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AN ELEMENTARY PROOF OF A THEOREM BY
MATSUMOTO

LUIS HERNÁNDEZ-CORBATO

Abstract. Matsumoto proved in, [Prime end rotation numbers of invariant

separating continua of annular homeomorphisms, Proc. Amer. Math. Soc.

140(3) (2012), 839–845.] that the prime end rotation numbers associated to an

invariant annular continuum are contained in its rotation set. An alternative

proof of this fact using only simple planar topology is presented.

§1. Introduction

The rotation number was introduced by Poincaré to study the dynamics

of circle homeomorphisms f : S1→ S1. Given a lift f̃ : R→R of f , the

rotation number of f̃ is defined as ρ(f̃) = limn→∞(f̃n(x)− x)/n ∈R, for

any x ∈R. The limit is independent of x and only depends on the lift f̃

up to an integer constant. The rotation number ρ(f) = ρ(f̃) mod Z ∈R/Z
measures the speed at which points rotate under the iteration of f and

essentially classifies the dynamics.

The definition of rotation number does not extend smoothly to homeo-

morphisms of the annulus f : S1 × [−1, 1] =A→A. Consider the universal

cover of A identified to R× [−1, 1] and let f̃ : R× [−1, 1]→R× [−1, 1]

be a lift of f . Denote (x)1 the first coordinate of a point x ∈R× [−1, 1].

Then limn→∞
((
f̃n(x)

)
1
− (x)1

)
/n now depends on x and, even worse, may

not exist. Instead of looking at orbits it is useful to consider f -invariant

probabilities µ in A and define

ρ(f̃ , µ) =

∫
A

(
f̃
(
s(y)

))
1
−
(
s(y)

)
1
dµ(y),
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where s : S1 × [−1, 1]→R× [−1, 1] is a section of the universal cover

π : R× [−1, 1]→ S1 × [−1, 1], i.e. sπ = id. More generally, denote

ρmes(f̃ , X) = {ρ(f̃ , µ) : µ is an f -inv. Borel prob. measure, supp(µ)⊂X},

for any f -invariant set X ⊂A. Since the space of invariant Borel probabili-

ties endowed with the weak topology is compact and convex it follows that

ρmes(f̃ , X) is a compact interval.

A continuum X ⊂ int(A) is essential if the two boundary components

S1 × {−1} and S1 × {1} of A belong to different connected components,

denoted, respectively, U− and U+, of A \X. It is called an (essential)

annular continuum if, additionally, A \X = U− ∪ U+. The previous notions

of rotation can be applied to study the dynamics of invariant annular

continua. In contrast with the one-dimensional case, the coexistence of

different rotation numbers is typical. An example is the Birkhoff attractor

Λ [L88], which is the global attractor of a dissipative diffeomorphism of the

open annulus. Even though Λ has empty interior, it contains infinitely many

periodic orbits with different rotation numbers.

There is yet another way of measuring the rotation of an invariant annular

continuum. After identifying S1 × {1} to a point, U+ is transformed into

an invariant open topological disk. Carathéodory’s prime end theory (see

[M82]) permits to compactify this new domain with a boundary circle,

the set of prime ends of U+, producing a closed topological disk Û+. The

construction being topological allows the homeomorphism f to be extended

to a homeomorphism f̂ : Û+→ Û+. Furthermore, a lift f̃ of f uniquely

determines a lift F̂ : R→R of the restriction of f̂ to the circle of prime

ends of U+, boundary of Û+, and vice versa. The upper prime end rotation

number of the lift f̃ in X is defined as the rotation number of F̂ and

denoted ρ+(f̃ , X). The lower prime end rotation number ρ−(f̃ , X) is defined

analogously. One can think of these rotation numbers as measures of the

rotation of the boundary of X as seen from the exterior.

An alternative intuitive approach to the prime end rotation numbers in

terms of accessible points is discussed in [BG91]. A point p is called accessible

from a domain U , p /∈ U , provided there is an arc γ : [0, 1]→ U ∪ {p} such

that γ([0, 1))⊂ U and γ(1) = p. Denote Ũ+, X̃ the lifts of U+, X to the

universal cover R× [−1, 1] of A. Let x 6= x′ ∈ X̃ be accessible from U+ and

γ, γ′ : [0, 1]→R× [−1, 1] be two disjoint arcs such that γ(0), γ′(0) ∈R×
{1}, γ([0, 1)), γ′([0, 1))⊂ Ũ+ and γ(1) = x and γ′(1) = x′. Denote γ(0) =

(r, 0), γ′(0) = (r′, 0) and define x≺ x′ if and only if r < r′. Then, ≺ defines
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a linear order in the set of points of X accessible from U+. For any x, y

in that set and n ∈Z there is a unique k = k(x, y) such that T k(y)� x≺
T k+1(y), where T denotes the deck transformation of the universal cover.

One can prove that limn→∞
(
k
(
f̃n(x), y

))
/n is independent of x and y and

is equal to ρ+(f̃ , X).

The goal of this article is to give an elementary proof of the following

theorem due to Matsumoto [M12].

Theorem 1. Let f : A→A be a homeomorphism isotopic to the identity

and X ⊂ int(A) an invariant annular continuum. For any lift f̃ of f

ρ+(f̃ , X), ρ−(f̃ , X) ∈ ρmes(f̃ , X).

Recall that a classical result due to Epstein shows that f : A→A is

isotopic to the identity if and only if preserves orientation and each of the

boundary circles.

Matsumoto’s proof of Theorem 1 uses Le Calvez’s deep theorem on the

existence of a foliation by Brouwer lines for any orientation preserving

homeomorphism of R2 in its equivariant form [L05] for the torus T2. The

proof then goes on concluding the result in each of several cases, depending

on the topological type of the aforementioned foliation. In this paper an

alternative proof of Theorem 1 is presented. The arguments involve only

basic facts from planar topology and prime end theory making our approach

elementary in nature.

Theorem 1 allows to estimate the size of the rotation set of X,

ρmes(f̃ , X), without precise information of the dynamics within X. It can

be subsequently applied to conclude the existence of periodic orbits in X

of any rotation number p/q ∈ [ρ±(f̃ , X), ρ∓(f̃ , X)]⊂ ρmes(f̃ , X) provided

some extra hypothesis is satisfied: either f|X is chain-recurrent (polishing

an argument due to Franks [F88], see [K15, M12]) or f is area-preserving

[FL03] or X is a cofrontier [BG91] or, more generally, a circloid [K15].

In order to ease the notation, for any integer k the action T k(S) of the

deck transformation T on a set S ⊂R× [−1, 1] will be denoted by S +

k. Additionally, the projection p(S) of S under the first coordinate map

p : R× [−1, 1]→R will be denoted by (S)1.

§2. Proof of Theorem 1

Next lemma follows directly from the definitions.
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Lemma 2. For any integer k,

ρmes(T
kf̃n, X) = nρmes(f̃ , X) + k, ρ±(T kf̃n, X) = nρ±(f̃ , X) + k.

The proof of Theorem 1 presented here only deals with the upper prime

rotation number and shows that ρ+(f̃) > inf ρ(f̃ , X), the other cases being

completely analogous.

Argue by contradiction: suppose there are integers p, q such that

ρ+(f̃)< p/q < inf ρ(f̃ , X). As a consequence of Lemma 2, ρ+(T−pf̃ q)< 0<

inf ρ(T−pf̃ q, X). Thus, after renaming, it is possible to assume

(1) ρ+(f̃)< 0< inf ρ(f̃ , X).

Some notation to describe the shape of Ũ+ is now introduced. Let

η = max{y ∈R : (0, y) ∈ X̃} and β : [0, 1]→R× [−1, 1] be a vertical arc

with endpoints β(0) = (0, 1) ∈R× {1} and β(1) = (0, η) ∈ X̃. Denote

x0 = β(1) and use β also to denote the image of the arc β. This abuse of

notation is present throughout the text. The arcs β′ = β \ {x0} and β′ + 1

bound a region in Ũ+ which contains the segment (0, 1)× {1}. The closure

of this region, as a subset of Ũ+, will be denoted by V and thought of as a

fundamental region. Clearly,

Ũ+ =
⋃
k∈Z

(V + k)

and (V − 1) ∩ V = β′. Define

(V + k)+ =
⋃
j>k

(V + j), (V + k)− =
⋃
j6k

(V + j).

Note that x0 ∈ X̃ is accessible both from Ũ+ and from V . The following

lemma is based on the interpretation of the prime end rotation number in

terms of accessible points and their induced order ≺ as was discussed in the

introduction.

Lemma 3.

(1) For every point x accessible from Ũ+ there exists k ∈Z such that x is

accessible from V + k.

(2) If x is accessible from V + k then f̃n(x) is accessible from (V + k)+, if

n6 0, or from (V + k)−, if n> 0.
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Figure 1.

c is a crosscut of Ũ+ and γ is a hair of V + 1.

(3) Suppose x ∈ X̃ is accessible from V + k1 and f̃−1(x) is accessible from

V + k2. Then, for any point z ∈ X̃ accessible from Ũ+ there exists an

integer n so that f̃n(z) is accessible from V + j, for some k1 6 j 6 k2.

A crosscut of Ũ+ is an arc c whose endpoints lie in X̃ and whose interior

is contained in Ũ+. By definition, the endpoints of c are accessible from Ũ+.

Recall a standard fact from prime end theory: c separates Ũ+ in exactly two

connected components.

Definition 4. An arc γ : [0, 1]→ V is said to be a hair of V if γ(0) ∈
R× {1}. More generally, an arc γ : [0, 1]→ Ũ+ is a hair if γ − k is a hair of

V for some k ∈Z. In that case γ is called a hair of V + k (see Figure 1).

Lemma 5. There exist m> 1 satisfying
(
f̃m(x)

)
1
> (x)1 + 1 for every

x ∈ X̃. Furthermore, there exists M > 1 such that if x is a point in V

for which every hair γ of V ending at x satisfies diam
(
(γ)1

)
>M then(

f̃m(x)
)
1
> (x)1 + 1/2.

Proof. For the first part, suppose on the contrary that there are integers

{ni}i>1→+∞ and points {xi}i>1 in X̃ such that
(
f̃ni(xi)

)
1
< (xi)1 + 1.

The probability measures defined on X by

µi =
1

ni

ni−1∑
j=0

δfj(π(xi))

satisfy ρ(f̃ , µi) =
(
f̃ni(xi)

)
1
/ni − (xi)1/ni < 1/ni. The space of Borel prob-

ability measures on X endowed with the weak topology being compact and

metric, there is a subsequence {µij}j>1, ij →+∞, of {µi} whose limit is a

Borel probability measure µ. By continuity of the pushforward operator

f∗(µ)− µ= lim
j
f∗(µij )− µij = lim

j

1

nij

(
δ
f
nij (π(xi))

− δπ(xi)
)

= 0,
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µ is f -invariant, and by the weak convergence µij → µ

ρ(f̃ , µ) = lim
j
ρ(f̃ , µij ) 6 lim

j
1/nij = 0,

which contradicts (1).

For the second, let Ỹ = {z ∈R× [−1, 1] :
(
f̃m(z)

)
1
> (z)1 + 1/2} be a

neighborhood of X̃. Clearly, the projection Y = π(Ỹ ) of Ỹ onto A is a

compact neighborhood of X and dist(X, ∂Y ) = δ > 0. If the statement does

not hold one can find points zn ∈ V \ Ỹ such that any hair γ of V ending at

zn satisfies diam((γ)1)> n, for every n> 1. It is possible to choose an infinite

subsequence {znj}j of {zn}n so that the balls centered at znj of radius δ are

pairwise disjoint and contained in V . This is impossible because V has finite

area.

For simplicity, for the rest of the proof replace f by fm, where m is as

in the previous lemma. Then, (f̃(x))1 > (x)1 + 1 for any x ∈ X̃ and (1) still

holds.

The following object gives a way to roughly describe the shape of V .

Construct hairs γn, n> 1, in V such that ln+1 < ln, rn+1 > rn, where ln =

min(γn)1 and rn = max(γn)1.

There are three mutually exclusive cases depending on V :

(i) It is not possible to have limn ln =−∞.

(ii) There is an infinite sequence of hairs {γn}n such that limn ln =−∞
and {rn}n is bounded.

(iii) For any infinite sequence of hairs {γn}n such that limn ln =−∞,

always limn rn = +∞.

They correspond to: (i) (V )1 is bounded from below, (ii) (V )1 unbounded

from below but bounded from above and (iii) (V )1 is unbounded both from

below and above.

The proof of Theorem 1 deals separately with these three cases. Lemmas

3 and 5 are extensively used to derive a contradiction with Inequality (1) in

each of them.

Case (i): (V )1 is bounded from below.

In this case there exists L ∈R such that every point x ∈ X̃ accessible

from V satisfies L < (x)1. Consider k so that f̃(x0) is accessible from V + k.

Lemma 3 ensures k 6 0. It follows that for any point z ∈ X̃ accessible

from V − there exists n> 0 such that f̃−n(z) is accessible from V + j,
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for some k 6 j 6 0. The lower bound on (V )1 implies L+ k <
(
f̃−n(z)

)
1

so, by Lemma 5, L+ k < (z)1, which is absurd.

Case (ii): (V )1 is unbounded from below but bounded from above.

The union of γn, n> 1, is contained in V and divides Ũ+ in many

connected components. Denote B the component which contains (V − 1)−.

Clearly, B is unbounded from the left but satisfies sup(B)1 6M , where M

is an upper bound for {rn}n.

Let x ∈ X̃ be accessible from V − 1⊂B. For every n> 1, by Lemma 3 the

point f̃n(x) is accessible from (V − 1)− and thus from B as well. However,

for large n> 0, Lemma 5 implies
(
f̃n(x)

)
1
>M and, in particular, f̃n(x)

cannot belong to the adherence of B.

Case (iii): (V )1 is unbounded both from below and above.

This case is more involved and some preliminary results are needed. First,

the shape of the region V is shown to be snake–like. This idea is made precise

in the following proposition.

Proposition 6. There exist sequences {Ln}n, {Rn}n of real numbers

such that

(1) R1 > 1, L1 < 0.

(2) {Ln}n is decreasing and tends to −∞.

(3) {Rn}n is increasing and tends to +∞.

such that

(i) If γ is a hair of V and
(
γ(1)

)
1
< Ln then Rn ∈ (γ)1.

(ii) If γ is a hair of V and
(
γ(1)

)
1
>Rn then Ln−1 ∈ (γ)1.

Proof. Let α, γ be hairs of V . Notice the following simple fact: γ does

not intersect any translated α+ k unless k = 0. As a consequence:

(?) If (γ(1))1 >max(α)1 + 1 then min(γ)1 <min(α)1 + 1.

(??) If (γ(1))1 <min(α)1 − 1 then max(γ)1 >max(α)1 − 1.

The proof goes on following a mechanical routine using the sequence of

hairs {γn}n and the associated scalar sequences {ln}n, {rn}n. First, choose

m1 so that rm1 > 2 and lm1 < 1. Take R1 = rm1 − 1 and L1 = lm1 − 1 and

note that by (??) with α= γm1 the statement (i) holds for n= 1. Then,

take m′2 so that lm′2 < L1 − 1 and set R2 = max(γm′2)1 + 1. Clearly (?)

forces (i) to hold for n= 2. Let m2 such that rm2 >R2 + 1 and define

L2 = min(γm2)1 − 1. Using again (??) it follows that (i) holds for n= 2. This
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Figure 2.

Figure for statement (?).

procedure can be continued indefinitely and yields the sequences {Ln}n and

{Rn}n.

The next two lemmas are obtained as corollaries of the previous proposi-

tion.

Lemma 7. For every L < 0 there exists R> 1 such that if γ is a hair

contained in V − and (γ(1))1 >R then L ∈ (γ)1.

Proof. Fix n so that Ln−1 6 L and define R=Rn. Then γ is a hair in

V − whose endpoint is not on the left of Rn, that is, (γ(1))1 >R=Rn. By

Proposition 6, Ln−1 ∈ (γ)1 and, consequently, L ∈ (γ)1.

Lemma 8. For every R> 1 there exists L′ < 0 such that if γ is a hair

contained in V + and (γ(1))1 6 L′ then R ∈ (γ)1.

In the setting of Lemma 8, there is a crosscut c in Ũ+ which separates

γ(1) from R× {1} and such that (c)1 = {R}.
Let finish the proof of case (iii). Apply Lemma 7 to L=−M (where M

comes from Lemma 5) to obtain R> 1. Consider the family

A= {c is a crosscut of Ũ+, c⊂ (V + k)− such that min(c)1 >R+ k}.

By definition, A is invariant by integer translations. It is not empty because

(V )1 is not bounded from above. In addition, A is f̃ -invariant. Indeed, if

c ∈ A then by Lemma 5 it is automatically contained in the region {x ∈
R× [−1, 1] : (f̃(x))1 > (x)1}. Consequently, min

(
f̃(c)

)
1
>min(c)1 >R+ k.

Since c⊂ (V + k)−, it then follows from Lemma 3 that f̃(c) is contained in

(V + k)−. Thus, f̃(c) ∈ A.

Apply now Lemma 8 to R to obtain L′. Denote xn = f̃n(x0) the orbit of

x0. Since (xn)1→−∞ as n tends to −∞, there is m> 0 such that (x−m)1 6
L′. By Lemma 3, the points xn are accessible from V + for n6 0, so x−m + k

is accessible from V for some k 6 0. Since (x−m + k)1 6 L′ + k 6 L′, remark
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after Lemma 8 provides a crosscut c of Ũ+ in V which separates x−m + k

from R× {1} and min(c)1 =R. Thus, c ∈ A and c−m = c− k ∈ A.

The crosscut c−m ∈ A separates x−m from R× {1} in Ũ+. Thus,

f̃m(c−m) ∈ A separates f̃m(x−m) = x0 from R× {1}. However, the arc β

joins x0 andR× {1} and does not meet any element ofA because (β)1 = {0}
is disjoint to [R,+∞).
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