(ii) If a lump of the alloy containing say 2 lbs. of copper and 3 lbs. of zinc be fused with other 4 lbs of copper and other 4 lbs . of zinc into another lump, then the second lump is "more coppery" than the first. Hence

$$
\frac{2}{3}<\frac{2+4}{3+4}
$$

or

$$
\frac{a}{b}<\frac{a+c}{b+c} \text { if } a<b
$$

Similarly

$$
\frac{a}{b}>\frac{a+c}{b+c} \text { if } a>b
$$

Also we may illustrate the inequality between

$$
\frac{a}{c} \text { and } \frac{a-c}{b-c}
$$

(iii) If a lump of an alloy of copper and zinc containing a parts of copper and b parts of zinc be fused with a lump of a second alloy of copper and zinc containing c parts of copper and d parts of zinc, then the lump so formed will contain ($a+c$) parts of copper and ($b+d)$ parts of zinc. If $a / b \neq c / d$, then the new alloy is "less coppery" than the one and "more coppery" than the other. That is $\frac{a+c}{b+d}$ lies between $\frac{a}{b}$ and $\frac{c}{d}$. Similarly, if we suppose n alloys to be fused into one, we see that

$$
\left(a_{1}+a_{2}+\ldots+a_{n}\right) /\left(b_{1}+b_{2}+\ldots+b_{n}\right)
$$

lies between the least and greatest of the fractions $a_{1} / b_{1}, a_{2} / b_{2}$, etc.
Graphical illustrations of these propositions are also instructive.
D. C. M‘Intosh

Proof of a Property of Simson's Line.-The following is a slightly simplified version of a well-known proof of this theorem :-

The Simson's Line of P, with respect to $\triangle A B C$, bisects $P O$, where O is the orthocentre of the triangle.

Draw $P Q$ perpendicular to $B C$, meeting $B C$ in X, and circle ABC in Q. XY, the Simson's Line of P, meeting OA in Y, is parallel to QA.

If O_{1} is the orthocentre of $\triangle \mathrm{PBC}$, then
$\mathrm{PO}_{1}=$ twice the distance of the circumcentre from BC , $=\mathrm{A} O$.

Also

$$
\mathrm{O}_{1} \mathrm{X}=\mathrm{XQ}=\mathrm{YA} .
$$

$\therefore \mathrm{PX}=\mathrm{YO}$; and these are parallel lines.
\therefore PXOY is a parallelogram.
$\therefore \mathrm{XY}$ bisects PO.

N. M‘Arthur
(54)

