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SOME CONSTRUCTIONS IN ABSTRACT 
MEASURE THEORY 

D. J. LUTZER 

1. I n t r o d u c t i o n . In this paper we construct two examples which elucidate 
the relationships between several o--algebras t ha t arise in measure-theoretic 
constructions on locally compact spaces and groups. For any space X let SS (X) 

be the Borel G-algebra on X, i.e., the smallest a -algebra of subsets of X which 
contains the family of all closed subsets of X. Let d(X) be the smallest 5-ring of 
subsets of X which contains every compact subset of X, where by a b-ring we 
mean a collection of subsets of X which is closed under the formation of 
countable intersections, finite unions and relative complements . Let <r(X) be 
the smallest cr-ring of subsets of X which contains all compact subsets of X, 

where by a a-ring we mean a collection of subsets of X which is closed under 
the formation of countable unions, finite intersections and relative complements . 
For any collection ^ of subsets of X we let 

%floc = {A C X: for each C G ^ i H C f <£}. 

T h e a -algebras which we wish to compare are Se (X), ô(X)loc and a(X)l0C where 
X is a locally compact Hausdorff space. If X is actual ly a locally compact 
Abelian group with Haar measure w, we wish to compare those collections with 
@m(X) = {A e âS{X) : m{A) < oo } and with &m(X)l0C. 

For any space X one readily proves t ha t b(X) = {A £ Se{X) : cl(-4) is 
compact} and tha t &(X) C b(X)loc = a(Xy°c; see § 3. T h e question (posed to 
the au thor by P. Masani) which we answer negatively in this paper asks 
whether SS {X) will coincide with ô(X) l 0 C if X is a locally compact Hausdorff 
space or a locally compact Abelian group. (Indeed, in [1 , § 14] the family of 
Borel sets in a locally compact space X was defined to be 8(X)l0C.) We present 
two examples. T h e first, which involves a remarkable set of countable ordinals 
constructed by Mary Ellen Rudin, is easy to describe. T o describe the second 
example, which is a metrizable, locally compact , locally connected Abelian 
group, we are forced to develop more machinery, including a s t ructure theorem 
f o r ô ( Z ) . 

Before describing the examples, let us pause to comment on the case where X 
is a locally compact Abelian group [3]. Let m be Haar measure on X. Wi th 
notat ion as above, it is clear t ha t 

B(X) C Sëm{X) C Sg{X) C Sêm{Xyoc C 5(X) I 0 C = <x(X)l0C, 

Received January 11, 1974. This research was partially supported by NSF Grant GP-29401. 

860 

https://doi.org/10.4153/CJM-1975-093-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-093-6


MEASURE THEORY 861 

the last equality following from Theorem 3.4, below. In case X is (r-compact, 
the third and fourth containments are equalities. What our second example 
shows is that if a (metrizable) locally compact Abelian group is not cr-compact, 
then each of the first four containments may be proper. 

Henceforth, all spaces will be assumed to be at least Hausdorff and the set of 
all countable ordinals (with the usual ordering) will be denoted by 12. 

Acknowledgement. The author would like to express his gratitude to Professors 
A. H. Stone and P. R. Meyer for some helpful conversations about Borel sets 
and to Professor Masani for suggesting the problem that is solved in this paper. 
The author is deeply indebted to M. Rice for pointing out the results appearing 
in § 5 of the paper. 

2. The first example. In this section, 12 will denote the set of countable 
ordinals endowed with the usual open-interval topology. The following 
topological properties of 12 are well-known: 

(a) 12 is locally compact and normal ; 
(b) 12 is sequentially compact (i.e., every sequence has a convergent sub

sequence) but 12 is not compact. The space 12 also contains some remarkable 
subsets: in [5] Mary Ellen Rudin proved 

(c) there is a subset A of 12 such that neither A nor B — 9\A contains a 
closed uncountable subset of 12. Note that Professor Rudin's set A cannot be a 
Borel subset of 12 since the collection ^f = {C C Œ : either C or 12\C contains 
an uncountable closed subset of 12} is a c-algebra containing all closed subsets 
of 12 and hence also contains 3&($L). On the other hand, it is easily proved that 
5(12) = {D C Û : D is countable} so that 6(12)loc is the family of all subsets of 12. 
Thus ,4 G ô(12)l0C\J>(12). 

While the space 12 does have a respectable topological structure, it is not a 
nice space from the point of view of analysis since it is neither a metric space 
nor a topological group. 

3. Inductive constructions and structure theorems. With 12 denoting 
the set of countable ordinals, consider the following inductive construction of 
sets ôa(X) for each a £ 12. Let ô0(X) be the family of all compact subsets of X. 
If a 6 12 is not a limit ordinal, say a = 0 + 1, let ôa(X) be the collection of all 
subsets of X which can be represented as a finite union, a countable intersection, 
or a relative complement of members of the already defined collection Ôp(X). If 
a is a limit ordinal we define 8a(X) = \J{ôp(X) : 0 ^ ft < a}. It is clear that 
the collections ôa(X) satisfy: 

(a) if 0 ^ a < 0 are countable ordinals then ôa(X) C ôp(X)\ 
(b) Ô(X) = U{àa(X) :a € 12}. 
The results in this section are more general than analogous results appearing 

in [1, § 14] in that we do not assume that our spaces are locally compact. 
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3.1 L E M M A . Suppose Y is a compact subset of a space X. Let 

bY{X) = [DC\ F : De ô(X)\. 

Then 5 (F ) = {D G ô(X) : D C Y] = ÔY(X). 

Proof. Clearly 5 ( F ) C {D £ ô(X) : D C F} C 5 r ( X ) , the first inclusion 
being valid because the middle collection is a 5-ring of subsets of Y which 
contains all compact subsets of Y. If the lemma is false, therefore, there must be 
a member of ôY(X) which is not a member of 5 ( F ) . Then in the inductive 
construction of d(X) there must be a first ordinal a such t ha t some member Do 
of Ôa(X) has the proper ty t ha t D0 P F is not a member of 5 ( F ) . Certainly 
a 7* 0 since any Z) G ôo(X) is compact so tha t , X being Hausdorff, Z) Pi F is 
also compact and therefore is a member of 5 ( F ) . Fur thermore a cannot be a 
limit ordinal since, in t ha t case, Do would belong to some ôp(X) with 0 < a. 
Write a = £ + 1 and express £>o as an admissible combination of sets belonging 
to ôp(X). There are three cases to consider. If D = £ i U . . . U En where each 
Et is in ôp(X), then minimali ty of a forces us to conclude t ha t Et P Y £ 5( F) 
for 1 g i ^ » so t ha t D Pi F is a finite union of members of 5 ( F ) . If 
D = D{En : n è 1} where £ n g «„(X) for each n then £ n Pi F Ç 5 ( F ) , again 
by minimali ty of a, so tha t D C\ Y = P Î ^ P F : ?z ^ 1} is a countable 
intersection of members of 5 ( F ) . Finally, if D = £ \ F where £ , T7 £ 5/3 ( F ) then 
D P F = ( £ P 7 ) \ ( F H F) is the relative complement of two members of 
5 ( F ) . Therefore, in any case, we are forced to conclude tha t D P F £ à (Y) and 
tha t contradiction is sufficient to establish (3.1). 

Recall t ha t a collection J ^ of subsets of X is directed by inclusion if, given Ki 
and K2 in J T , there is a i£3 6 ^ having K\\J K2 Ç^ K%. For example, a collec
tion J ^ is directed by inclusion if it is closed under the formation of finite 
unions. 

3.2 T H E O R E M . Suppose 3f is a collection of compact subsets of X which is 
directed by inclusion and which has the property that every compact subset of X is 
contained in some member of ^ . Then 8(X) = \J{ô(K) : K Ç J ^ } . 

Proof. Let 9 = \J{8(K) : K £ X\. According to (3.1) each 8(K) is a 
subcollection of ô(X). Fur thermore Ql certainly contains every compact 
subset of X. Therefore we may complete the proof by showing t h a t Qj is a 
delta-ring. T o tha t end, suppose Si, . . ., Sn G £iï. Then there are members 
Kt £ ^ such tha t Si G à(Kf). Since J ^ is directed by inclusion, some K £ jf 
contains Kx VJ . . . VJ Kn whence St Ç à(K) for 1 ^ i ^ w. Bu t then 
Si U . . . U Sn G 5(X) and so ^ U . . . U S , É ^ . Similarly ^ is closed 
under relative complementat ion. Suppose S„ £ ^ for each w ^ 1 and consider 
the set T = P{S„ : n è 1}. We show tha t T ^ Q. Choose sets Kn ^ X 
such t ha t S„ G 5(i£„). Let Cw = X i Pi i£w for each » ^ 1 . Then each Cw is a com
pact subset of both K\ and i£„ so tha t , by Lemma 3.1, Sn P Cn Ç 5(Cn) Ç ô(Ki). 
Therefore T = P{S„ P C„ : w ^ 1} belongs to 5(Ki) and hence to ^ , as re
quired to complete the proof of (3.2). 
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It is well-known (and easily proved) that if F is a compact space then 
Së{Y) = S (Y) = 5(F)l0C. This fact yields our next theorem. 

3.3 THEOREM. Suppose Jf is a family of compact subsets of a space X which is 
directed by inclusion and which has the property that every compact subset of X is 
contained in some member of X. Then 

d(X) = \J{&(K) : K^X] 
and 

A 6 Ô(X)loc if and only if A H K 6 2 (K) for each K^X. 

Proof. That Ô(X) = U{ @(K) : K 6 X) follows directly from (3.2). 
Suppose A € ô(X) loc and let K £ Jf . Then K £ 8(X) so that K C\ A G ô(X). 
According to (3.1), K (~\ A G 5(K) = SU (K). Conversely, suppose 
AC\K e 3ë{K) for each K 6 X. Let 2? £ Ô(Z). Then D G 5(i£0) for some 
i£0 G Jf . By assumption 4 H X0 G ^ ( X 0 ) = 5(i£0) so that 

AC\D = (Ar\K0)nD e S(K0) C «po 
as required to show that A £ ô(X)l0C. 

3.4 THEOREM. For any space X, ô(X)l0C = cr(X)loc. 

Proof. The theorem will follow from (3.3), if X is taken to be the family of 
all compact subsets of X, and from the following characterization of a(X)l0C: 

<r(Xyoc = {A QX : for each compact K £ X, A H K t a(X)\. 

The characterization can be easily proved by applying a minimal counter
example argument (see (3.1)) to a{X), represented as an increasing union 
KJ{va{X) : a ^ O ) where a0(X) is the family of all compact subsets of X, where 
aa+i(X) is the collection of all subsets of X obtainable by taking countable 
unions, finite intersections, or relative complements of members of the already 
defined collection <ra(X), and where aa(X) = \J{<rp(X) : 0 S fi < a] whenever 
a is a limit ordinal. 

Given that characterization, ô(X)l0C Ç a(X)loc is obvious. The reverse 
inclusion also follows, once it is observed that if A £ a(X)l0C, then for each 
compact K C X we have A C\ K £ a(X) and hence A H Z Ç (j(X) = ^ ( X ) . 

As a final item in this section we give an inductive construction of the Borel 
cr-algebra on a space X. The reader should be warned that our construction is 
not the usual one, described, for example, in [4]. We define 3S^{X) to be the 
family of all closed subsets of X. If £ is a countable ordinal for which 38${X) has 
already been defined and if a = /3 + 1, we define 3êa(X) to be the family of all 
subsets of X which may be obtained by forming countable unions of, or 
complements of, members of 3&p(X). And if a is a limit ordinal we let 
@a(X) = U I ^ J P O I J S < a). One can prove: 

3.5 THEOREM. If a < f3 are countable ordinals then Sëa(X) C 3$$(X). The 
collection Se(X) satisfies Se(X) = \J\Sêa(X) : a £ S2}. If Y is any infinite 
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compact metric space having no isolated points then for each a G 12 the collection 
&a+l(Y)\38a(Y) is non-empty. 

The first two assertions are easily proved; the third is non-trivial and can be 
deduced from the analogous theorem about the usual Borel classification, 
roughly as follows. The usual classification of Borel sets (described, for example, 
in Section 30 of Kuratowski's text [4]) inductively defines classes ^ a for each 
a G 12, beginning with J S = {S C X\S is a closed set}. It is easily seen that 
Sêa C ^"a+i for each a G 12. Now it is known that if X is an infinite compact 
metric space having no isolated points, then for each a G 12 the set ^"a+iV^a is 
non-empty [2, p. 276]. Therefore SSa+i\âêa must be non-empty. 

4. The second example. Let S1 be the unit circle in the plane, endowed 
with its usual topology and group operation. Let Rd be the additive group of 
real numbers endowed with the discrete topology. Let X be the product group 
X = S1 X Rd- Then X is an Abelian topological group which is metrizable, 
locally compact and locally connected. The components of X are the 
open, compact sets S(x) = S1 X {x}. For any finite subset F of Rd let 
S(F) = U{S(x) : x e F}. Then the collection J f = {S(F) : F is a finite non
empty subset of Rd} is directed by inclusion and every compact subset of X is 
contained in some member of J^ . Therefore the structure theorems of Section 3 
may be applied. 

There is a one-to-one function / : 12 —> Rd. (If one invokes the Continuum 
Hypothesis, it can be assumed t h a t / is also surjective; we do not need this 
added assumption.) The set S(f(a)) is an infinite compact metric space having 
no isolated points so that there is a subset 

T(a) d ma+1{S(j{*)))\@a{S(j(a))). 

Let T = \J{T(a) : a G 12}. Let F be a finite, non-empty subset of Rd. Then 
T C\ S(F) = \J{T(a) : f(a) G F], being a finite union of Borel subsets of 
S(F), is a Borel subset of S(F). According to Theorem 3.3, T G ô(X)l0C. How
ever T cannot be a Borel subset of X. For, define a collection ^ by 

^ = {A C X : there is an ordinal 7 G 12 such that 
A n S(x) G @y(S(x)) for each x G Rd}. 

Certainly every closed subset of X belongs to fé\ Also, ^ is a c-algebra. For 
suppose An G ^ for each « ^ 1. Let 7^ G 12 have the property that 
^4n C\ S(x) G £iïyn(S(x)) for each x £ Rd and let 7 = sup{7„ : « ^ 1 | . 
Then 4̂W P\ 5(x) G «â?7(»S(a;)) for each x £ Rd and each « M so that 
( U | i ( w ) : w è l } ) n S ( x ) = U M ( » ) n 5 ( x ) : n è 1} G âSy+l{S{x)) for each 
x G i?d- Hence U{-4n : w ^ 1} G ^ . Finally suppose A G ^ and consider 
X V . Let 7 G 12 have the property that A C\ S(x) G â#y(S(x)) for each x G 2?d. 
T h e n 5 ( x ) \ ( ^ C\S(x)) G ^ 7 + i ( 5 ( x ) ) for each x G i?rf. Since 

( X V ) C\ S(x) = 5(x)\(i4 H S(*)) G ^ 7 + i ( 5 ( x ) ) 
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we see tha t *€ is indeed a a-algebra of subsets of X. But then every Borel 

subset of X must belong to *£ so tha t , by construction, T cannot be a Borel set 

in X. Therefore, even in the metrizable, locally compact, locally connected 

abelian group X, d{X)l0C\^(X) ^ <j>. 

Let us conclude with a result showing tha t the non-separability of the space 
X = S1 X Rd was what made the example possible. 

4.1 T H E O R E M . If X is separable, paracompact and locally compact then 

38 (x) = ô(xyoc. 

Proof. The theorem follows from (3.3) since there is a sequence U\ Ç [72 C . . . 
of open subsets of X such tha t X = U { Un : n ^ 1 j and such tha t Vn is 
compact for each n ^ 1. 

5. R e l a t i o n s to descript ive set theory . Our terminology in this section 
generally follows t ha t of [4]. In particular, a collection 3iï of subsets of a space 
X is discrete if each point of X has a neighborhood tha t meets a t most one 
member of Sf and a collection which is the union of countably many discrete 
subcollections is o-discrete. The term "hyper-Borel" was suggested to the 
author by M. Rice. 

Descriptive set theory provides another characterization of d(X)l0C. Recall 
t ha t J4f&(X), the collection of hyper-Borel subsets of X, is the smallest collec
tion of subsets of X which is closed under complementation and under the 
formation of <r-discrete unions, and which contains all closed subsets of X. 
Certainly ô(X) l o c is closed under the formation of discrete unions of its 
members ; being a cr-algebra, it is also closed under cr-discrete unions so tha t 
^38{X) C 5(Xyoc. Let <£38(X) be the family of all subsets A of X with the 
proper ty tha t for each p £ A there is an open neighborhood V(p) of p such tha t 
A H V(p) e 38 {X). If X is locally compact, it follows from (3.3) tha t 
ô(Xyoc C <£38{X). Therefore we have: 

5.1 T H E O R E M . Let X be a locally compact metric space. Then 

Jf@(x) = ô(xyoc = ^3ë{X). 

Proof. I t will be enough to show tha t i f ^ (X) C ^Se (X). Let A É S£"38 (X) 
and for each p Ç A let V(p) be an open neighborhood of p such tha t 
A C\ V(p) G Së{X). Because X is metrizable, there is a ^-discrete collection 
W = \J{W(n) : n è 1} of open sets which refînes V = { V(p) : p G A] and 
which covers A. For each W G W{n),A C\ Wbelongs to 38 (X). Therefore, the 
set A = Un=i(U \W C\ A : We W(n)}) is a cr-discrete union of Borel sets so 
tha t ,4 G J?38{X). 

5.2 Remark. The proof of (5.1) actually yields a more general, bu t more 
technical, result: if X is a locally compact, paracompact space in which each 
closed set is a G«, then Jf38(X) = ô(Xy°c = <£38{X). Fur thermore, 
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Theorem 5.1 points out the importance of Masani's original question about the 
coincidence of 38 {X) and ô(X)l0C since in a locally compact metric space in 
which 38{X) = d(Xyoc we have 38{X) =^38{X) and in such a space, 
Lusin's First Separation Theorem [4] is known to hold. 

REFERENCES 

1. N. Dinculeanu, Vector measures (Pergamon Press, New York, 1966). 
2. H. Hahn, Réelle Funktionen (Chelsea Publ. Co., New York, 1948). 
3. E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. 1 (Academic Press, New York, 

1963). 
4. K. Kuratowski, Topology, Vol. 1 (Adademic Press, New York, 1966). 
5. Mary Ellen Rudin, A subset of the countable ordinals, Amer. Math. Monthly 64 (1957), p. 351. 

University of Pittsburgh, 
Pittsburgh, Pennsylvania 

https://doi.org/10.4153/CJM-1975-093-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-093-6

