A NOTE ON HYPERNILPOTENT RADICAL PROPERTIES FOR ASSOCIATIVE RINGS

S. E. DICKSON

Introduction. We work entirely in the category of associative rings. We show that if \mathbf{P}_1 is a homomorphically closed class which contains the zero rings, then the lower Kurosh radical \mathbf{P} of \mathbf{P}_1 is the class \mathbf{P}_2 of all rings R such that every non-zero homomorphic image of R has non-zero ideals in \mathbf{P}_1 , provided that \mathbf{P}_1 is closed under extensions by zero rings (i.e., if I is a \mathbf{P}_1 -ideal of R and $(R/I)^2 = 0$, then $R \in \mathbf{P}_1$). The latter assumption replaces the hypothesis that \mathbf{P}_1 be hereditary for ideals in a similar result of Anderson-Divinsky-Sulinsky in (2). This leads to a brief proof that the lower radical construction of Kurosh terminates at \mathbf{P}_{ω_0} (where ω_0 is the first infinite ordinal) when \mathbf{P}_1 is a homomorphically closed class of associative rings containing the zero rings. This was proved for arbitrary homomorphically closed classes \mathbf{P}_1 of associative rings in (2).

1. Radical classes. Let \mathbf{P}_1 be a homomorphically closed class of rings. For any ordinal $\alpha > 1$, \mathbf{P}_{α} is defined as the class of rings R, each of whose non-zero homomorphic images contains non-zero ideals from \mathbf{P}_{β} for some $\beta < \alpha$. The union of the classes \mathbf{P}_{α} is the lower radical \mathbf{P} of Kurosh, which is the smallest radical class \mathbf{P} containing the class \mathbf{P}_1 . Anderson-Divinsky-Sulinski (2) have shown that in the category of associative rings this construction stops with $\mathbf{P} = \mathbf{P}_{\omega_0}$, where ω_0 is the first infinite ordinal. For alternative rings the construction stops at $\mathbf{P} = \mathbf{P}_{\omega_0 2}$. Also, it is shown in (2) that if \mathbf{P}_1 is a hereditary, homomorphically closed class of rings containing the zero rings, then $\mathbf{P} = \mathbf{P}_2$. We show that the hypothesis that \mathbf{P}_1 be hereditary can be replaced by a different condition in the following theorem.

THEOREM. Let $\mathbf{P_1}$ be a homomorphically closed class of associative rings containing the zero rings and having the additional property that if $I \in \mathbf{P_1}$ is an ideal of R with R/I a zero ring then $R \in \mathbf{P_1}$ (i.e., $\mathbf{P_1}$ is closed under extensions by zero rings); then $\mathbf{P_2}$ is the lower radical containing $\mathbf{P_1}$.

Proof. We verify that the class \mathbf{SP}_1 of rings having only the zero ideal in \mathbf{P}_1 is hereditary. Then by the result of Amitsur (1, Theorem 8.1, p. 118) it follows that \mathbf{P}_2 is the lower radical. Let $R \in \mathbf{SP}_1$ and let I be an ideal of R. Suppose I has an ideal K with $K \in \mathbf{P}_1$. Then, if K_1 is the ideal of R generated by K, we have $(K_1/K)^3 = 0$, so that $(K_1^2 + K)/K$ is a zero ring and hence $K_1^2 + K$ is a member of \mathbf{P}_1 . Also, K_1 is an extension of the ring $K_1^2 + K$ in

Received January 4, 1966.

S. E. DICKSON

 \mathbf{P}_1 by the zero ring $K_1/(K_1^2 + K)$, so it is in \mathbf{P}_1 , which shows that $K = K_1 = 0$; hence $I \in \mathbf{SP}_1$ as desired.

COROLLARY (Anderson-Divinsky-Sulinsky). Let \mathbf{P}_1 be a homomorphically closed class of associative rings containing the zero rings. Then the lower radical construction terminates at the class \mathbf{P}_{ω_0} , where ω_0 is the first infinite ordinal.

Proof. Let \mathbf{N}_1 be the class of all rings R such that R is in some class \mathbf{P}_n for $n \ge 1$. Then since each class \mathbf{P}_n is homomorphically closed, it follows that \mathbf{N}_1 is homomorphically closed. Moreover, if I is an ideal of a ring R with $I \in \mathbf{P}_n$ and $(R/I)^2 = 0$, it follows that $R \in \mathbf{P}_{n+1}$. For let K be an ideal of R with $K \ne R$. If $I \subseteq K$, then $R/K \in \mathbf{P}_1$, as a homomorphic image of R/I. On the other hand, if $I \subseteq K$, (I + K)/K is a non-zero ideal of R/K and a member of \mathbf{P}_n . Hence $R \in \mathbf{P}_{n+1}$. Thus by the theorem the lower radical of \mathbf{N}_1 is \mathbf{N}_2 , which clearly is just the class \mathbf{P}_{ω_0} .

References

1. S. A. Amitsur, A general theory of radicals II, Amer. J. Math., 76 (1954), 100-125.

2. T. Anderson, N. Divinsky, and A. Sulinsky, Lower radical properties for associative and alternative rings (to appear).

University of Nebraska, Lincoln, Nebraska