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1. Introduction

In this note we are concerned with the permutability of congruence relations on
semilattices and lattices with pseudocomplementation. There are some results in the
literature along these lines. For example, in (8) H. P. Sankappanavar characterises
those pseudocomplemented semilattices whose congruence lattice is modular and
employs the result in conjunction with the well-known fact that algebras with permut-
ing congruences are congruence-modular to characterise those pseudocomplemented
semilattices with permuting congruences. Our first result is a direct, short proof of his
result. In (2), J. Berman shows that for all congruences on a distributive lattice L with
pseudocomplementation to permute it is necessary and sufficient that D(L), the dense
filter of L, be relatively complemented. Our second result is a generalisation of that
result to an important equational class of lattices with pseudocomplementation which
properly contains the modular lattices with pseudocomplementation.

2. Preliminaries

A p-semilattice (pseudocomplemented semilattice) is an algebra (S; A, *, 0) in which
the deletion of the unary operation * yields a meet semilattice with 0 and a* is
characterized by OAX = 0 if and only if xSa* . If, for any p-semilattice S, we write
B(S) for {xeS;x = x**} (the skeleton of S) and D(S) for {xeS;x** = l} (the set of
dense elements of S) then (B(S); U, A,* ,0 ,1) is a Boolean algebra when aUb is
denned to be (a*Ab*)*, for any a,beB(S), and D(S) is a filter in S. A (modular,
distributive) p-algebra (lattice with pseudocomplementation) is an algebra*(L; v ,
A , *, 0,1> in which the deletion of * yields a bounded (modular, distributive) lattice and
* is the operation of pseudocomplementation. A p-algebra is said to be quasi-modular
if it satisfies the identity

[(xAy)vz**]Ax = (xAy)v(z**Ax).

This class of p-algebras was introduced by T. Katrinak in (7) andis of some importance
in that it properly contains the class of modular p-algebras and shares with it
sufficiently many important properties that T. Katrinak was able in (6) to extend to this
class his description of the subdirectly irreducible modular p-algebras (see (6)). By a
congruence relation on a p-semilattice (p-algebra) we mean a semilattice (lattice)
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congruence preserving *. The relation <f> defined on a p-semilattice or a p-algebra by
a = £>(<£) if and only if a* = b* is known to be a congruence, called the Glivenko
congruence. An algebra A is said to have permuting congruences whenever the usual
relational product 0 ° t{i of any pair of congruences 0, ip on A commutes; that is,
a = t(6) and t = b(t(/) implies a = w(tl/) and w = b(d), for some we A. If 0 is a
congruence on A and S^A then we denote by 0 | S the restriction of 0 to S.

We refer to (4) not only for the standard results about p-semilattices and p-algebras
(see also (3)) but also for general lattice-theoretic notation, terminology and results. In
particular, a/b will denote an ordered pair of elements satisfying fcSa in a (semi)
lattice L and will be called a quotient of L. If for a pair of quotients a/b, c/d in a lattice
L there is a sequence c/d = eo/fo, e1/f1,..., ejfn = a/b of quotients ejf{ satisfying
Ci+iv/i = ei and ei+1/\fi^fi+1, or fi+1Aei=fi and /e + 1veigej + 1 ( 0 S j < n - l ) then we
write c/d ~w a/b and say that c/d is weakly projective into a/b in L. If a S x, y s 5 then y
is said to be a wcafe relative complement of x in [a, b] if there is a chain a = e0 =

 e i =
• • • Se m = y = / o s / x s • • • s / n = fa such that each e;/ei+1«wx/b and each /jV/j+i^a/x.
A lattice L is said to be relatively complemented in the weak sense if every element in
any interval of L has a weak relative complement. Hashimoto (5) has shown that a
lattice has permuting congruences if and only if it is relatively complemented in the
weak sense.

3. Permuting Congruences

A simple proof of our first lemma can be found in (1).

Lemma 1. / / S is a p-semilattice, a/b is a quotient of S and 6(a, b) denotes the
smallest (principal) congruence on S collapsing alb then

(i) x = y(0(l, a)) if and only if x A a — y A a.
(ii) If a* = b* then x = y(0(a, b)) if and only if x = y, or x, y g a and x A b = y A b.

Theorem 2. A p-semilattice has permuting congruences if and only if it is a Boolean
algebra or a Boolean algebra with a new unit adjoined.

Proof. Let S be a p-semilattice having permuting congruences. If a e S then there
exists teS such that a = f(0(l, a**)) and t = l(6(a**, a)), since a =
l(0(a**, a ) °0 ( l , a**)). An application of Lemma l(i) to a = t(0(l, a**)) yields a =
aAo**=lAa**. Furthermore, since a* = a***, an application of Lemma l(ii) to
r = l(0(a**, a)) shows that 1 = 1 or a** = l. We conclude that either a = a** or
a** = l. Consequently, S = B(S)UD(S). Next, we claim that D(S) contains at most
one element distinct from 1. If not, then D(S) contains a three-element chain, say
1 > a > b, so that, since b = l(0(a, b) ° 0(1, a)) and S has permuting congruences, there
exists t e S such that b = f(0(l, a)) and t = l(0(a, b)). An application of Lemma l(i) to
b = t(0(l, a)) yields b = t A a. Furthermore, since a* = b* = 0, we can apply Lemma l(ii)
to t = l(0(a, b)) and infer that t = 1 or a = 1. We conclude that a = b or a = 1 and, in
any case, have a contradiction. Of course, if D(S) = {1} then S concurs with the
Boolean algebra B(S). If D(S) contains exactly one element d distinct from 1, so that
S = B(S)U{d}, and xeB(S)\{l} then xAd = (xAd)** = x**Ad** = x from which it
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follows that xSd, for any xeS\{1}. Furthermore, the interval [0, d] in S is a Boolean
algebra. Indeed, [0, d] is a p-semilattice in which the pseudocomplement x® of x in
[0,d] is x*Ad. Moreover, if xe[0 ,d] then x®® = (x*A d)*A d = (x*** A d**)* A d =
x**Ad = x, since x = x** or x = d, and so [0, d] concurs with its skeleton B([0, d]).
Thus, S is a Boolean algebra with a new unit adjoined.

The converse is an easy consequence of the well-known fact that any Boolean
algebra has permuting congruences.

The constituents of the following lemma may be found in (7).

Lemma 3. Let L be a quasi-modular p-algebra. Then
(i) L satisfies the identity x = X**A(XVX*).

(ii) If a/b, c/d are quotients of D(L) and alb=*wc/d in L then alb—^c/d in D(L).

Theorem 4. Let Lbe a quasi-modular p-algebra. Then the following are equivalent:
(i) L has permuting congruences,

(ii) D(L) has permuting congruences,
(iii) D(L) is relatively complemented in the weak sense.

Proof. Let L have permuting congruences. In order to show that the (lattice)
congruences on D{L) permute we only have to show that any pair of principal (lattice)
congruences on D(L) permute. Indeed, if 0, i/> are congruences on D(L), 8D(d, e)
denotes the principal congruence on D(L) collapsing the quotient d/e of D(L) and
x = t(0), t = y(i(f) for some teD(L) then x = y(0D(t, y)° 0D(x, t)), since x =
y(0D(x, t)° 0D(t, y)) and we are assuming that 0D(x, t), 6D(t,y) permute. Therefore,
there exists w e D(L) such that x = w(6D(t, y)) and w = y(0D(x, t)) from which it follows
that x = y(t{)°e), since 0D(x, r)S0 and 0D(t, y)^i/>. Next, observe that if d^d, e)
denotes the principal lattice congruence on L collapsing a quotient d/e of D(L) then
6D(d, e) = 0La,(d, e) \ D(L) is an immediate consequence of Lemma 3(ii) and the well-
known description of principal lattice congruences in terms of weak projectivities
(see [4], Chap 3, Theorem 1.2). Furthermore, notice that 0La,(d, e) coincides with
0(d, e) the smallest congruence on L collapsing the quotient die of D{L). Indeed,
0i_at(d, e) g <f>, since d* = e*( = 0), so that 0La,(d, e) preserves * and, therefore, 0(d, e) S
0L«(d,e). It follows now, that 6D(d, e) = 6D(f, g) = 0(d, e) | D(L)° 6(f, g) |D(L) for
any pair of quotients d/e, fig of D(L). However, 0(d, e) |D(L)°
6{f, g) | D(L) = (0(d, e) ° 0(/, g)) | D(L). Indeed, if x,yeD(L) and there exists teL
such that x = t(6(d, e)) and t = y(6(J, g)) then, since x* = y* = 0, t* = O(0(d, e)D
0(/, g)) so that x = tvt*(0(d, e)) and tvt* = y(0(/, g)) from which it follows
that x = y(0(d,e)|D(L)°0(/,g)|D(L)). Therefore, (0(d, e)° 0(/, g)) | D(L)S
0(d, e) | D(L) ° 0(f, g) | D(L); the reverse inclusion being obvious. In conclusion,
0D(d, e) ° dD(f, g) = (0(d, e) ° 0(f, g)) | D(L) and so 0D(d, e) ° 0D(/, g) = 0D(/, g) o eD{d, e)
is a consequence of the permutability of the corresponding principal congruences on L.

Conversely, suppose that D(L) has permuting congruences and let 0,«// be congru-
ences on L. First, observe that in order to show that x = y(i/> ° 0) it is sufficient to show
that x** = y**(if/ ° 0) and xvx* = yv y*(i£ ° 0). Indeed, if there exists p,qeL such that

* = y**(e) and xvx* = q(t/0, q = yvy*(6) then, by Lemma 3(i), x =
and y = y**A(yvy*) = pAq(0) so that x = y(t/>o0). with this

https://doi.org/10.1017/S0013091500004004 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004004


58 R. BEAZER

in mind, let x = t(O) and t = y(ip). Then x** = t**(6) and t** = y**(ip) so that x** =
t**(d | B(L)) and t** = y**(«A | B(L)). It follows, since 0 | B(L), $ | B(L) are easily seen
to be congruences in the Boolean algebra B(L) and every Boolean algebra has
permuting congruences, that x** = y**(ils \ B(L)° 6 \ B(L)) and, therefore, x** =
y**(i|cfl). In addition, since x = t(6) and t = y(\p) implies xvx* = tvf*(0) and
tvt* = y vy*(i/>), we have x vx* = y v y*(6 \ D(L) ° il> \ D(L)) from which we infer
x vx* = y v y*(«A | D(L) ° 6 \ D(L)), since D(L) has permuting congruences. Therefore,
x vx* = y vy*(i(i° 0).

Corollary 5. A distributive p-algebra L has permuting congruences if and only if
D(L) is relatively complemented.

Proof. Immediate from Theorem 4 and the well-known fact that a distributive
lattice has permuting congruences if and only if it is relatively complemented.

Concluding Remark. Any quasi-modular p-algebra satisfies the identity x —
X**A(XVX*) and only this is needed in proving that (ii) implies (i) in Theorem 4. It
would be of some interest to know if Theorem 4 holds for the equational class of all
p-algebras satisfying the identity x = X**A(X vx*).
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