
BULL. AUSTRAL. MATH. SOC. 46BO3, 46B20

VOL. 51 (1995) [291-300]

HIGHER ORDER GATEAUX SMOOTH BUMP FUNCTIONS
ON BANACH SPACES

DAVID P. MCLAUGHLIN AND JON D. VANDERWERFF

For F uncountable and p > 1 odd, it is shown lp(T) admits no continuous p-
times Gateaux differentiable bump function. A space is shown to admit a norm
with Holder derivative on its sphere if it admits a bounded bump function with
uniformly directionally Holder derivative. Some results on smooth approximation
are obtained for spaces that admit bounded uniformly Gateaux differentiable bump
functions.

INTRODUCTION

Because of their intimate relationship with geometric properties, the existence of
real-valued functions with bounded nonempty support of a given degree of smoothness
(that is, smooth bump functions) is a widely studied topic in Banach space theory (see
[3]). While the questions concerning the best possible order of Frechet smoothness for
bump functions and norms on Lv were completely solved by Bonic and Frampton [1],
the corresponding questions for Gateaux smoothness have remained largely unsolved.
In this direction, Troyanski [10] has shown for p odd, Lp((i) admits a p-times Gateaux
differentiable norm if \i is sigma finite, while £P(T) does not admit a p-times Gateaux
differentiable norm if T is uncountable. Fabian, Whitfield and Zizler [5] have shown
that no Lp space for 1 ^ p < 2 can admit a twice Gateaux differentiable norm. A
dramatically simpler proof of this can be obtained using arguments of Borwein and
Noll from [2, Proposition 2.2]. In fact, [8] applies the techniques of [2] to show a wide
class of spaces, including Lp for 1 ^ p < 2, cannot admit continuous twice Gateaux
differentiable bump functions.

This note presents results which provide further evidence of the strength of higher
order and uniform Gateaux differentiability. The first section improves Troyanski's
result [10, Theorem 3.5] by showing if p > 1 is odd and T is uncountable, then
ip(T) admits no continuous p-times Gateaux differentiable bump function. This is
not just a formal improvement, because Haydon's striking results [6, 7] show there
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are spaces that admit Lipschitz C°°-smooth bump functions but have no Gateaux
difFerentiable norms. In contrast to this, the second section shows spaces that admit
Lipschitz uniformly Gateaux differentiable bump functions must have Gateaux smooth
norms. More restrictively, we show a space admits a norm with Holder derivative on its
sphere if it has a Lipschitz bump function whose derivative is uniformly directionally
Holder; this sharpens [5, Theorem 3.2].

Throughout this note, X and Y will denote real Banach spaces. The continuous
dual of X is written X*. The closed unit ball and unit sphere on X will be denoted
by Bx and Sx respectively. Because norms are not difFerentiable at the origin, we
say a norm is, for example, Gateaux differentiable, if it is Gateaux differentiable at all
nonzero points.

1. GATEAUX BUMP FUNCTIONS ON lp(T)

We shall say the function <f> : X —» R is Gateaux differentiable at x, if there is a
A e X* such that ]im[<f>(x + th) - <f>(x)]/t = A(h) for each h G X; as in [10] we shall

say <j> is twice Gateaux differentiable at x if <f>'(v) G X* exists in the Gateaux sense for
each v in a neighbourhood of x and

<t>"(x)(h, k) = hm \{4>'{x + th) - *'(*))(*)

exists and is a continuous symmetric bilinear form. Higher order Gateaux differentia-

bility can be defined inductively.

A collection {x7, / 7 } C X x X* is called a Markusevic basis of X if f^(xa) = 1 for

a — 7 and 0 otherwise, span({«^}7) = X, and {f-,}-y is total on X (that is, ff(x) = 0

for all 7 if and only if x = 0).

LEMMA 1 . 1 . Suppose X is reflexive, {x^,fy}^ is an M-basis of X with ||x7|| ^
1, and <f> : X —» R is weakly sequentially continuous with ^(0) — 0. Then {7 : 4>{xy) ̂
0} is countable.

PROOF: Following [10, Lemma 3.7], consider {xy : \<f>(x^)\ ^ e}. If this set is
infinite, by its relative weak compactness and the Eberlein-Smulyan theorem it has a
weakly convergent subsequence. By the biorthogonality and totalness conditions of the
M-basis, this subsequence must converge weakly to 0. Hence e ^ 0. u

Recall that a norm ||-|| is said to have modulus of rotundity of power type p if there
is a C> 0 such that for every e £ [0,2], inf {1 - ||a; + y\\ /2 : ||JT|| = \\y\\ = 1, ||x - y\\ Z

e} ^ Cep. The following proof uses the fact that spaces admitting such norms are
reflexive; in fact they are precisely the superreflexive spaces (see [3, Chapter IV]).
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THEOREM 1 . 2 . Suppose p > 1 is an odd integer and suppose X is nonseparable

and admits a norm with modulus of rotundity of power type p. If every continuous

symmetric j-linear form is weakly sequentially continuous for j ^ p — 1, then X does

not admit a continuous p-times Gateaux differentiable bump function.

PROOF: Suppose 6 is a continuous p-times Gateaux differentiable bump function
on X such that 6(0) = 1 and b(x) = 0 for ||x|| > 1. Now consider <j> defined by
<f>(x) — b~2(x) if b(x) =£ 0 and <f>(x) = +oo otherwise. Let I x K b e endowed with the

O N1/2

|as|f +i*2J where we are assuming ||-|| is a norm with modulus
of rotundity of power type p on X. Let F = {(X,T) : <j>(x) ^ r ^ 4} . Observe
that F is closed. Because X is reflexive, there is a point (xo,ro) with ||zo|| ^ 1
and TQ ^ 5 having a farthest point in F (see for example, [3, Proposition II.2.7]). If
(x,r) £ F and r ^ 3, we have ||x|| < 1. Whence \r - ro\ < 2 and \\x0 - z|| ^ 2 and
so ||(a5,?-) - (x o , r o ) | | < v/8. On the other hand, (0,1) e F and ||(XO,T-O) - (0 , l ) | | ^
ro — 1 ^ 3 . Hence for farthest point (x,r), we have r ^ 3 and r = <f>(x).

Let A = $'(x) and set i>(h) = <f>(x~ + h) — <j)(Jz) — A(/i). Clearly ifr is p-times
Gateaux differentiable at 0 and for 6 > 0 chosen so that <j>(x~ + h) ^ 7/2 for \\h\\ ^ 6,

we claim

(1.1) il>{h) > K \\h\\v for some K > 0 and all \\h\\ ^ S.

To prove (1.1), let p = \\(xo,rQ) - (x,r)\\ and for ||h|| ^ 6 consider -q = \\{h,

then 7/ ^ ||/i| |. The ball of radius p with centre (zo)»"o) is supported at (x,r) by a
(unique) hyperplane which must be the graph of A + r . Thus, since ||(-, -)|| has modulus
of rotundity of power type p , it follows from [4, Lemma 5] that

where C is the constant from the modulus of rotundity of the p-ball. By the triangle
inequality, for K = 2~PC, we have

- ( 5 + k , r + A(fc ) ) | | - | | (ao ,ro) - (* +fc,*(* + h))\\

Thus (1.1) has been verified. However, ip is p-times Gateaux differentiable at 0 so for
every h £ Sx , using the notation hk = (h,... ,h) (A;-times), Taylor's theorem yields:

p

Km*-'[^(0 + th) - 1,(0) - X! ^{k\0)(hk)] = 0.
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Since X is reflexive and nonseparable, it admits an uncountable M-basis (see for exam-
ple, [3, Chapter VII]). Hence by Lemmal.l for h = x7 some j we have ^k\0)(hk) = 0
for k — 1,... ,p — 1. Since p is odd, by replacing h with—A if necessary, we also have
•^(*)(0)(/ip) ^ 0. In particular, for t sufficiently small, we have

rf,(th) = 1>(th) - ^(0) ^ <T ^ V W ( 0 ) (hk) + * \\th\\* < j \\th\\p,

which contradicts (1.1). Therefore X cannot admit a continuous p-times Gateaux
differentiable bump function. D

The following result improves [10, Theorem 3.5].

COROLLARY 1 . 3 . If p > 1 is odd and T is uncountable, then ip(T) does not

admit a continuous p-times Gateaux diSerentiable bump function.

PROOF: This follows from Theorem 1.2, because lp(T) admits a norm with mod-
ulus of rotundity of power type p (see for example, [3, Corollary V.2.1(ii)]) and its
continuous symmetric j-linear forms are weakly sequentially continuous for j ^ p — 1
by [1, Lemma 1]. U

2. UNIFORMLY DIRECTIONALLY DIFFERENTIABLE BUMP FUNCTIONS

We shall say a function 4>: X —> Y is uniformly Gateaux differentiable (UG) if for

each x £ X there is a continuous linear mapping 4»'(x) : X —> Y such that for each

h 6 Sx and e > 0 there exists a 6 > 0 for which

U{x + th) - 4(x) - <j>'(x)(th)\\ < e \t\ for all \t\ < 6, x £ X;

this implies <j> has a uniform directional modulus of smoothness, that is, given h 6 Sx

and e > 0, there is a 6 > 0 such that

\\<t>(x + th) + </>(x - th) - 2<t>(x)\\ ^et for all 0 s$ t ^ 6, x £ X.

If for each h £ Sx, there are Ch and ah > 0 such that

+ th) - t{x) - <j>'(x)(th)\\ ^ Ch \t\1+ah for all t £ R, x £ X,

then we shall say <f>' is uniformly directionally Holder. This clearly implies <f> has a
uniform directional modulus of smoothness of power type, that is, for each h £ Sx

there are Ch > 0 and o/, > 0 such that

\\<t>(x + th) + <t>{x - th) - 2<f>{x)\\ < Cht
1+ah for all t ^ 0, x £ X.

The following observations will be useful.
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REMARK 2 .1 .

(a) If / : X —» R is Lipschitz and UG (respectively and / ' is uniformly
directionally Holder) and <j> : K. —> R is Lipschitz with Lipschitz deriva-
tive, then <l> o f is UG (respectively has uniformly directionally Holder
derivative).

(b) If <f> : X -* Y is UG and sup{||0(s:)|| : x € X} ^ N for some N, then <j>
is Lipschitz.

PROOF: The proof of (a) is a direct computation so we now prove (b). For fixed

h £ Sx and e = 1 we find 6 > 0 such that

\\<j){x + 6h) - <f>(x) - <f>'{x){8h)\\ < 1 for all x £ X.

Hence \\<t>'{x){6h)\\ < 2N + 1 and so ||<£'(z)(/i)|| < {2N + 1)/S for all a; € X . Thus
letting

Fn = {h € Sx : U'(x)(h)\) <n for all x € X},
oo

we see that |J Fn = Sx • Since each Fn is closed, the Baire category theorem shows
n=\

{h € Sx • \\h- /io| | < 2r} C F n o for some ko £ 5 x , n0 6 N and r > 0. Letting
C = n o ( l + T-) we have ||0'(a:)(/i)|| ^ C for all x £ JT whenever ||/i - fto|| ^ r (fe need
not belong to the sphere). Now for any x E X and any h £ Sx we have

U^Xr/OU = ||^'(x)(-/io) + <P'(x)(h0 + rh)\\ < 2C.

Hence sup{||<^'(a;)|| : x G X} ^ 2C/r which means that <j>' is bounded; thus tj> is

Lipschitz. D

Observe that the proof of (b) easily adapts to show that a possibly unbounded
uniformly continuous UG function is globally Lipschitz. However, we shall not need to
use this fact in the sequel. The next lemma will enable us to build nontrivial smooth
convex functions from certain smooth bump functions; this is an alternative approach
to the Leduc type function used in the proof of [3, Theorem V.3.2].

LEMMA 2 . 2 . Suppose b : X —» [0,1] is a bump /unction suci that b(x) = 1 if

\\x\\ ^ 1/r and b(x) = 0 if \\x\\ ^ 1/2 where r > 2. Let <j>(x) = £ r n [ l - b(r~nx)].
n=l

Tien

= 0 and max^ifllzH-TOj^zKr^Hzll+l) for all x £ X; (2.1)

(a) if b has uniform directional modulus of smoothness of power type, so does

(b) if b has uniform directional modulus of smoothness, so does <f>.
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PROOF: Clearly <£(0) = 0 so we check the other parts of (2.1). If b(x) = 1 - 6(x),
then 6(r-(n+1)a:) = 0 for r" ^ ||z||. Thus for ||z|| ^ 1, (2.1) holds. If r""1 < ||z|| < r",
then

n n

4>{x) = ^2 rhb(r-hx) < £ V < r2 • T-""1 ^ r2 ||z||.

For the other inequality, notice that if r n ^ ||a:|| ^ r
n+1

 ( w e have

Since <j>(x) ^ 0 for all x it is clear that (2.1) holds.
To prove (a), let b(x) = 1 — b(x) and observe that

oo

\(f>(x + th) + <j>{x - th) - 2<f>(x)\ = | J 3 r" {b(r-n(x + ih)) + b(r-n(x + th)) -
n=l

n = l

n = l

For (b), observe that for any x0 € X, there is at most one fn{x) = r n ( l — b(r nx))

which is nonconstant on {x : \\x — xo\\ ^ 1 } . Thus the modulus of smoothness depends
only on one such fn which has the same modulus as b (this proof also works for (a)), u

Notice that Remark 2.1(b) implies that if a Lipschitz function <f> has a uniformly
Gateaux second derivative, then <f>' is Lipschitz. In particular, if ^ is a bump function,
the space must be superreflexive [3, Theorem V.3.2]. We now sharpen this result.

THEOREM 2 . 3 . If b is a bounded bump function on X such that b' sat-
isfies a uniform directional power type condition, then X admits a norm v with
Holder derivative on its sphere (that is, there exist K > 0, 0 < a < 1 such that
\\u\x) - u'(y)\\ ^K\\x- yip for all x,y with u(x) = v{y) = 1).

PROOF: (a) According to Remark 2.1, by composing b with an appropriate real-
valued function, we may assume b satisfies the hypothesis of Lemma 2.2. Let </> be the
function given by the Lemma 2.2. Following [3, Theorem V.3.2], let ij) be defined by

n n n

tpiXJ == inf \ y &i(p[Xi) : X -— / CtiXtm OL{ ^ 0. y OLi -— 1, 71 £

Then ip is convex and satisfies (2.1). Thus the proof of [9, Proposition 1.6] shows ij)
is Lipschitz. Now, for h g Sx and t ^ 0 fixed and any x G X, we choose a convex
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n n

combination x = £ «»*» satisfying £ ai(f>i(xi) < i/>(x) + et1+CLh . Hence,

(2.2)
n

V»(a; + th) + T{)(X - th) - 2i/>(x) ^ ip(x + th) + ij)(x - th) - 2 V ] a^(xj) + 2e*1+ah

t=i

fcti<j)(xi +th)
i=i

n

= Y ctiffixi + th) + <j>{xi - th) - 2^(x)] + 2et1+ah

Motivated by [2, Proposition 2.2], we consider the following sets:

Fn = {he Sx • i>(x + th) + Y>(x - th) - 2il>(x) ^ ra*1+» for all t ^ 0, x G -X"}.

Because ^ is Lipschitz, we know ip(x + h) + i/>(x — h) — 2^(a;) ^ nt1+1/n for all f ^ 1,
/i G Sx > x G X and n ^ 2Z where L is the Lipschitz constant of ij). This with

oo

(2.2), shows U Fn = Sx • The continuity of rj> ensures each Fn is closed, so the
n=l

Baire category theorem shows there are ho G Sx , «o 6 N and 8 > 0 such that
{h G Sx : ||fe - M < 45} C Fno . We let a = l /n0 and C = no(l + 25)1 + a to obtain
(for h not necessarily in Sx)

(2 .3 ) V ( s + th) + ip(x - th) - 2ip{x) ^ Ct1+a for all t^O, x&X, \\h - ho\\ < 25.

If h G Sx is arbitrary, then we can write 8h — (—ho)/2 + (ho + 28h)/2. Thus using
(2.3) and the convexity of ^ , for K - C/81+a, we obtain

i>(x + th) + i)(x - th) - 2ij>(x) ^ Kt1+a for all t > 0, x G X and fee Sx-

Hence [3, Lemma V.3.5] shows that rp' is a-Holder on X. Now set ip(x) =
(ij>(x) + tp(—x))/2. Then ip' is a-Holder and Lemma 2.2 shows

- , 1 •> ~ ,
(2.4) V(0) = 0 and max{0, -( | |z | | - r)} ^ tf>(x) ^ >̂(x) < r (\\x\\ + 1).

The convexity and symmetry of ifr along with (2.4), show that the set {x : i>(x) ^ 2}
is bounded, convex, symmetric and has nonempty interior. Therefore, one can use the
implicit function theorem as in the proof of [3, Theorem V.3.2] to show the norm whose
unit ball is {x : tf>(x) ^ 2} has a-H61der derivative on its sphere. D

https://doi.org/10.1017/S000497270001412X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001412X


298 D.P. McLaughlin, J.D. Vanderwerff [8]

In the above theorem, if ah ^ a for each h G Sx, then the proof shows that X
admits a norm with a-Holder derivative on its sphere. We now look at some properties of
spaces that admit UG bump functions. In what follows, f&g(x) = inf{f(y)+g(x — y) :
y G X} denotes the infimal convolution of / and g; the subdifferential of / at x is
denned and denoted by df(x) = {A G X* : A(y - x) < f(y) - f(x) for all y G X}.

LEMMA 2 . 4 . Suppose the function g is a continuous convex UG function. If f
is convex, then fa g is continuous convex and UG provided it is finite valued.

PROOF: Let h G SX be fixed, let e > 0 and choose 8 > 0 such that

(2.5) g{x + th) + g(x - th) - 2g{x) < |< for all 0 ̂  t < S, x G X.

Let r denote the function fag. It is well-known that r is convex, and continuous
provided it is finite valued. Fix x G X and 0 < t ^ S. Now choose y G X such that
r(x) + (e/4)t > g(y) + f(x - y). From this and (2.5) we have

r(x + th) + r{x - th) - 2r(z) ^ r(x + th) + r(x - th) - 2[g(y) + f{x - y)] + | *

< g(y + th) + f{x -y) + g(y - th) + f(x - y)

= g(y + th) + g{y - th) - 2g{y) + U, < et.

Since r is continuous and convex, this shows r is UG. Indeed if A G dr[x), then

O^r(x + th)-r(x)-A(th)^r(x + th)-T{x)+r(x-th)-r(x)^e\t\ for \t\ < 6.

D
Recall that a norm is strictly convex if its sphere contains no line segments. It is

easy to show that a norm is Gateaux differentiable if its dual norm is strictly convex
(see [3, Proposition II.1.6(i)]), whereas the converse can fail badly (see [3, Theorem
VII.5.2 and Theorem VII.5.4]). The next theorem is in contrast to Haydon's results [6,
7] showing there are spaces admitting Lipschitz C°°-smooth bump functions on a space
that has no Gateaux smooth norm.

THEOREM 2 . 5 . Suppose X admits a bounded UG bump function. Then the
following hold.

(a) Every convex function f bounded on bounded sets can be approximated
uniformly on bounded sets by UG convex functions.

(b) X admits a norm whose dual is strictly convex.
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PROOF: (a) We construct a continuous convex rj) as the proof of Theorem 2.3.
Arguing as in (2.2), for fixed h G Sx and e > 0, there is a 6 > 0 such that

(2.6) V(* + *h) + i/>{x - th) - 2^>(x) ^ et for all 0 < t < 6, x G X.

As in Lemma 2.4, this inequality means i/> is UG. Moreover, as in (2.4) in the proof of
Theorem 2.3, V(°) = 0 and ij)(x) ^ max{0, ||x|| /r - 1} for some r > 0. Let i>n(

x) =
if)(2n2rx) . Then ij)n is UG, rf>n(O) = 0, and one easily checks t/>n(x) ^ -n.||as|| — 1/n
for all x. For n > ||A|| where A G df(Q), il>n

af is finite valued and hence continuous
convex and UG by Lemma 2.4. From [8, Lemma 2.4] it follows that V'n1-1/ converges
to / uniformly on bounded sets.

(b) Using (a) one can easily construct a UG convex function / such that / (0) = 0
and B = {x : f(x) ^ 1} is a bounded symmetric convex set with nonempty interior.
Let ||-|| denote the norm whose unit ball is B. If ||-|| is not Gateaux differentiate, then
it would not be Gateaux difFerentiable on some finite dimensional subspace and hence it
would not be Frechet difFerentiable on this subspace; this would contradict the implicit
function theorem. Thus we have ||-||'(x) = f'{x)/{f'{x)(x))- Now suppose (j>,ij> G X*

are such that ||^|| = \\i/)\\ = 1 and H^ + VHI = 2. To prove strict convexity, we show
(f> — tf). Choose xn such that | |xn | | = 1 and ($ + i/))(xn) —> 2. Hence (j>(xn) ̂  1—en and
V>(sn) ^ 1-Cn where en 1 0. By the Br0ndsted-Rockafellar theorem [9, Theorem 3.18],
there are (f>n,^n G X* such that <f>n and ij>n attain there norm on B at un,vn where

||«n - Xn|| < v^"' HV" ~ z»ll ^ V^"' 11̂ " ~ 1̂1 ̂  V^" a n d HV'n. ~ V>|| ^ \fa• Now for
some an,bn we have an<f>n - f'(un/ \\un\\) and bni>n = f'(vn/ \\vn\\). Since / is UG and

\\un — vn\\ —> 0, this implies an<j>n — bnil)n —' 0. By passing to a subsequence, we may

assume ani —> a and bni —* b, and so a<f>ni—bipni —r 0. Moreover, 'a<f>n — b^)n —> a<j> — bij>.

Hence a<j> = bi/> which means a — b because \\<j>\\ — \\ij>\\ and H^ + V1!! = 2. Since

inf{| | / '(x)| | : ||x|| = l } > 0 , a ^ 0 a n d < ^ = V'as desired. D

We do not know if the norm given in (b) is UG. Moreover, it is not clear if there
is an analog of (a) for nonconvex continuous functions. However, we have the following
partial redress. First recall that a norm is said to be locally uniformly rotund (LUR) if
| |xn — x\\ —> 0 whenever x,xn G Bx are such that | |xn + x|| —> 2; see [3, Chapter VII]
for a thorough account on spaces admitting LUR norms.

COROLLARY 2 . 6 . Suppose X admits a bounded UG bump function and a LUR
norm. It f : X —» K is continuous and e > 0, tiien there is a continuous Gateaux
differentiable function g such that \g(x) — f(x)\ < e for all x G X.

PROOF: By Theorem 2.5(b) and Asplund's averaging theorem [3, Theorem II.4.1],
X has a LUR with strictly convex dual norm so we can apply [3, Theorem VIII.3.12(ii)]. D
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