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The Kottman Constant for α-Hölder Maps

Jesús Suárez de la Fuente

Abstract. We investigate the role of the Kottman constant of a Banach space X in the extension of
α-Hölder continuous maps for every α ∈ (0, 1].

1 Introduction

If X is an inûnite-dimensional Banach space, then the Kottman constant [6] of X is
deûned as

κ(X) ∶= sup
(xn)∈B(X)

sep(xn),

where for any sequence we deûne sep(xn) = inf n/=m ∥xn − xm∥, and B(X) denotes
the unit ball of X. A well-known result of Elton and Odell [2] asserts that κ(X) > 1
for every inûnite-dimensional Banach space X. Let us introduce a second parameter
associatedwith a Banach space X. We deûne the constant λ1(X , c0) as the inûmumof
all λ > 0 such that for every subset M of X every Lipschitz map f ∶M → c0 admits an
extension F∶X → c0 withLip(F) ≤ λ Lip( f ). Kalton proved the followingunexpected
result [5, Proposition 5.8].

Proposition 1.1 For every inûnite-dimensional Banach space X,

κ(X) = λ1(X , c0).

_e aim of this note is to observe that the proof of [5, Proposition 5.8] contains the
natural extension for α-Hölder maps; see Proposition 2.2. As far as we know, the ûrst
time that the Kottman constant was linked with the extension of α-Hölder maps was
in the proof of a result of Lancien andRandrianantoanina [7,_eorem 2.2]. Although
the Kottman constant is not mentioned, its role during the proof is quite evident. We
present also a proof of their result where the Kottman constant appears explicitly; see
Proposition 2.3.

Recall that given metric spaces (X , d) and (Y , ρ), we say a map f ∶X → Y is α-
Hölder for α ∈ (0, 1] if

Lipα( f ) = sup{ ρ( f (x), f (y))
d(x , y)α ∶ x /= y} <∞.
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_erefore for each α ∈ (0, 1] wemay deûne the constant λα(X ,Y) as the inûmum of
all λ > 0 such that for every subset M of X, every α-Hölder map f ∶M → Y admits an
extension F∶X → Y with Lipα(F) ≤ λ Lipα( f ).

_e paper is organized as follows. Section 2 contains the natural extension of [5,
Proposition 5.8] to α-Höldermapswhich is ourmain result. It also contains the quan-
titative version of the result of Lancien and Randrianantoanina. Section 3 deals with
Lq instead of c0 and gives a lower bound for λα(X , Lq).

2 The Estimate for c0
To prove our main result (Proposition 2.2) we need the following easy lemma.

Lemma 2.1 λα(X , c0) ≥ κ(X)α , α ∈ (0, 1].

Proof Let us denote by simplicity κ = κ(X). Given ε > 0, ûnd (xn) ∈ B(X) such that
κ − ε ≤ ∥xn − xm∥, where n /= m. Deûne the function f (xn) = (κ − ε)α en , for n ∈ N,
that is, α-Hölder with constant 1. Pick any extension F of f and denote z = F(0) ∈ c0:
∥F(0) − F(xn)∥ ≤ Lipα(F). Hence we have for each coordinate n ∈ N

∣z(n) − (κ − ε)α ∣ ≤ Lipα(F),

and taking the limit as n tends to inûnity, we have (κ − ε)α ≤ Lipα(F). Since the
extension F is arbitrary we have (κ − ε)α ≤ λα(X , c0), and letting ε → 0 we are
done.

_e diõcult part of the proof of our main result is proof of the reverse inequality,
and this is due to Kalton. _us we are ready to prove the natural extension of [5,
Proposition 5.8].

Proposition 2.2 For every inûnite-dimensional Banach space X

λα(X , c0) = κ(X)α , α ∈ (0, 1].

Proof Let us observe that

(2.1) λα(X , c0) = λ1(Xα , c0),

where as usual Xα denotes the snow�ake of X, i.e., themetric space Xα = (X , ∥ ⋅ ∥α).
_erefore the result follows using the same proof of Kalton’s result [5, Proposition
5.8]. Let us check it for the sake of completeness. Let us prove that the metric space
Xα admits a Lipschitz extension with constant κα that by Lemma 2.1 will be enough.
Suppose to the contrary that this last claim is false and we will reach a contradiction.
Writing κ = κ(X) for simplicity, [5,_eorem 5.1 (ii)] shows that there exists a ∈ Xα ,
ε > 0, and a sequence (xn) ∈ Xα such that

κα∥xk − a∥α + ε < ∥x j − xk∥α , j < k.

Since κα > 1, we may suppose (xn) is bounded. Hence, replacing xn by xn − a
and rescaling, we can ûnd for some ε′ > 0 a sequence (x′n) ∈ B(Xα) (and thus
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(x′n) ∈ B(X)) such that

(2.2) κα∥x′k∥α + ε′ < ∥x′j − x′k∥α , j < k.

Observe that the expression above gives that (x′n) does not converge to 0 in Xα , other-
wise 0 < ε′ ≤ κα∥x′k∥α + ε′ < ∥x′j − x′k∥α → 0, a contradiction. In particular, (x′n) does
not converge to 0 in X. Now observe that given ε1 > 0, using the fact that a bounded
sequence of real numbers has a convergent subsequence, it is not diõcult to check
that one can ûnd a, b, and an inûnite subset N1 of N such that 0 < a ≤ ∥x′n∥ ≤ b ≤ 1
for all n ∈ N1 and 1 − ε1 ≤ a

b . Indeed, if r /= 0 is the limit point, then for the ûxed
ε1 > 0 one can take a = r − θ and b = r + θ for θ > 0 small enough. We need a special
choice of ε1 > 0. To this end, consider the function f (t) = κα(1 − t)α whose limit as
t → 0 is κα . _erefore, by deûnition of limit, given ε′

2 , there is some t0 > 0 such that
f (t0) ≥ κα − ε′

2 . Pick a, b, andN1 as above for the choice ε1 = t0. Now rescaling 1/bα ,
the expression (2.2) for j, k ∈ N1, one has

∥
x′j
b
− x′k
b

∥
α
≥ κα

∥x′k∥α

bα
+ ε′

bα
≥ κα

∥x′k∥α

bα
+ ε′ ≥ κα a

α

bα
+ ε′ ≥ κα(1 − ε1)α + ε′

≥ κα + ε
′

2
,

where the last inequality follows by our choice of ε1 > 0. _at is, for j, k ∈ N1 with
j < k one has

(2.3) ∥
x′j
b
− x′k
b

∥
α
≥ κα + ε

′

2
.

To ûnish, observe that (κα+ ε′2 )
1/α > κ and pick ρ > 0 such that (κα+ ε′2 )

1/α−κ > ρ > 0.
For this ρ > 0, we have for j, k ∈ N1, and taking the α−1-power in (2.3),

∥
x′j
b
− x′k
b

∥ ≥ κ + ρ, j < k.

Since the points (b−1x′n)n∈N1 ∈ B(X), we have reached a contradiction with the
Kottman constant of X. _us by [5, _eorem 5.1], Xα has the Lipschitz (κα , c0)-EP
in the notation of [5]. _at is, Xα admits a Lipschitz extension of c0-valued Lipschitz
maps with constant κα . Hence λ1(Xα , c0) ≤ κα and by Lemma 2.1 and (2.1) we are
done. Recall that Kalton’s argument shows also that the inûmum deûning λα(X , c0)
is attained.

Recall that κ(X) > 1 (see [2]) and hence κ(X)α > 1 for every α ∈ (0, 1]. In other
words, Lemma 2.1 shows there is no inûnite-dimensional Banach space X for which
λα(X , c0) = 1. _is last was proved by Lancien and Randrianantoanina [7, _eorem
2.2] replacing c0 by a separable Banach space Y containing an isomorphic copy of c0.
_e next proposition can be read as a quantitative version of [7,_eorem 2.2] and the
proof closely follows the original. Let us ûrst introduce some basic notation [4]. We
deûne a gauge to be a function ω∶ [0,∞) → [0,∞) that is a continuous, increasing,
subadditive function satisfying limt→0 ω(t) = 0. For the rest of this subsection ω
will always denote a gauge. Recall that given metric spaces (X , d) and (Y , ρ), amap
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f ∶X → Y is ω-Lipschitz if

Lipω( f ) = sup{ ρ( f (x), f (y))
ω(d(x , y)) ∶ x /= y} <∞.

We may also deûne the constant λω(X ,Y) as the inûmum of all λ > 0 such that for
every subset M of X every ω-Lipschitz f ∶M → Y admits an extension F∶X → Y with
Lipω(F) ≤ λ Lipω( f ). Since c0 is a 2-absolute Lipschitz retract, it follows that c0 is
a 2-absolute ω-Lipschitz retract. In other words, the extension of ω-Lipschitz maps
with values in c0 is guaranteed with λω(X , c0) ≤ 2 for any Banach space X.

Proposition 2.3 Let Y be a separable Banach space containing an isomorphic copy of
c0. For every inûnite-dimensional Banach space X

ω(κ(X))
ω(1) ≤ λω(X ,Y).

Proof Let us write κ = κ(X) for simplicity. Fix ε > 0, and by James’ distortion
theorem [3] pick a (1+ε)-isomorphic copy of c0 in Y through an isomorphism T into
Y with ∥T∥ ≤ 1+ε and ∥T−1∥ ≤ 1. Denote by (en) the image of the canonical basis of c0
by T and by (e∗n) theHahn–Banach extensions to Y of the corresponding coordinate
functionals. By the separability assumption we can pick a subsequence (e∗kn

) of (e∗n)
such that (e∗kn

) w∗-converges to some point y∗ ∈ Y∗. Given ε1 > 0, pick (xn) ∈ B(X)
for which κ − ε1 ≤ ∥xn − xm∥, for n /= m. Deûne themap f (xn) = (−1)nω(κ − ε1)ekn

for each n ∈ N. We trivially ûnd that f is ω-Lipschitz with constant less than or equal
to (1 + ε). Take any extension of f to X, namely F, and observe that

∥F(0) − F(xn)∥ ≤ Lipω(F) ⋅ ω(∥xn∥) ≤ Lipω(F) ⋅ ω(1).
_erefore we ûnd, for y = F(0), that ∣y(e∗kn

) − (−1)nω(κ − ε1)∣ ≤ Lipω(F) ⋅ ω(1), so
that

−Lipω(F) ⋅ ω(1) − ω(κ − ε1) ≤ y(e∗kn
) ≤ Lipω(F) ⋅ ω(1) − ω(κ − ε1), for n odd,

−Lipω(F) ⋅ ω(1) + ω(κ − ε1) ≤ y(e∗kn
) ≤ Lipω(F) ⋅ ω(1) + ω(κ − ε1), for n even.

If Lipω(F) ⋅ ω(1) < ω(κ − ε1), write η = ω(κ − ε1) − Lipω(F) ⋅ ω(1) > 0. From above
we ûnd that for n even y(e∗kn

) ≥ η while for n odd one has y(e∗kn
) ≤ −η. Hence

the sequence (e∗kn
) is not w∗-convergent, which is absurd. _erefore ω(κ − ε1) ≤

Lipω(F) ⋅ ω(1). Since this last must hold for every extension F of f , we ûnd that
ω(κ − ε1) ≤ (1 + ε)λω(X ,Y) ⋅ ω(1) and letting ε1 → 0 and ε → 0, we are done.

_e result of Lancien and Randrianantoanina [7,_eorem 2.2] for α-Hölder maps
can be recovered by taking the gauges ω(t) = tα with α ∈ (0, 1]. Recall that ℓ∞ is
a 1-absolute ω-Lipschitz retract (see [1, Lemma 1.1.]). _us λω(X , ℓ∞) = 1 for every
inûnite-dimensional Banach space X while ω(κ(X)) > ω(1) since ω is increasing. In
particular, the separability assumption of Proposition 2.3 cannot be removed.

Let us give one last application of our results. We introduce BC(X , c0) as the set
of those α such that any α-Hölder function f from a subset of X with values in c0 and
Lipα( f ) = K can be extended to a function F on the whole X with Lipα(F) ≤ C ⋅ K.
_en Proposition 2.2 and a routine argument immediately gives the following.
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Corollary 2.4 For every inûnite-dimensional Banach space X

BC(X , c0) = (0, logC
log κ(X)] , 1 ≤ C ≤ κ(X).

Or symmetrically,
Bκ(X)α(X , c0) = (0, α],

for α ∈ (0, 1].

3 An Estimate for Lq

Let us note that themain idea of the proof of Lemma 2.1 stillworks if c0 is replaced by
other classic sequence spaces, such as ℓq-spaces. In general, the extension of α-Hölder
maps with values in ℓq is not guaranteed. However, for those cases in which there is
an extension, i.e., λα(X , ℓq) <∞, the following bound could be useful.

Corollary 3.1 For every inûnite-dimensional Banach space X

2−
1
q κ(X)α ≤ λα(X , ℓq), α ∈ (0, 1].

_e situation for Lq seems to be diòerent; so let us study a lower bound for
λα(X , Lq). Since in many cases λα(X , Lq) =∞, it is clear that our lower bound only
makes sense for those Banach spaces X for which λα(X , Lq) < ∞. Recall that Naor
proved [8, _eorem 1] that λα(Lp , Lq) < ∞ for α ≤ p

2 and 1 < p, q ≤ 2. _erefore
our main motivation is the case of Lq with 1 < q ≤ 2. _e main technical obstruc-
tion to giving a lower bound using the argument in Lemma 2.1 is that there are no
natural coordinates in Lq . To dodge this obstacle, we use a technical lemma due to
Naor [8, Lemma 2]. For every N ∈ N, put Ω = {−1,+1}N endowed with the uniform
probability measure on Ω and denote by r1 , . . . , rN the Rademacher functions on Ω.

Lemma 3.2 (Naor) For all 1 < q <∞ and Z ∈ Lq(Ω)

1
N

N

∑
n=1

E∣Z − rn ∣q ≥ 1 − C
√

logN/N ,

where C depends only on q.

We are ready to present themain result of this section.

Proposition 3.3 For every inûnite-dimensional Banach space X and 1 < q ≤ 2

2−
1
q∗ κ(X)α ≤ λα(X , Lq), α ∈ (0, 1].

Proof Let κ, λα be as in Proposition 2.2 and for given ε > 0, pick (xn) ∈ B(X) for
which κ−ε ≤ ∥xn−xm∥, for n /= m. FixN ∈ N and deûne themap fN(xn) = (κ−ε)αrn
for each n ∈ {1, . . . ,N}. It turns out that fN is α-Hölder with constant less than or
equal to 2

1
q∗ :

∥ fN(xn) − fN(xm)∥Lq = (κ − ε)α∥rn − rm∥Lq ≤ 21− 1
q ∥xn − xm∥α .
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Take any extension of fN to X, namely F, and observe that

∥F(0) − F(xn)∥Lq ≤ Lipα(F)∥rn∥α ≤ Lipα(F).
Let us denote F(0) = Z ∈ Lq(Ω). _en we have that

Lipα(F)q ≥ 1
N

N

∑
n=1

E∣Z − (κ − ε)αrn ∣q = (κ − ε)αq 1
N

N

∑
n=1

E∣(κ − ε)−αZ − rn ∣q

≥ (κ − ε)αq( 1 − C
√

logN/N) ,
where the last inequality follows from Lemma 3.2. Since this must hold for every
extension F of fN and every N ∈ N, we ûnd that (κ − ε)α ≤ λα2

1
q∗ , and letting ε → 0,

we are done.

Since it is well known that κ(Lp) = 2
1
p for 1 < p ≤ 2, Proposition 3.3 yields the

following.

Corollary 3.4 For 1 < p, q ≤ 2,

2
α
p −

1
q∗ ≤ λα(Lp , Lq).

Recall that Naor also proved [8, _eorem 1] that there is no isometric extension
for α > p

q∗ and 1 < p, q ≤ 2. As Corollary 3.4 shows, the Kottman constant explains
geometrically why there is no isometric extension for these values. To ûnish, Corol-
lary 3.4 gives 1 ≤ λα(Lp , Lq) for α = p

q∗ and 1 < p, q ≤ 2,while [8,_eorem 1] provides
us with λα(Lp , Lq) = 1. So it is sharp.
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