps .«) N S(x, ). Such
ri exist since (1) = x, ||p(s)]| — coass — 0o, and p(u) € (x+Kp/ 1) by the choice
of e. Then (5.2) implies that (1) >k, . x+#v/2, and thus f(o(ry)) > f(x+1v/2).
Now, since 1 is e-Lipschitz, we have (1 — )|r — rx| < ||p(r) — @(r)|| = # and thus

fetny/2) = f) 2 fle(n)) = flen)

k<
- 1 /2 “1l-—¢ r— 1

It follows that f o ¢ is not pointwise Lipschitz at r. By the choice of € and Lemma 5.3,
we have that f o ¢ is monotone; thus A({r € R : ¢(r) € B}) = 0 (since monotone
functions from R to R are known to be a.e. differentiable), and B € A(v, e /2).

We proved that B € A(v). By Lemma 5.1 we have that S(f) = X \ B. By
Theorem 4.1, there exists a set A € A such that f is Gateaux differentiable at all
x € X\ (AU B). In [4, Theorem 9] it is proved that the set Ny of points of
Géteaux non-differentiability of f is Borel, and thus we obtain that Ny € C (since
Ny C AUB). =

Theorem 5.4 and [4, Proposition 16(iv)] show the following.

Corollary 5.5 Let X be a separable Banach space and K C X a closed convex cone
with int(K) # @. Suppose that f is K-monotone. Then f is Hadamard differentiable
outside of a set belonging to C.

We also have the following corollary.

Corollary 5.6 Let X be a Banach space with X* separable and K C X a closed convex
cone with int(K) # @. Let f: X — R be K-monotone and g: X — R continuous
convex. Then there exists a point x € X such that f is Hadamard differentiable at x and
g is Fréchet differentiable at x.
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Proof By Corollary 5.5, there exists A € C such that f is Hadamard differentiable
at each x € X \ A. By [7, Corollary 3.11] there exists a I'-null B C X such that g is
Fréchet differentiable at each x € X \ B. Since A is I'-null by [12, Theorem 2.4], we
have that A U B is I'-null and thus there exists x € X \ (A U B). [ |
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