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A USEFUL L E M M A C O N C E R N I N G SUBSERIES C O N V E R G E N C E

E. MATHERON

We give simple and almost identical proofs of several classical results in Functional
Analysis by means of a single lemma concerning subseries convergence.

The purpose of this note is to show that several classical results in Functional Anal-

ysis can be deduced very easily from a simple lemma concerning subseries convergence.

DEFINITION: A series ^,gn in an Abelian topological group G is said to be sub-

series convergent if all series ^2otngn, a 6 {0,1}^, converge in G.

MAIN LEMMA. Let G be an Abelian topological group. Let (An), (Bn) be two

sequences of Borel subsets of G, and let (gn) be a sequence in G. Assume that

An U (Bn + gn) = G for each n, and that ^2gn is subseries convergent. Then one can
oo

find a subsequence (hn) of (gn) such that x — ̂ / i n belongs to infinitely many of the
An or to infinitely many of the Bn.

PROOF: It is easy to check that the convergence of the series Ylan9n is uniform
with respect to a € {0,1}N. Therefore, identifying {0,1}N with the compact Abelian

group A = (Z/2Z) , the formula <p{a) = £3 &n9n defines a continuous map <p : A —> G.
o

For each n € N, put A'n = v~l(An), B'n = <p-l(Bn). The sets A'n, B'n are
Borel subsets of A, and we have to show that lim sup (A'n L) B'n) = (~) \J (A'n U B'n) is

n N n>N

nonempty. To this end, it is enough to prove that m(A'n U B'n) ^ 1/4 for all n , where

m is the normalised Haar measure on A.

Fix n € N and put

W0
(n) = {" 6 A : an = 0}, w[n) = {a e A : an = 1}.

Observe that

v-\Bn + 9n)n w[n) = *<"> + B'n n w0
(n),

where <$<"> e A is defined by 6{
n
n) = 1 and <^n) = 0 if i ? n.
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274 E. Matheron [2]

Since A = A'n Uip~l(Bn + gn), this implies that w[n) C A'n U (6™ + B'n), whence

We now turn to some applications of the Main Lemma. These include the Uniform
Boundedness Theorem, a simple result on automatic continuity, Schur's ^-theorem, the
Nikodym boundedness theorem, the Vitali-Hahn-Sacks theorem, and the Orlicz-Pettis
theorem (see [1]). Of course, all these results are quite well known and very classical.
Yet, we believe that the proofs given in this note may have some interest, mainly because
they are almost identical. The Main Lemma is applied each time in exactly the same
way, with sets An, Bn arising immediately from the triangle inequality.

U N I F O R M B O U N D E D N E S S P R I N C I P L E . Let X be a Banach space. IfY is a

normed space and if T is a pointwise bounded family of continuous linear operators

from X into Y, then T is norm-bounded.

PROOF: Assume that sup ||T|| — +oo. Then one can find two sequences (xn) C

X, (Tn) C X, such that | |xn | | < 2~ n and | |Tn(xn) | | > n for all n. For each n € N,

put

Each An is an open subset of X, and by the triangle inequality, one can write

X = [x : ||rn(s)|| > n/2} U [x : ||Tn(z - xn)|| > n/2} = An U (An + xn)

for all n € N. Since the absolutely convergent series J2 xn is subseries convergent in the

Banach space X, the Main Lemma allows us to find a point x s X such ||Tn(a;)|| > n/2

for infinitely many n 's. This shows that T is not pointwise bounded. D

AUTOMATIC CONTINUITY. Let X be Banach space and let Y be a normed

space. If T : X —¥ Y is a Borel linear mapping, then T is continuous.

PROOF: If T is not continuous, then one can find a sequence (xn) C X such that
| |xn | | < 2 " n and | |T(xn) | | > n (n € N). Put

The sets An are Borel subsets of X, and X = An U (An + xn) for all n. By the Main

Lemma, we get a point x G X such that ||T(x)|| > n /2 for infinitely many n 's , which

is a contradiction. D
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SCHUR' S li -THEOREM. In the space / i , weakly convergent and norm-convergent

sequences are the same.

PROOF: Let (xn) be a weakly null sequence in / i , and assume that ||a;n|| ^ e for
all n and for some e > 0. Using the fact that (xn) is weakly null, one can find a
subsequence (yn) of (xn) and a normalised sequence (y^) in 1^ such that the y^ have
finite, pairwise disjoint supports and |(y£,2/n)| > s/2 for all n. Put

An =

The sets An are w'-open, and X* = ^4n U (i4n + j/*) for all n. Moreover, since the y*
have norm 1 and are disjointly supported, the series YlVn *s subseries convergent in
G = (loo,w*)- By the Main Lemma, one can find y* € loo such that |(j/*,j/n)| > e/2
for infinitely many n's. This is impossible because (yn) is weakly null. D

NlKODYM BOUNDEDNESS THEOREM. Let {X,T) be a measurable space. If M
is a family of countably additive set functions defined on T such that

sup |/x(£") | < +oo

for all E € T , then

: E eT,n€ M} < +oo.

PROOF: Assume that ME = sup\/j,(E)\ < +oo for all E € 7", and that supM^ =
M r

+oo. Choose Ex eT and pi € M such that |/ai(i2i)| > 1 + Mx\ then |̂ tx(-E?i)| > 1,
and

Moreover, at least one of sup{M^ : F C E\}, sup{Mp : F C X \ E\} is infinite;
say sup Mp — +oo. By repeating this argument, one can construct a sequence

FCX\EX

(A'n) C M and a sequence (En) of pairwise disjoint sets in T such that |/in(£'n)| > n
for all n.

Denote by ca(T) the family of all countably additive set-functions defined on T,
and let G be the group of all bounded, scalar-valued, T-measurable functions on X,
endowed with the topology of pointwise convergence on ca(7~). Since the En 's are
pairwise disjoint, the series Yl ^En

 IS subseries convergent in G; moreover, the limit of
any subseries of J2 ^En is the characteristic function of some set E eT. Now, put
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Each set An is open in G, and G = An U (An + lEn) for all n. By applying the Main
Lemma, we get that M. is not pointwise bounded. D

V I T A L I - H A H N - S A C K S THEOREM. Let (X,T,n) be a measure space (n ^ 0),

and let (nn) be a sequence of countably additive measures defined on T• Assume that

each nn is n-continuous, and that lim/j.n(E) exists for all sets E £ T• Then the
n

sequence (fj,n) is uniformly /j,-continuous.

P R O O F : If (fj,n) is not uniformly fi-continuous, then one can find a subsequence

(j/n) of (fj.n) and a sequence (En) C T such that fi(En) —> 0 and |^n(j?n) | > e > 0

for all n . By using the /i-continuity of the fn 's and extracting further subsequences

if necessary, we may assume that |fn(-B)| < e/3 for all n and for every set E e T

contained in [J Ek • Thus, putting Fn = En \l (J Ek), we get a sequence of pairwise
k>n ^k>n '

disjoint sets in T such that | i / n (Fn) | > 2e/3 and

\vn{Fn+l)\ < | , n € N ;

in particular,

\un+1{Fn+l) - Vn(Fn+l)\ > |
for all n. The proof now proceeds exactly in the same way as for the Nikodym Bound-
edness Theorem: by applying the Main Lemma, we get a set F € T such that

for infinitely many n 's , which contradicts the convergence of the sequence (un(F)). D

ORLICZ-PETTIS THEOREM. If X is a normed space, then a series J2xn in X

is subseries convergent for the weak topology if and only if it is subseries convergent for

the norm topology.

P R O O F : It is enough to prove that if ^T,xn is subseries convergent in X for

the weak topology, then ||a;n|| —> 0. Indeed, when applied to series of the form

S ( Z3 afcxfc) i where (Fjt) is a sequence of pairwise disjoint intervals of N, this result

yields that for each a € {0 ; l } N , the partial sums of ^anxn form a norm-Cauchy
sequence, and since they converge weakly, it follows that Yl xn is norm subseries con-
vergent. Moreover, it follows from Mazur's theorem that if J2xn is weakly subseries
convergent in X, then it is weakly subseries convergent in the norm-closed linear span
of the xn 's. Hence it is enough to consider the case of a separable normed space. So,
assume that X is separable, that ^2 xn is subseries convergent for the weak topology,
and that | |xn| | > e > 0 for all n.
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First, we observe that one can find a subsequence (yn) of ( i n ) and a u>*-null
sequence (y*) C X* such that | (y^,yn) | > e/3 for all n . To see this, fix a norm-
dense sequence {dj) C X. Since (xn) is weakly null and | |xn | | > e, one can construct
by induction a subsequence (yn) of (xn) such that dist (yn, span {dj : j < n}) >
e/3 for all n . By the Hahn-Banach theorem, one can find a normalised sequence
0/n) ^ X* s u c n t n a t |(2/niyn)| > e / 3 , n ^ 0, and (y ' , 4 , ) = 0 whenever j < n. Since
(dj) is norm-dense in X , the sequence (y^) is io*-null.

Now, put

{ \ ( ) \ ^ n€N.

The sets An are weakly open in X, and A" = >ln U (An + yn) for all n . Since J2Vn is

weakly subseries convergent in X, it follows from the Main Lemma that one can find

a point x £ X such that | ( J / ^ , I ) | > e/6 for infinitely many n's . This contradicts the

fact that (y*) is to*-null. D

REMARK. AS pointed out by the referee, there are some similarities between this note
and Helson's paper [2].
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