On the evaluation of
$$\int \frac{dx}{(x-e)^{n+1}\sqrt{(ax^2+2bx+c)}}$$

By R. Wilson.

It is not perhaps generally realised that the special bilinear substitution $x = \frac{lt+m}{t+1}$, used to reduce the integral

$$\int \frac{dx}{(ex^2 + 2fx + g)\sqrt{(ax^2 + 2bx + c)}}$$

to canonical form¹, can also be used to simplify the calculation of the integral $\int \frac{dx}{(x-e)^{n+1}\sqrt{(ax^2+2bx+c)}}$. At the same time this treatment forms a suitable introduction to the more difficult case of the former integral.

In the latter case l and m are chosen to satisfy the relations

$$l-e=0$$
, $alm+b(l+m)+c=0$,

so that

$$l-m = \frac{ae^2 + 2be + c}{ac + b} = e - m$$

and, after substitution, the integral becomes

$$\frac{-(m-l)^{-n}}{\sqrt{(ae^2+2be+c)}} \int \frac{(t+1)^n dt}{\sqrt{\{t^2+(ca-b^2)/(ae+b)^2\}}} dt$$

The properties of the quadratic form show that (after incorporation of the numerical factor $\sqrt{(ae^2+2be+c)}$ when it is imaginary) the denominator must take one of the three forms $K\sqrt{(t^2+k^2)}$, $K\sqrt{(t^2-k^2)}$ or $K\sqrt{(k^2-t^2)}$, where K and k are both real. Consider, for example, the typical case $I_n \equiv \int \frac{(t+1)^n dt}{\sqrt{(t^2+k^2)}}$. The reduction formula is easily seen to be

$$nI_n$$
— $(2n$ — $3)$ I_{n-1} + $(n-1)$ (k^2+1) I_{n-2} = $(t+1)^{n-1}$ $\sqrt{(t^2+k^2)}$, $(n \ge 2)$ in which the last member of the chain is

$$I_1 - I_0 = \sqrt{(t^2 + k^2)}$$

where

$$I_0 = \int\!\!\frac{dt}{\sqrt{(t^2+k^2)}}\,.$$

¹ See for example G. H. Hardy, *Pure Mathematics* (Cambridge), 1908, pp. 246-7, Ex. 37.

This method is an improvement on that arising from the orthodox substitution $x-e=\frac{1}{z}$, in which the final reduction to canonical form with n=0 is frequently tedious¹. The following example with n=3 shows that the reduction process is not necessary for low values of n.

$$egin{split} \int & rac{(t+1)^3\,dt}{\sqrt{\,(t^2+k^2)}} = & \int \!\! t\,\sqrt{\,(t^2+k^2)}\,dt + 3\int \!\!\sqrt{\,(t^2+k^2)}\,dt + (3-k^2) \ & \int \!\! rac{tdt}{\sqrt{\,(t^2+k^2)}} + (1-3k^2)\int \!\! rac{dt}{\sqrt{\,(t^2+k^2)}} \end{split}$$

which may be integrated at sight.

University College, Swansea.

A dual quadratic transformation associated with the Hessian conics of a pencil

By T. Scott.

1. The invariants and covariants of a system of two conics have been much studied² but little has been said about those of three conics. Three conics $f_1 \equiv a_x^2$, $f_2 \equiv b_x^2$, $f_3 \equiv c_x^2$ have a symmetrical invariant Ω_{123} , or in symbolical notation $(a\ b\ c)^2$. According to Ciamberlini³ the vanishing of this invariant signifies that the Φ conic of any two of f_1 , f_2 , f_3 is inpolar with respect to the third; and in a previous paper I have

¹ The integral
$$\int \frac{dx}{(x+1)\sqrt{(2x-x^2)}} = -\int \frac{dz}{\sqrt{(-1+4z-3z^2)}}$$
 or $-\frac{1}{\sqrt{3}} \int \frac{dt}{\sqrt{(\frac{1}{4}-t^2)}}$ is a

² See Salmon Conic Sections, Ch. xviii, or Sommerville, Analytical Conics, Ch. xx. Taking point-coordinates x, y, z with corresponding line-coordinates l, m, n, a conic $a_x^2 \equiv a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{23}yz + 2a_{31}zx + 2a_{12}xy = 0$ has a tangential equation $A_{11}l^2 + A_{22}m^2 + A_{33}n^2 + 2A_{23}mn + 2A_{31}nl + 2A_{12}lm = 0$. Then the vanishing of the invariant $\Theta = b_{11}A_{11} + b_{22}A_{22} + b_{33}A_{33} + 2b_{23}A_{23} + 2b_{31}A_{31} + 2b_{12}A_{12}$ of the conics $f_1 \equiv a_x^2$, $f_2 \equiv b_x^2$ implies that there are triangles circumscribed to f_1 which are self-polar for f_2 , and f_1 is said to be inpolar to f_2 . The contravariant conic Φ_{12} is the envelope of a line whose intersections with f_1 harmonically separate its intersections with f_2 .

³ Giorn. di Mat., Napoli, 24 (1886), 141.

⁴ Proc. Ed. Math. Soc., 2 iv (1935) 258.