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The pinch technique for electroweak theory

In this chapter, we give a general overview of how the pinch technique (PT) is
modified in the case of a theory with spontaneous (tree level) symmetry breaking
(Higgs mechanism) [1, 2, 3], using the electroweak sector of the standard model
as the reference theory.

The application of the pinch technique in the electroweak sector brings about sig-
nificant conceptual and practical advantages. First, from the purely theoretical point
of view, it is important to know that the PT construction is sufficiently general to
encompass theories other than massless Yang–Mills. Though the required technical
manipulations in the electroweak sector turn out to be fairly cumbersome, the basic
underlying principles are practically the same; what increases the complexity is
not the principle itself but rather the proliferation of fields and vertices involved.
In addition, the PT algorithm exposes systematically the vast number of cancella-
tions that take place when the (nonrenormalizable) Green’s functions of the unitary
gauge are put together to form physical amplitudes. In fact, one may start directly
from the unitary gauge and derive the same PT Green’s function constructed in
the context of the (renormalizable) Rξ gauges. The application of the pinch tech-
nique provides a deeper understanding of the connection between the unitary gauge
and the optical theorem and analyticity. Moreover, in the context of a theory with
symmetry breaking, one gains new, important insights on the connection between
the pinch technique and the background field method (BFM). Specifically, the
BFM Feynman gauge is uniquely and unambiguously singled out by the power-
ful physical requirement of having Green’s functions that display only physical
thresholds. Last, but not least, one may derive crucial Ward identities, relating the
various propagators of the theory from the sole requirement of the complete gauge
independence of S-matrix elements.
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10.1 General considerations

The application of the pinch technique in theories with tree-level symmetry break-
ing in general, and in the electroweak sector of the standard model in particular, is
significantly more involved than in the QCD case. The reasons are both bookkeep-
ing related, because of the proliferation of particles and Feynman diagrams, and
conceptual, related to the correct allocation of the various pinch terms among the
self-energies and vertices under construction:

1. There is a considerable increase in the number of sources of gauge-fixing
parameter-dependent terms. In particular, in the Rξ gauges, the tree-level
gauge-boson propagators – three massive gauge bosons (W± and Z) and a
massless photon (A) – are given by


μν

i (q) =
[
gμν − (1 − ξi)qμqν

q2 − ξiM
2
i

]
di(q

2)

di(q
2) = −i

q2 −M2
i

, (10.1)

where i = W,Z,A and M2
A = 0. In general, the gauge-fixing parameters ξW ,

ξZ, and ξA will be considered different from one another. The inverse of the
gauge-boson propagators, to be denoted by −1

i,μν , is given by

−1
i,μν(q) = i

[
(q2 −M2

i )gμν − qμqν + 1

ξi
qμqν

]
. (10.2)

Three unphysical (would-be) Goldstone bosons are associated with the three
massive gauge bosons, to be denoted by φ± and χ . Their tree-level propaga-
tors are ξ dependent, and given by

Di(q) = i

q2 − ξiM
2
i

, (10.3)

with i = W,Z (no Goldstone boson is associated with the photon). Note that


μν

i (q) = U
μν

i (q) − qμqν

M2
i

Di(q), (10.4)

where

U
μν

i (q) =
(
gμν − qμqν

M2
i

)
di(q

2) (10.5)

is the corresponding propagator in the so-called unitary gauge (ξi → ∞). In
addition, the ghost propagators are also given by Di(q), with i = W,Z,A
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Figure 10.1. The PT decomposition of the generic elementary gauge-boson-scalar
vertex �Bμϕϕ† .

(there is a massless ghost associated with the photon). Finally, the bare prop-
agator of the physical Higgs boson is gauge-fixing parameter-independent at
tree level, and given by H (q) = i/(q2 −M2

H ).
2. In addition to the longitudinal momenta coming from the propagators of the

gauge bosons (proportional to λi = 1 − ξi) and the PT decomposition of the
vertices involving three gauge bosons, a new source of pinching momenta
appears, originating from graphs having an external (i.e., carrying the phys-
ical momentum q) would-be Goldstone boson. Specifically, interaction ver-
tices, such as �Aαφ±φ∓ , �Zαφ±φ∓ , �W±

α φ
∓χ , and �W±

α φ
∓H , also furnish pinching

momenta when the gauge boson is inside the loop carrying (virtual) momen-
tum k. Such a vertex will then be decomposed as (see Figure 10.1)

�(0)
α (q, k,−q − k) = �F

α(q, k,−q − k) + �P
α(q, k,−q − k) (10.6)

with

�(0)
α (q, k,−q − k) = (2q + k)α

�F
α(q, k,−q − k) = 2qα

�P
α(q, k,−q − k) = kα, (10.7)

which is the scalar case analog of Eqs. (1.41), (1.42), and (1.43).
3. When the fermions involved (external or inside loops) are massive, the Ward

identity of Eq. (1.45) receives additional contributions, which correspond
precisely to the tree-level coupling of the would-be Goldstone bosons to the
fermions. To see this concretely, let us consider the analog of the fundamental
pinching Ward identity of Eq. (1.45), (e.g., in the case in which the incoming
boson is a W ). Contracting the �W+

μ ūd
vertex with kμ (the fermions u and d

are isodoublet partners), we have

/kPL = PRS
−1
d (k + p) − S−1

u (p)PL + [mdPR −muPL], (10.8)

where the chirality projection operators are defined according to PL,R =
(1 ∓ γ5)/2. The first two terms will pinch and vanish on shell, respectively,
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as they did in the case of QCD; the leftover term in the square bracket
corresponds precisely to the coupling φ+ūd (the case involving the �W−

μ d̄u

is identical). A completely analogous Ward identity is obtained when the
incoming boson is a Z. Again, contraction with the vertex �Zf̄ f furnishes a
Ward identity similar to Eq. (10.8), with the additional term proportional to
mf γ5, which corresponds to the coupling �χf̄ f .

4. After the various pinch contributions have been identified, particular care is
needed when allocating them among the PT quantities that one is construct-
ing. So unlike the QCD case, in which all propagator-like pinch contributions
were added to the only available self-energy, �αβ (to construct �̂αβ), in the
electroweak case, such pinch contributions must in general be split among
various propagators. Thus, in the case of the charged channel, they will be
shared in general between the self-energies �WαWβ

, �Wαφ , �φWβ
, and �φφ .

This is equivalent to saying that when forming the inverse of the W prop-
agator, in general, the longitudinal parts may no longer be discarded from
the four-fermion amplitude because the external current is not conserved up
to terms proportional to the fermion masses. The correct way of treating the
longitudinal terms is to employ identities such as [3]

igνα = qνqαDi(q) −
νμ

i (q)
[
(q2 −M2

i )gμα − qμqα
]

iqμ = q2Di(q)qμ +M2
i qν

μν

i (q). (10.9)

The neutral channel is even more involved; one has to split the propagator-like
pinch contributions among the self-energies �ZαZβ

, �AαAβ
, �ZαAβ

, �AαZβ
,

�Zαχ , �χZβ
, �χχ , and �HH .

We emphasize that the preceding four points are tightly intertwined. The extra
terms appearing in the Ward identity are precisely needed to cancel the gauge
dependence of the corresponding graph in which the gauge boson is replaced
by its associated Goldstone boson. In addition, as we will see in Section 10.3,
when the external currents are not conserved, the appearance of the scalar-scalar or
scalar-gauge-boson self-energies is crucial for enforcing the gauge-fixing parameter
independence of the physical amplitude.

10.2 The case of massless fermions

We will now study the application of the pinch technique in the case where all
fermions involved are massless. This simplification facilitates the PT procedure
considerably because no scalar particles (Higgs and would-be Goldstone bosons)
couple to the massless fermions. As a result, (1) the scalars can appear only
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Figure 10.2. (a) The general process f1(p1)f̄1(p2) → f2(r1)f̄2(r2) mediated at
tree level by a Z-boson and a photon and (b) the basic pinching and one of the
unphysical vertices produced at the one-loop level.

inside the self-energy graphs, where they obviously cannot pinch; (2) Eq. (10.8) is
practically reduced to its QCD equivalent; and (3) there are no self-energies with
incoming scalars (i.e., no �Wαφ , �Zαχ , �φφ , etc.).

We now focus for concreteness on the the process f1(p1)f̄1(p2) → f2(r1)f̄2(r2),
mediated at tree level by a Z-boson and a photon, as shown in Figure 10.2(a).
At one-loop order, the box and vertex graphs furnish propagator-like contributions
every time the Ward identity of Eq. (10.8) is triggered by a pinching momentum.
Specifically, the term in Eq. (10.8) proportional to the inverse of the internal
fermion propagator gives rise to a propagator-like term whose coupling to the
external fermions f and f̄ (with f = f1, f2) is proportional to an effective vertex
CWαf f̄ given by (see also Figure 10.2(b))

CWαf f̄ = −i
(gw

2

)
γαPL. (10.10)

Note that this effective vertex is unphysical in the sense that it does not correspond to
any of the elementary vertices appearing in the electroweak Lagrangian. However,
it can be written as a linear combination of the two physical tree-level vertices
�Aαf f̄ and �Zαf f̄ given by

�Aαf f̄ = −iQfγα

�Zαf f̄ = −i[(s2
wQf − T f

z )PL + s2
wQfPR], (10.11)

as follows:

CWαf f̄ =
(

sw

2T f
z

)
�Aαf f̄ −

(
cw

2T f
z

)
�Zαf f̄ . (10.12)

In the preceding formulas, Qf is the electric charge of the fermion f and T f
z is its

z-component of the weak isospin. The identity established in Eq. (10.12) allows
one to combine the propagator-like parts with the conventional self-energy graphs
by writing 1 = di(q2)d−1

i (q2).
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10.2 The case of massless fermions 231

Next we will describe how the cancellation of the gauge-fixing parameter proceeds
at the one-loop level for the simple case in which f1 is a charged lepton, to be
denoted by �, and f2 is a neutrino, denoted by ν. Of course, on the basis of general
field-theoretic principles, one knows in advance that the entire amplitude will be
gauge-fixing parameter independent. What is important to recognize, however, is
that this cancellation goes through without having to carry out any of the integra-
tions over virtual loop momenta, exactly as happened in the case of QCD. From
the practical point of view, the extensive gauge cancellations that are implemented
through the pinch technique finally amount to the statement that one may start
out in the Feynman gauge, that is, set directly ξW = 1 and ξZ = 1, with no loss of
generality.

The cancellation of ξZ is easy to demonstrate. The box diagrams containing two
Z-bosons (direct and crossed) form a ξZ-independent subset. The way this works is
completely analogous to the QED case, in which the two boxes contain photons: the
ξZ dependence of the direct box cancels exactly against the gauge-fixing parameter
dependence of the crossed one. The only other set of graphs with a ξZ dependence is
the self-energy graphs; it is easy to show, by employing the simple algebraic identity

1

k2 − ξiM
2
i

= 1

k2 −M2
i

− (1 − ξi)M2
i

(k2 −M2
i )(k2 − ξiM

2
i )
, (10.13)

that their sum is independent of ξZ, separately for ZZ and AZ.

Demonstrating the cancellation of ξW is significantly more involved. In what fol-
lows, we set λW ≡ 1 − ξW and suppress a factor g2

w

∫
k
. We also define

I3 ≡ {
(k2 − ξWM

2
W

)(k2 −M2
W

)[(k + q)2 −M2
W

]
}−1

I4 ≡ {
(k2 − ξWM

2
W

)[(k + q)2 − ξWM
2
W

](k2 −M2
W

)[(k + q)2 −M2
W

]
}−1

.

(10.14)

Note that terms proportional to qα or qβ may be dropped directly because the
external currents are conserved (massless fermions).

To get a feel of how the pinch technique organizes the various gauge-dependent
terms, consider the box graphs shown in Figure 10.3. We have

(a) = (a)ξW=1 + VWα��̄

(
λ2
W
I4kαkβ − 2λWI3gαβ

)
VWβνν̄, (10.15)

where the vertices V are defined according to

VWαf f̄
= v̄f CWαf f̄

uf

VVαf f̄ = v̄f �Vαf f̄ uf ; V = A, Z. (10.16)

The first term on the right-hand side (rhs) of Eq. (10.15) is the pure box, that is, the
part that does not contain any propagator-like structures, whereas the second term
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Figure 10.3. The box and vertex diagrams that depend on the gauge-fixing param-
eter ξW .

is the propagator-like contribution that must be combined with the conventional
propagator graphs of Figure 10.4. To accomplish this, we employ Eq. (10.12) to
write the unphysical vertices VW��̄ and VWνν̄ in terms of the physical vertices, VA��̄,
VZ��̄, and VZνν̄ . Specifically, using that in our case T �

z = −1/2 and T ν
z = 1/2, we

have

CWα��̄ = −sw�Aα��̄ + cw�Zα��̄

CWανν̄ = −cw�Zανν̄ . (10.17)

Equation (10.17) determines unambiguously the parts that must be appended to
�ZαZβ

and �AαZβ
self-energies. To make this separation manifest, one must do the

extra step of writing dZ(q2)d−1
Z

(q2) = dA(q2)d−1
A (q2) = 1 to force the external tree-

level propagators to appear explicitly (see Figure 10.5). Thus, from the propagator-
like part of the box, we finally obtain

(a)AαZβ
= swcwq

2(q2 −M2
Z
)
(
λ2
W
I4kαkβ − 2λWI3gαβ

)
(a)ZαZβ

= −c2
w(q2 −M2

Z
)2
(
λ2
W
I4kαkβ − 2λWI3gαβ

)
. (10.18)
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Figure 10.4. The ξW -dependent diagrams contributing to �ZαZβ
and �ZαZβ

and
the corresponding diagrams in the BFM.

A similar procedure must be followed for the vertex graphs shown in Figure 10.3.
Then all propagator-like terms identified from the boxes and the vertex graphs
must be added to the conventional self-energy diagrams given in Figure 10.4.
At this point, it would be a matter of straightforward algebra to verify that all
ξW -dependent terms cancel; in doing that, Eq. (10.13) is useful. Of course, this
cancellation proceeds completely independently for the ZZ and AZ contributions.
Note that the inclusion of the tadpole graphs, namely, diagrams (r), (s), and (t)
of Figure 10.4, is crucial for the final cancellation of the gauge-fixing parameter-
dependent contributions that do not depend on q2. Exactly as happened in the QCD
case, the gauge-fixing parameter cancellations amount effectively to choosing the
Feynman gauge, ξW = ξZ = 1.

The next step is to consider the action of the remaining pinching momenta stemming
from the three-gauge-boson vertices inside the non-Abelian diagrams (b), (c), and
(d) of Figure 10.3, exposed after employing the standard PT decomposition of
Eqs. (1.41). The propagator-like contributions that will emerge from the action of
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Figure 10.5. The procedure needed for splitting the propagator-like pieces coming
from the WW box among the different AZ and ZZ self-energies.

�P must then be reassigned to the conventional self-energy graphs, thus giving rise
to the one-loop PT self-energies, which in this case are �̂ZαZβ

and �̂AαZβ
. The part

of the vertex graph containing the �F, together with the Abelian graph which, in
the Feynman gauge, remains unchanged, constitutes the one-loop PT verticesAνν̄,
Zνν̄, and Z��̄, to be denoted by �̂Aνν̄ , �̂Zνν̄ , and �̂Z��̄, respectively.

The PT self-energies �̂ZαZβ
and �̂ZαZβ

are simply the sum of all propagator-like
contributions, namely,

�̂ZαZβ
(q) = �

(ξW=1)
ZαZβ

(q) + 4g2
wc

2
w(q2 −M2

Z)gαβIWW (q)

�̂AαZβ
(q) = �

(ξW=1)
AαZβ

(q) − 2g2
wswcw(2q2 −M2

Z)gαβIWW (q), (10.19)

with

IWW(q) =
∫
k

1

(k2 −M2
W

)[(k + q)2 −M2
W

]
. (10.20)
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It is relatively straightforward to prove that the ξW -independent PT self-energies
given in Eqs. (10.19) coincide with their BFM counterparts computed at ξQW = 1. In
particular, notice that (1) in the BFM, there is no ÂW±φ∓ interaction, and therefore
graphs (k) and (l) of Figure 10.4 are absent in �ÂαẐβ

, and (2) diagram (̂u) of the

same figure, corresponding to the characteristic BFM four-field coupling V̂ V̂ uu,
has been generated dynamically from the simple rearrangement of terms.

With a small extra effort, we can now obtain the closed expressions for �̂ZαZβ

and �̂AαZβ
in terms of the Passarino–Veltman functions [4]. We will only focus

on the parts of the self-energies originating from Feynman graphs containing W

propagators, together with the associated Goldstone boson and ghosts. The contri-
butions coming from the rest of the diagrams (e.g., containing loops with fermions
or Z- and H -bosons) are common to the conventional and PT self-energies, i.e.,
�

(f̄ f )

AZ = �̂
(f̄ f )

AZ and �
(f̄ f )

ZZ = �̂
(f̄ f )

ZZ , and we do not report them here. Therefore, the
only Passarino–Veltman function that will appear is B0(q2,M2

W,M
2
W ).

To that end, one may use the closed expressions for �(ξW=1)
ZαZβ

and �
(ξW=1)
AαZβ

given
by Denner [5] and add to them the pinch terms given in Eqs. (10.19) and (10.20).
Using the identity iB0(q2,M2

W,M
2
W ) = 16π2 IWW (q), we finally obtain

�̂
(WW)
AZ (q2) = α

4π

1

3swcw

×
{[(

21c2
w + 1

2

)
q2 + (12c2

w − 2)M2
W

]
B0(q2,M2

W,M
2
W )

− (12c2
w − 2)M2

WB0(0,M2
W,M

2
W ) + 1

3
q2

}
�̂

(WW)
ZZ (q2) = − α

4π

1

6s2
wc

2
w

×
{[(

42c4
w + 2c2

w − 1

2

)
q2 + (24c4

w − 8c2
w − 10)M2

W

]
×B0(q2,M2

W,M
2
W ) − (24c4

w − 8c2
w + 2)M2

WB0(0,M2
W,M

2
W )

+ 1

3
(4c2

w − 1) q2

}
. (10.21)

Note that �̂
(WW )

AZ (0) = 0, exactly as happens for the corresponding subset of
fermionic corrections: evidently, as a result of the PT rearrangement, bosonic and
fermionic radiative corrections are treated on the same footing. This last property
is important for phenomenonogical applications, as, for example, the unambiguous
definition of the physical charge radius of the neutrinos (see Chapter 11).
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10.2.1 The unitary gauge

In the previous sections, we have applied the pinch technique in the framework of
the linear renormalizableRξ gauges, and we have obtained ξ -independent one-loop
self-energies for the gauge bosons. What would happen, however, if one were to
work directly in the unitary gauge? The unitary gauge is reached after gauging
away the would-be Goldstone bosons through an appropriate field redefinition
(which, at the same time, corresponds to a gauge transformation) φ(x) → φ′(x) =
φ(x) exp (−iζ (x)/v), where ζ (x) denotes generically the Goldstone fields. Note that
the unitary gauge is defined completely independently of the Rξ gauges; of course,
operationally, it is identical to the ξW, ξZ → ∞ limit of the latter. In particular, in the
unitary gauge, the W and Z propagators are given by Eq. (10.5), where i = W,Z.

Given that the contributions of unphysical scalars and ghosts cancel in this gauge,
the unitarity of the theory becomes manifest (hence its name). In the language
employed before, manifest unitarity means that the optical theorem (a direct conse-
quence of unitarity) holds in its strong version. The most immediate way to realize
this is by noticing that the unitary gauge propagators Eq. (10.5) and the expression
for the sum over the polarization vectors of a massive spin one vector boson (see
Eq. (10.26)) are practically identical.

Since the early days of spontaneously broken non-Abelian gauge theories, the uni-
tary gauge has been known to give rise to nonrenormalizable Green’s functions in
the sense that their divergent parts cannot be removed by the usual mass and field-
renormalization counterterms. It is easy to deduce from the tree-level expressions
of the gauge-boson propagators why this happens: the longitudinal contribution
in Eq. (10.5) is divided by a squared mass instead of a squared momentum, i.e.,
qμqν/M2

i instead of qμqν/q2, and therefore Ui
μν(q) ∼ 1 as q → ∞. As a con-

sequence, when Ui
μν(q) is inserted inside quantum loops (and q is the virtual

momentum that is being integrated over), it gives rise to highly divergent integrals.
If dimensional regularization is applied, this hard short-distance behavior manifests
itself in the occurrence of divergences proportional to high powers of q2. Thus, at
one loop, the divergent part of the W or Z self-energies proportional to gμν has the
general form

�div
WW (q2) = 1

ε
(c1q

6 + c2q
4 + c3q

2 + c4) , (10.22)

where the coefficients ci , of appropriate dimensionality, depend on the gauge cou-
pling and combinations of M2

W
and M2

Z
. The important point is that, whereas

the last two terms on the rhs of Eq. (10.22) can be absorbed into mass and
wave-function renormalization, as usual, the first two cannot be absorbed into
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a redefiniton of the parameters in the original Lagrangian because they are propor-
tional to q6 and q4.

As was shown in a series of papers [6, 7, 8], when one puts together the individual
Green’s functions to form S-matrix elements, an extensive cancellation of all
nonrenormalizable divergent terms takes place, and the resulting S-matrix element
can be rendered finite through the usual mass and gauge coupling renormalization.
Actually, in retrospect, this cancellation is nothing but another manifestation of
the pinch technique (of course, the papers mentioned predate the pinch technique).
Even though this situation may be considered acceptable from the practical point
of view, in the sense that S-matrix elements may still be computed consistently, the
inability to define renormalizable Green’s functions has always been a theoretical
shortcoming of the unitary gauge.

The actual demonstration of how to construct renormalizable Green’s functions
at one loop starting from the unitary gauge was given in [9]. The methodol-
ogy is identical to that used in the context of the Rξ gauges: the propagator-like
parts of vertices and boxes are identified and subsequently redistributed among
the various gauge-boson self-energies. Evidently, the pinch contributions them-
selves contain divergent terms proportional to q6 and q4, which, when added
to the analogous contributions contained in the conventional propagators, cancel
exactly. After this cancellation, the remaining terms reorganize themselves in such
a way as to give rise exactly to the unique PT gauge-boson self-energies, viz.
Eqs. (10.21).

10.2.2 Absorptive construction in the electroweak sector

We will now study with an explicit example how the PT subamplitudes of the
electroweak theory satisfy the strong version of the optical theorem [10, 11].
As in the case of QCD, the fundamental reason for this may be traced back to a
characteristic s-t cancellation operating also in the presence of tree-level symmetry
breaking.

Consider the process f (p1)f̄ (p2)→W+(k1)W−(k2), with q = p1 + p2 = k1 +
k2 and s = q2 = (p1 + p2)2 = (k1 + k2)2 > 4M2

W . The corresponding tree-level
amplitude, T μν , is given by two s-channel graphs, one mediated by a photon and
the other by a Z-boson, to be denoted by T μν

A and T μν

Z , respectively, and one
t-channel graph, to be denoted by T μν

t , i.e. (see also Figure 10.6),

T μν = T μν

s,A + T μν

s,Z + T μν
t , (10.23)
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Figure 10.6. The fundamental s-t cancellation for the process f (p1)f̄ (p2) →
W+(k1)W−(k2).

where

T μν

s,A = −VAαf f̄ dA(q2)gwsw�
μν
α (q, k1, k2),

T μν

s,Z = VZαf f̄ dZ(q2)gwcw�
μν
α (q, k1, k2),

T μν
t = −g2

w

2
v̄f (p2)γ μPL S

(0)
f ′ (p1 − k1)γ νPLuf (p1). (10.24)

Note that we have already used current conservation to eliminate the (gauge-
fixing parameter-dependent) longitudinal parts of the tree-level photon andZ-boson
propagators. Then,

M = [TA + TZ + Tt ]μν Lμμ′(k1)Lνν ′(k2)
[
T ∗
A + T ∗

Z + T ∗
t

]μ′ν ′
, (10.25)

where the polarization tensor Lμν(k) corresponds to a massive gauge boson,
that is,

Lμν(k) =
3∑

λ=1

ελμ(k)ελν (k) = −gμν + kμkν

M2
W

. (10.26)

On shell (k2 = M2
W

), we have that kμLμν(k) = 0. Therefore, as in the QCD case,
when the two non-Abelian vertices are decomposed as in Eq. (1.41), the �P parts
vanish, and only the �F parts contribute in the s-channel graphs; we denote them
by T μν

A,F and T μν

Z,F, respectively.

Let us then study what happens when Tμν is contracted by a longitudinal momen-
tum, kμ1 or kν2 , coming from the polarization tensors. Employing the appropriate

https://doi.org/10.1017/9781009402415.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.011


10.2 The case of massless fermions 239

tree-level Ward identities, we obtain

k1μT μν

A,F = −swVAνf f̄ + Sν
A,

k1μT μν

Z,F = cwVZνf f̄ + Sν
Z,

k1μT μν
t = VWνf f̄ , (10.27)

with

Sν
A = −VAαf f̄ dA(q2)gwsw(k1 − k2)αk

ν
2

Sν
Z = VZαf f̄ dZ(q2)gwcw

[
(k1 − k2)αk

ν
2 −M2

Z
gαν

]
. (10.28)

Adding by parts both sides of Eq. (10.27), we see that a major cancellation takes
place: the pieces containing the vertices VAνf f̄ and VZνf f̄ cancel against VWνf f̄ by
virtue of Eq. (10.17), and one is left on the rhs with a purely s-channel contribution,
namely,

k1μT μν = Sν
A + Sν

Z. (10.29)

An exactly analogous cancellation takes place when one contracts with kν2 .

After the implementation of the preceding cancellations, we can isolate, e.g., the
part of the squared amplitude that is purely s-channel–mediated by a Z-boson, to
be denoted by M̂ZZ. It is composed of the sum of the following terms:

M̂ZZ = T F
Z · T F∗

Z − 2
SZ · S∗

Z

M2
W

+ (k2 · SZ) · (k2 · S∗
Z)

M4
W

. (10.30)

After elementary algebra, we find

M̂ZZ = VZαf f̄ dZ(q2)Kαβ

ZZdZ(q2)VZβf,f̄ , (10.31)

with

K
αβ

ZZ = −g2
w

c2
w

[(
8q2c4

w − 2M2
W

)
gαβ +

(
3c4

w − c2
w + 1

4

)
(k1 − k2)α(k1 − k2)β

]
.

(10.32)

We must then integrate this last expression over the available phase space and
isolate its coefficient proportional to gαβ , to be denoted by KZZ. Then, if the
optical theorem holds at the level of the �̂(WW )

ZZ (q), we should have

2
m�̂(WW )

ZZ (q) = KZZ, (10.33)

where the left-hand side (lhs) of Eq. (10.33) must be obtained from Eq. (10.21) by
taking its imaginary part.
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Using for the lhs the elementary result


mB0(q2,M2
W,M

2
W ) = 8π2

∫
PSWW

, (10.34)

with
∫

PSWW
the two W s phase space integral (see Section 1.7.2), and for the rhs that∫

PSWW

(k1 − k2)α(k1 − k2)β = −1

3
(q2 − 4M2

W )gαβ
∫

PSWW

, (10.35)

it is easy to verify that Eq. (10.33) is indeed satisfied.

At this point, one could go a step further and employ a twice-subtracted dispersion
relation to reconstruct the real part of �̂(WW )

ZZ (q). The end result of this procedure
will coincide with the corresponding expression obtained from Eq. (10.21) after
appropriate renormalization (for a detailed derivation, see [11]).

Finally, we return to the nonrenormalizability of the unitary gauges, now seen
from the absorptive point of view. As mentioned in the previous subsection, in the
unitary gauge, the strong version of the optical theorem is satisfied; in relation to
this section, what this means is that the optical theorem is satisfied diagram by
diagram, without having to resort explicitly to the s-t cancellation. For example,
the imaginary part of the conventional self-energy �(WW )

ZZ (s) in the unitary gauge is
given by


m�(WW )

ZZ (s) ∼ (s −MZ)2
∫

PSWW

T μν

Z Lμμ′(k1)Lνν ′(k2)T ∗μ′ν ′
Z . (10.36)

What is the price one pays for not implementing explicitly the s-t cancellation?
Simply, the conventional subamplitudes, such as the one given earlier, contain
terms that grow as s2 or as s3 (see, e.g., [11, 12]); indeed, the s-t cancellation
eliminates precisely terms of this type. Consequently, if one were to substitute the

m�(WW )

ZZ (s) obtained from the rhs of Eq. (10.36) into a twice-subtracted dispersion
relation – the maximum number of subtractions allowed by renormalizability –
ultraviolet divergent real parts proportional to q4 or q6 would be encountered. Of
course, these are precisely the nonrenormalizable terms encountered in Eq. (10.22),
now obtained not from a direct one-loop calculation but rather from the combined
use of unitarity and analyticity.

10.2.3 Background field method away from ξQ = 1:
physical versus unphysical thresholds

As mentioned already, the fact that the BFM Green’s functions satisfy the same
QED-like Ward identities for every value of the quantum gauge-fixing parameter
ξQ does not mean that the PT Green’s functions, reproduced from the background
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field method at ξQ = 1, are simply some among an infinity of physically equivalent
choices, parametrized by ξQ. This interpretation is not correct: the BFM Green’s
functions obtained away from ξQ = 1 are not physically equivalent to the privi-
leged case of ξQ = 1. The following basic observation clarifies this point beyond
any doubt: for ξQ = 1, the imaginary parts of the BFM electroweak self-energies
include terms with unphysical thresholds [11, 10]. For example, for the one-loop
contributions of the W and its associated would-be Goldstone boson and ghost to
�̃

(WW )

ZZ (ξQ, s), one obtains


m�̃(WW )

ZZ (s, ξQ) = 
m�̂(WW )

ZZ (s) + α

24s2
wc

2
w

(
s −M2

Z

sM4
Z

)
× [

W1(s) +W2(s, ξQ) +W3(s, ξQ)
]
, (10.37)

with

W1(s) = f1(s)θ (s − 4M2
W

)

W2(s, ξQ) = f2(s, ξQ)λ1/2(s, ξQM
2
W
, ξQM

2
W

)θ (s − 4ξQM
2
W

)

W3(s, ξQ) = f3(s, ξQ)λ1/2(s,M2
W
, ξQM

2
W

)θ (s −M2
W

(1 + √
ξQ)2), (10.38)

where λ(x, y, z) = (x − y − z)2 − 4yz and

f1(s) = (
8M2

W
+ s

) (
M2

Z
+ s

) + 4M2
W

(
4M2

W
+ 3M2

Z
+ 2s

)
f2(s, ξQ) = f1(s) − 4

(
ξQ − 1

)
M2

W

(
4M2

W
+M2

Z
+ s

)
f3(s, ξQ) = −2

[
8M2

W
+ s − 2

(
ξQ − 1

)
M2

W
+ (

ξQ − 1
)2 M

4
W

s

] (
M2

Z
+ s

)
.

(10.39)

These gauge-dependent unphysical thresholds (see the arguments of the θ func-
tions) are artifacts of the BFM gauge-fixing procedure; in the calculation of any
physical process, they cancel exactly against unphysical contributions from the
imaginary parts of the one-loop vertices and boxes. After these cancellations have
been implemented, one is left just with the contribution proportional to the tree-level
cross section for the on-shell physical process f f̄ → W+W−, with thresholds only
at q2 = 4M2

W
. In fact, by obtaining in the previous subsection the full W -related

contribution to the PT self-energy, namely, �̂(ZZ)
WW (s), directly from the on-shell

physical process f f̄ → W+W−, we have shown explicitly that in the background
field method at ξQ = 1, the thresholds that occur at q2 = 4M2

W
are due solely to

the physical W+W− pair. We therefore conclude that the particular value ξQ = 1
in the background field method is distinguished on physical grounds from all other
values of ξQ.
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10.3 Nonconserved currents and Ward identities

We now discuss some important issues related to the application of the pinch
technique when the fermions are massive, as discussed in Section 2.2.5. Consider
the elastic process e−(r1)νe(p1) → e−(p2)νe(r2), and concentrate on the charged
channel, which, at tree level, is shown in Figure 10.7. The momentum transfer q is
defined as q = p1 − p2 = r2 − r1, and we will consider the electrons to be massive,
with a mass me, whereas the neutrinos will be treated for simplicity as massless.
The tree-level propagators of the W and the corresponding Goldstone boson are
those given in Eq. (10.1) and Eq. (10.3) (for i = W ); the indexW will be suppressed
in what follows. The elementary vertices describing the coupling of the charged
bosons with the external fermions are �α ≡ �W+

α ν̄ee
= �W−

α ēνe
, �+ ≡ �φ+ν̄ee, and

�− ≡ �φ−ēνe and are given by

�α = igw√
2
γαPL; �+(−) = − igw√

2

me

MW

PR(L). (10.40)

When sandwiched between the external spinors, they are denoted by �α
1 =

ūνe (r2)�αue(r1), �α
2 = ūe(p2)�α uνe (p1), �1 = ūνe (r2)�+ ue(r1), and �2 =

ūe(p2)�− uνe (p1). The elementary identities

qα�
α
1,2 = MW�1,2

i�1,2 = MWq
ββα(q)�α

1,2 + q2D(q)�1,2, (10.41)

valid for every ξ , are also useful.

We will start by considering the S-matrix at tree level (Figure 10.7), to be denoted
by T0:

T0 = �α
1 αβ(q)�β

2 + �1 D(q)�2 . (10.42)

Of course, T0 must be ξ independent, and it is easy to demonstrate that this is
indeed so. Using Eqs. (10.4) and (10.41), it is elementary to verify that T0 can be
written as

T0 = �α
1Uαβ(q)�β

2 . (10.43)

Thus, even though one works in the Rξ gauge, making no assumption on the value
of ξ (in particular, not taking the limit ξ → ∞), one is led effectively to the unitary
gauge, with no (unphysical) would-be Goldstone bosons present.

There is an alternative way of writing T0 that makes manifest the role of the massless
Goldstone bosons. It is well known that the Ward identities (or Slavnov–Taylor
identities) in theories with spontaneous symmetry breaking maintain the same form
as in the unbroken theory at the expense of introducing massless longitudinal poles.
The role of these massless poles is obscured because, through the process of gauge
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Figure 10.7. The process eνe → eνe at tree level in the standard model.

fixing, they can be changed to poles of arbitrary mass (as explained earlier). These
massless poles do not appear in the S-matrix to the extent that they are absorbed
by gauge bosons. However, simple algebra can recast the tree-level amplitude into
a form in which the presence of the massless poles becomes manifest. Specifically,
using the algebraic identity

1

M2
= 1

q2
+ q2 −M2

q2M2
, (10.44)

we can write Uαβ(q) as

Uαβ(q) = Pαβ(q)dW (q2) + qαqβ

M2
W

i

q2
, (10.45)

where we have used the transverse projector Pαβ(q) defined in Eq. (1.26). Then
Eq. (10.43) can be rewritten as

T0 = �α
1Pαβ(q)dW (q2)�β

2 + �1
i

q2
�2. (10.46)

It turns out that the PT rearrangement of the physical amplitude allows the gen-
eralization of Eq. (10.43) and Eq. (10.46) to higher orders. To see how this hap-
pens, assume that the PT procedure has been carried out as usual (with the addi-
tional operational complications mentioned earlier), giving rise to the gauge-fixing
parameter-independent self-energies �WαWβ

, �Wαφ , �φWβ
, and �φφ , to be denoted

by �̂αβ , "̂α, "̂β , and �̂, respectively (Figure 10.8). During this construction,
it becomes clear that the cancellations of the gauge-fixing parameter-dependent
loop contributions proceed without interfering with the the gauge-fixing param-
eter dependence of the tree-level propagators connecting the one-loop graphs to
the external fermions. Of course, any residual gauge-fixing parameter dependence
coming from these tree-level propagators (see Eqs. (10.1) and (10.3)) must also
cancel to obtain fully gauge-fixing parameter-independent subamplitudes T̂1 and T̂2

(T̂3, being boxlike, does not have external propagators and is already fully gauge-
fixing parameter independent). It turns out that, quite remarkably, the requirement
of this final gauge-fixing parameter cancellation imposes a set of nontrivial Ward
identities on the one-loop PT self-energies and vertices [1, 3].
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Θ̂β

Θ̂α

Ω̂

Figure 10.8. The ξ -independent PT self-energies (grey blobs); the tree-level prop-
agators are still ξ -dependent. Requiring that any gauge-fixing parameter depen-
dence coming from these tree-level propagators must cancel imposes a set of
non-trivial Ward identities on the one-loop PT self-energies (and vertices).

We see how the Ward identities for the self-energies are derived from the require-
ment of the full gauge-fixing parameter independence of T̂1. Neglecting tadpole
contributions, we have that T̂1 is given by

T̂1 = �
μ

1 μα(q)�̂αβ(q)βν(q)�ν
2 + �1D(q) �̂(q)D(q)�2

+�
μ

1 μα(q)"̂α(q)D(q)�2 + �1D(q)"̂β(q)βν(q)�ν
2 , (10.47)

or, after using Eq. (10.4),

T̂1 = �
μ

1

[
Uμα(q) − qμqα

M2
W

D(q)

]
�̂αβ(q)

[
Uβν(q) − qβqν

M2
W

D(q)

]
�ν

2

+�
μ

1

[
Uμα(q) − qμqα

M2
W

D(q)

]
"̂α(q)D(q)�2

+�1D(q) "̂
β
(q)

[
Uβν(q) − qβqν

M2
W

D(q)

]
�ν

2 + �1D(q)�̂(q)D(q)�2.

(10.48)

This way of writing T̂1 has the advantage of isolating all residual ξ dependence
inside the propagators D(q). Demanding that T̂1 be ξ independent, we obtain as a
condition for the cancellation of the quadratic terms in D(q)

qβqα�̂αβ(q) − 2MWq
α"̂α(q) +M2

W
�̂(q) = 0, (10.49)

https://doi.org/10.1017/9781009402415.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.011


10.3 Nonconserved currents and Ward identities 245

whereas for the cancellation of the linear terms, we must have

qα�̂αβ(q) −MW"̂β(q) = 0. (10.50)

From Eqs. (10.49) and (10.50), it follows that

qβqα�̂αβ(q) = M2
W
�̂(q) (10.51)

qα"̂α(q) = MW�̂(q). (10.52)

Equations (10.49) and (10.52) are the announced Ward identities. To be sure, they
are identical to those obtained formally within the background field method but
are derived through a procedure that has no apparent connection with the latter;
indeed, all that one evokes is the full gauge-fixing parameter independence of the
S-matrix. Applying an identical procedure for T̂2, one obtains the corresponding
Ward identity relating the higher-order PT vertices �̂α and �̂±.

Finally, the gauge-fixing parameter–independent T̂1 is given by

T̂1 = �
μ

1 Uμα(q) �̂αβ(q)Uβν(q)�ν
2 . (10.53)

Notice that Eq. (10.53) is the higher-order generalization of Eq. (10.43).

We can now use the Ward identities derived previously to reformulate the S-matrix
in a very particular way; specifically, we will show that the higher-order physical
amplitude given earlier may be cast in the tree-level form of Eq. (10.46). Such a
reformulation gives rise to a new transverse gauge-fixing parameter-independent
W self-energy �̂t

αβ with a gauge-fixing parameter-independent longitudinal part,
exactly as in Eq. (10.46). Of course, the cost of such a reformulation is the appear-
ance of massless Goldstone poles in our expressions. However, inasmuch as both
the old and new quantities originate from the same unique S-matrix, all poles intro-
duced by this reformulation will cancel against each other because the S-matrix
contains no massless poles to begin with.

To see how this works out, write "̂α in the form

"̂α(q) = qα"̂(q) ; (10.54)

from Eq. (10.52), it follows that

"̂(q) = MW

q2
�̂(q). (10.55)

Then we can define �̂t
αβ(q) in terms of �̂αβ(q) and "̂(q) as follows:

�̂t
αβ(q) = �̂αβ(q) − qαqβ

q2
MW"̂(q). (10.56)
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Evidently �̂t
αβ(q) is transverse, e.g., qα�̂t

αβ(q) = qβ�̂t
αβ(q) = 0. Moreover, using

Eqs. (10.50) and (10.55),

�̂t
αβ(q) = Pαμ(q)�̂μν(q)Pβν(q). (10.57)

We may now reexpress T̂1 of Eq. (10.53) in terms of �̂t
αβ and �̂; using Eq. (10.45)

and (10.41), we have

T̂1 = �α
1 dW (q2)�̂t

αβ(q)dW (q2)�β

2 + �1
i

q2
�̂(q)

i

q2
�2. (10.58)

Equation (10.58) is the generalization of Eq. (10.46): T̂1 is the sum of two self-
energies, one corresponding to a transverse massive vector field and one to a
massless Goldstone boson. It is interesting to notice that the preceding rearrange-
ments have removed the mixing terms "̂α and "̂β betweenW and φ, thus leading to
the generalization of the well-known tree-level property of the Rξ gauges to higher
orders. It is important to emphasize again that the massless poles in the preceding
expressions would not have appeared had we not insisted on the transversality of
theW self-energy (or the vertex); notice in particular that they are not related to any
particular gauge choice, such as the Landau gauge (ξ = 0). A completely analogous
procedure may be followed for the one-loop (and beyond) vertex [1], yielding the
corresponding Abelian-like Ward identity; as in the case of the self-energy studied
earlier, the Ward identity of the vertex is realized by means of massless Goldstone
bosons.

10.4 The all-order construction

The all-order extension of the pinch technique in theories with spontaneous sym-
metry breaking can be achieved by resorting to the same algorithm described in
Chapter 3 for QCD; however, now the construction is significantly more involved.
First, depending on the nature of the line carrying the physical momentum q, there
are four vertices to be constructed: two for the gauge-boson sector (charged (W±)
and neutral (A,Z)) and, as described in Section 10.1, two for the scalar sector
(charged (φ±) and neutral (χ,H )). In addition, the BRST symmetry, and therefore
the Slavnov–Taylor identities, are now realized through Goldstone bosons; thus the
different identities one needs to derive will have a richer structure than that shown
in the QCD case (Eq. (3.5)). Finally, the comparison of the PT Green’s functions
with those of the background Feynman gauge is more laborious because of the
proliferation of couplings, e.g., tri- and quadrilinear mixed gauge-boson–scalar
vertices.
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Γχff̄ =
χ

W+
α

φ−
χ

H

Zα

Φ

Φ

f

f̄

Φ

Φ

f

f̄

+++ · · ·

(a) (b)

Φ

Φ

f

f̄

χ

φ+

W−
α
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Figure 10.9. The subset of all the diagrams that contribute to the vertex �χf f̄ (in
the Rξ gauge) and receive the action of pinching momenta. Here 
 and 
′ denote
all fields allowed by the different couplings. The ellipses represent all remaining
graphs, where pinching cannot take place. Finally, Bose-symmetric terms are not
shown.

We illustrate some of the preceding points through a specific example, namely,
the construction of the vertex �̂χf f̄ . This case is particularly instructive because it
exposes a new type of PT-driven cancellation not encountered so far in the book.

As usual, we choose the Feynman gauge as our starting point, thus receiving
pinching momenta only from the tree-level vertices. Figure 10.9 shows all the
graphs that must be contracted by the longitudinal momentum contained in the
term �P

α(q, k1, k2). We will concentrate only on diagram (a), which is proportional
to a tree-level�(0)

χφ+W−
α

vertex. Diagram (b), proportional to�(0)
χW+

α φ
− , will give rise to

very similar structures, whereas diagram (c), proportional to �(0)
χHZα

, does not mix
with the previous two, and the corresponding analysis can be carried out separately.

The pinching part of diagram (a) reads

(a)P = gw

2

∫
kα2

[
Tφ+W−

α
(k1, k2)

]
t,I
, (10.59)

where Tφ+W−
α

represents the amplitude φ+W−
α → f f̄ , where the fermions are taken

to be on shell. Then, similar to the QCD case, the pinching action amounts to the
replacement

kα2
[
Tφ+W−

α

]
t,I

→ [
kα2 Tφ+W−

α

]PT
t,I

= [
Sφ+W−

]
t,I
. (10.60)

In this case, the (on-shell) Slavnov–Taylor identity gives [13]

Sφ+W−(k1, k2) = MWDc(k1)Dc(k2)Gc̄+c−(k1, k2)

−MWDW (k1)DW (k2)Gφ+φ−(k1, k2)

+ gw

2
Dc(k2)

[
iQ{χc+}c+(k1, k2) + Q{Hc+}c+(k1, k2)

]
− gwswDc(k2)Q{φ+cA}c+(k1, k2)

+ gw
c2
w − s2

w

2cw
Dc(k2)Q{φ+cZ}c+(k1, k2), (10.61)
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where Dc is the propagator of the ghosts associated with the W -bosons. The func-
tions G and Q are shown in Figure 3.4; their subindices denote the corresponding
particle content, and curly brackets enclose fields evaluated at the same space-time
point. Adding the preceding contribution (and the ones not explicitly considered
here) to the remaining PT-inert diagrams furnishes the PT vertex �̂χf f̄ .

One can next compare �̂χf f̄ with the background Feynman gauge vertex �χ̂f f̄ .
First, it is fairly straightforward to show that the last three terms in Eq. (10.61)
will generate the needed ghost-scalar quadrilinear couplings (χ̂H c̄−c+, χ̂χ c̄−c+,
χ̂φ+c̄−cA, and χ̂φ+c̄−cZ).

The remaining PT terms must be appropriately combined with some of the other
Rξ diagrams contributing to �χf f̄ . Consider first the trilinear scalar-ghost sector. In
the Rξ gauge, it reads

− gw

2
MW

∫
k2

Dc(k1)Dc(k2) [Gc̄+c−]t,I , (10.62)

and cancels precisely against the corresponding PT term (first term in Eq. (10.61)).
This is the new type of PT cancellation mentioned earlier: within the PT, the
absence of tree level coupling between a background field χ̂ and two ghosts (see,
e.g., Denner et al. [14]) is obtained dynamically. Similarly, had we chosen to
construct the PT Higgs-fermion vertex �̂Hf f̄ instead, these two terms would have
added up, furnishing the correct background Higgs-ghost coupling.

Finally, consider the scalar-scalar trilinear sector. The second term in Eq. (10.61)
gives a contribution to an effective PT vertex of the type χφ+φ−. A similar contri-
bution is generated from Figure 10.9(b), whose pinching action is proportional to
[kα1 TW+

α φ
−(k1, k2)]t,I = [SW+φ−]t,I . It turns out that these two contributions exactly

cancel out in accordance with the absence of the (tree-level) couplings χφ+φ−

and χ̂φ+φ−. Once again, when constructing the Higgs vertex �̂Hf f̄ , the two con-
tributions would add up, thus providing the correct BFM coupling Ĥφ+φ− when
summed with the corresponding Rξ diagram. All remaining diagrams are identical
to those of the background Feynman gauge because of the equality of the corre-
sponding tree-level couplings. This concludes our (partial) proof of the equality
�̂χf f̄ = �χ̂f f̄ .
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