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Abstract

(Point, closed subset)-separation axioms and closed subsets separation axioms for topologi-
cal spaces will be uniformly defined. Then it is shown that a subcategory si of TOP is bireflective
in TOP if and only if Ob si consists of all separated spaces for some (point, closed
subset)-separation axiom. A characterization theorem on subcategories of all separated spaces
for closed subsets separation axioms is also given by using the category SEP of all separation
spaces and the embedding functor G: TOP—* SEP. As an application we have that a TVspace is
normal if and only if it is embedded in a product space of the unit intervals in SEP.

There are three basic types of separation axioms depending on whether
they involve separation of: I. pairs of points; II. pairs consisting of a point and
a subset; or III. pairs of subsets. Wyler (1973) gave a characterization of those
full subcategories of the category TOP of topological spaces which consist of
all spaces satisfying given axioms of type I.

In this paper, we vastly generalize Wyler's result to one involving the
topological functors of Herrlich (1974). In particular, we obtain characteriza-
tion theorems for separation axioms of types II and III. For type II, we take %
to be the category TOP, and <H to be the category CLS of so-called 'closure
spaces'; for type III, we take if to be the category TOP, and "3/ to be the
category SEP of 'separation spaces' in the sense of Wallace (1941). In each
case there is a distinguished functor G : *% —* °)J. It is seen that to give axioms
of the particular type is to give a functor 2:if—>(3/ together with a
comparison natural transformation 17: G =̂> X whose components become
isomorphisms in ENS. A space X is considered to satisfy a given separation
axiom (£,17) if TJX is an isomorphism. Our main results can be stated as
follows. A subcategory of TOP consists of all spaces satisfying a separation
axiom of type II if and only if it is bireflective in TOP (Theorem 3.1). A
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[2] Separation axioms 477

subcategory of the category R0-TOP of R0-spaces in the sense of Davis (1961)
consists of all R0-spaces satisfying a separation axiom of type III if and only if
it is an intersection of a bireflective subcategory and the subcategory R0-TOP
in the category SEP (Theorem 2.9). Examples for axioms of types II and III
and of other types will be given (§4).

The author wishes to express his indebtedness to the referee for making
valuable suggestions on the formation of this paper.

Terminology not explained here is from Herrlich (1974) and Herrlich and
Strecker (1973). Subcategories are assumed to be full and replete (=
isomorphism closed).

1. Separations for topological functors

We shall recall the definition of topological functors defined by Herrlich
(1974).

Let f be a category. A source in 2£ is a pair (X, / ) , consisting of an
^-object X and a family of if-morphisms /,: X—* Xt indexed by a class I. Let
£ be a class of epimorphisms in 9£ closed under composition with isomorph-
isms and M be a class of sources in if closed under composition with
isomorphisms, if is (E, M)-factorizable if and only if for every source (X,/),
in % there exists e: X—* Y in E and (Y, m,), in M such that f = m,, • e for
each i £ /. if has the (E, M)-diagonalization property provided that whenever
/ and e are morphisms and (Y,mi), and {Z,fi)t are sources in if such that
e G E, (Y, m,)/ E M and ft • e = m, • / for each i £ /, then there exists a
morphism g :Z—> Y such that / = g • e and f = m, • g for each i £ /. if is
called an (E, M)-category if and only if it is (E, M)-factorizable and has the
(E, M)-diagonalization property.

Let d£ be an (E, M)-category and T: si —* % be a functor. A source
(A,/:A—»Aj); in si is called T-initial if and only if for each source
(B, gt : B-* Ai)i in si and each morphism f.TB^TA in 3? such that
Tgi = Tfi • f for each i £ / there exists a unique morphism f :B —> A in si
such that Tf = f and g,, = j , • f for each i £ /. A source A,ft : A —> A,)/ in si
T-lifts a source (X, g<,: X —» TAt), in if if and only if there exists an
isomorphism h :X—* TA in % with gf = Tf, • h for each / £ /. T is called
(E, M)-topological if and only if for each family (A,), of si -objects and each
source (X, m, : X —» TA,), in M there exists a T-initial source (A, f,: A —> A,)/
in si which T-lifts (X, m,),.

The following result is due to Herrlich (1974).

PROPOSITION 1.1 // T is an embedding of a subcategory si of'% into 3f, then
the following conditions are equivalent:
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(a) T is (E,M)-topological;
(b) // (X, m,: X —> A,), belongs to M and all A, belong to si, then (X, w,),

belongs to si;
(c) si is an E-reflective subcategory of %.

Let i be a subcategory of %C. Then from this proposition we have a
smallest E-reflective subcategory si of 26 which contains si. In fact an
$?-object X belongs to si if and only if there exists a source (X, m,: X —*• A,)/
in M with ^-object A, for each i G I.

Let #? be an (E, M)-category and S : si —» % be a functor. £ s denotes the
class of all morphisms / in si with Sf G E and Ms the class of all S-initial
sources (A,f), in .stfwith (SA,Sf),eM. Herrlich (1974) shows that if S is
(E, M)-topological, then si is an (Es, Ms)-category. If G : 58 -* si is (Es, Ms)-
topological, then SG is (E, M)-topological.

PROPOSITION 1.2 Let 3? be an (E, M)-category and S : si -» 3f, T: 38 -> a?,
F : 38 -»• .stf and G : si -»• 58 be functors with SF = T and TG = S. Suppose that
Tis (E, M)-topological and there is a natural equivalence a : 1 =̂> FG such that
Sa = 1: S => S. Then S is (E, M)-topological.

PROOF. Let (Aj)/ be a family of si -objects and (X, m,: X -* SAt), be a
source in M. Since SAt = TGAj and T is (E, M)-topological, there exists a
T-initial source (B, nt: B —* GAt)i and an isomorphism h :X —* TB such that
mt = Tnt • h. Consider a source (FB,a^) • Fn,)i in si. Since SFB = TB and
S(aA; -Fn,)-h = 7n< • h = Wf, ( ^ a i ! • F^); S-lifts (X, m,),. Suppose that
(C,fi:C—*Ai)i is a source in ^ and k :SC—>SFB is an ^-morphism with
Sft = Ttii • k. By the assumption that (B, nt), is T-initial, we have a 58-
morphism k: GC—>B such that G/i = tit • ic and Tfc = /c. Let k = Fk • ac.
Then «;;!-Fn,-• k =/i and Sk = k. Thus we have that (FB, a ^ • Fn,), is
S-initial and that S is (E, M)-topological.

A separation system is a family g = (si, 38, if, S, T, F,G,a) consisting of
an (E, M)-category %, (E, M)-topological functors S: si -»• 3? and T: 38 -» 3?,
functors F : 38 -* si and G: jtf -*• 38 with S = TG and T = SF and a natural
transformation a : 1 => FG. A Q-separation is a pair (2,17) of a functor
2 : J^ -» 38 and a natural transformation 17: G => 2 such that TT/A belongs to
E for each .52/-object A. For a g-separation (2, TJ) an .s#-object A is called
(2, TJ)-separated if and only if 77̂  is an isomorphism. A full subcategory of si
consisting of all (2,17 )-separated objects is denoted by sia.,v). Then we have
the following.

THEOREM 1.3 Let g = (si, 38,3£, S, T, F, G, a) be a separation system and
sia be a subcategory of si whose objects X satisfy that ax be isomorphisms. For a
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^-separation (2,17), there exists an ET-reflective subcategory 9&a,n) of 5$ such
that

, n

Conversely, if a subcategory si' of sia satisfies

G(i')=3'nG(iB)

for an ET-reflective subcategory 3)' of 90, then there exists a q-separation (2, rj)
such that si' = sia^) H sia.

PROOF. For a g-separation (2, TJ), let 33 (*,„> be a smallest Er-reflective
subcategory of 33 which contains G ( i ( i , , ] n i . ) . We shall show that
G(sia,v)Ci sia)D 9B<S,,,,D G (.!#„). Let B be an object in 98 (£.„,. Then there
exists a source (B,/i: B —> GAi), in M r with (2,17)-separated .s/a-objects A,,
i G /. Let B = GA for an ^ -ob jec t A. It is sufficient to show that A is
(2, ^-separated. Let g, = a~A\ • Ff • aA: A -» A,. Then TGg, = TGa~A\-
Tf • TGaA. Since T is faithful (cf. Herrlich (1974) Th. 3.1), Ggi =
Ga~A\-fi • GaA. Since Ga^! and GaA are isomorphisms and M r is closed
under composition with isomorphisms, (B,Ggi)i belongs to MT- By the
naturality of 17, 2gf • TJA = T/A, • Gg,. From the assumption, each TJA, is an
isomorphism and hence (B, 2g, • rjA), belongs to MT. On the other hand
i)A E ET and we have that r)A is an isomorphism, that is, A is (2, rj)-
separated.

Conversely, for a given £r-reflective subcategory 98' of S3, denote the
embedding functor by E : 3 9 ' ^ 3 8 , the reflector by i? :33-»S8 ' and the
reflection of a 98 -object B by rB: B ->• i?B. Define a functor 2 by 2 = ERG
and a natural transformation 17: G =^ 2 by T/A = rGA for each ^/-object A.
Then it is easily verified that (2,17) is a g-separation with si' = s4a,v) fl sia.

COROLLARY 1.4 Le/ ^ be an (E,M)-category, S:si-*%, T:®^>%,
F:98^>s4 and G:s4^><&be functors with SF = T and TG = S. Suppose that
T is (E, M)-topological and si is ET-reflective-in 38 with the embedding functor
G and the reflector F. Then g = (si, <$>, d£, S, T, F, G, 1) is a separation system
and a subcategory of si consists of all (2,17)-separated objects for a g-
separation (2, y) if and only if it is Es- reflective in si.

For a separation system g, two g-separations (2i, TJI) and (22, T72) are
called equivalent if and only if there is a natural equivalence v : 2i =̂> 22 such
that mji = T/2. If (2i, 171) and (22, TJ2) are equivalent, si^,^,) = si^^y But the
converse does not hold (cf. § 4 below).
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2. Separations of pairs of subsets in TOP

Let X be a set and 8X be a binary relation in the power set P(X) of X. A
system (X, 8X) satisfying the following axioms is called an s-space (separation
space).

(si) If ASXB, then BSXA.
(s2) ASX(B U C) if and only if A8XB or ASXC.
(s3) {x}8x{x} for any x e X.
(s4) <t>ExX,

where <f> denotes the empty set and 8X means 'not 8X'.
For s-spaces (X, 8X) and (Y,8Y) a mapping / : X—» Y is called continu-

ous with respect to 8X and 8Y provided that if A8XB for A, B CX, fA8YfB.
Thus we have a category SEP consisting of all 5-spaces and all continuous
mappings.

s-spaces were defined and investigated by Wallace (1941) and many
variations of the concept were considered, for example, by Csaszar (1960),
Hammer (1963) and Pervin (1963). The following properties are known or can
easily be obtained.

PROPOSITION 2.1 (1) A morphism f:(X,8x)^>(Y,8Y) in SEP is a
monomorphism in SEP // and only if the mapping f:X—> Y is one-to-one.

(2) / is an epimorphism in SEP // and only if it is 'onto1.
(3) / is an extremal monomorphism if and only if it is a monomorphism

and for any A,BCX, fA8YfB implies A8XB.
(4) fis an extremal epimorphism if and only if it is an epimorphism and for

any C,DCY, C8YD implies f'xC8xf
lD.

(5) Let (XA, 8k) be an s-space for each element A of a set A and
X = ©AGAXI be the coproduct in ENS with the injection iA: XA —» X. Define a
relation 8X as follows: A8XB if and only if there exists an element A such that
ix'A SA ix'B. Then (X, 8X) is an s-space which is the coproduct in SEP of
(XA,SA), AEA.

(6) Let (XA, 8X) be an s-space and X = nAeAXA be the product in ENS with
the projection pA: X —»• XA. Define a relation 8X as follows: A8XB if and only if
for any finite coverings A = U A{, B = U Bh there exist numbers i0, jo such that
PxA^p^Bjo for any AEA. Then (X, 8X) is an s-space which is the product in
SEP of (XA,SA), AEA.

Next we recall the definition of closure spaces (cf. Kannan (1972)). A set
X with a mapping ux'- P(X)—*P(X) is called a closure space if the following
conditions are satisfied, (cl) uxA DA. (c2) ux(A U B)= uxA U uxB. (c3)
uxtf> = <f>. For closure spaces (X, ux) and (Y, uY) a mapping / : X—» Y is called
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continuous with respect to ux and uY if fuxA C uYfA for any A CX. Thus we
have a category CLS consisting of all closure spaces and all continuous
mappings.

The category TOP of all topological spaces and all continuous mappings
is considered as a full subcategory of CLS and moreover it is bireflective in
CLS (cf. Kannan (1972)). We shall denote the reflector and the embedding
functor by C:CLS-»TOP and D:TOP^CLS respectively.

PROPOSITION 2.2 The forgetful functors Ts: SEP -* ENS, Tc: CLS -»• ENS
and TV: TOP —* ENS are (E, M)-topological with the class E of all isomorph -
isms in ENS and the class M of all sources in ENS. Each class ETs, ETc or ETT

consists of all bimorphisms in each category and each class MTs, MTc or MTT

consists of all sources ((X, *x), /•: (X, *x)-*(Xh *,))/ for which there exists a
subset K of I such that the induced morphism f:(X,*x)—*(Y,*Y) = nK(X, *f)
satisfies one of the following conditions respectively:

(MTs) for any A, BCX, fA8YfB implies A8XB,
(MTc) for any A, BCX, uxA = f~xuYfA,
(MTT)=(MTc).

The proof is easy and so omitted.
A topological space (X, ux) is called an Ro-topological space if it satisfies

the following axiom.

(Ro) If x G ux{y}, x, y £ X, then y £ ux{x).

The full subcategory R0-TOP of TOP consisting of all i?0-topological spaces is
bireflective in TOP (cf. § 4 below). The forgetful functor TR: R0-TOP-» ENS
is also (E, M)-topological with ETR = ETT D R0-TOP and MTR = MTT n Ro-
TOP.

We shall denote the classes ETs, ETc, ETT and ETR by the same letter Eo

and the classes MTs, MTc, MTT and MTR by Mo.
Let (X, 8X) be an 5-space. A function ux:P(X)—> P(X) denned by

uxA ={x E X\{x}8xA}, ACX determines a closure space (X, u'x). Let
f:(X, 8X)^>(Y, 8Y) be a morphism in SEP and let (X, u'x), (Y,uY) be closure
spaces obtained from (X, 8X), (Y,8Y) by the above method. Then the mapping
f:X—*Y is continuous with respect to ux and uY. Thus by putting
F'(X, 8X) = (X, u'x) and F'(f) = f, we obtain a functor F': SEP -* CLS. Define
a functor F :SEP^TOP by F = CF'.

Let (X, MX) be a closure space. Define a relation 8X as follows: A8XB if
and only if uxADuxB^0. Then (X, 8x) is an s-space. Let
/:(X, «i)->(y, u Y) be a morphism in CLS and let (X, 8X), (Y, 8Y) be s-spaces
obtained from (X, u'x), (Y, u'Y). Then the mapping f:X—>Y is continuous
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with respect to 8X and 8Y. Thus by putting G[{X, u'x) = (X, 8X) and G\(f) = f,
we obtain a functor G[:CLS-»SEP. Define a functor G,:TOP-*SEP by
G, = G.'D.

PROPOSITION 2.3 Gi preserves monomorphisms and epimorphisms. Iffis a
closed embedding in TOP, then G\(J) is an extremal monomorphism.

REMARK. The example in §4 below shows that G\ need not preserve
extremal monomorphisms and products.

PROOF. It is obvious that Gi preserves monomorphisms and epimorph-
isms. Suppose that f:(X, ux)-*(Y, uY) is a closed embedding. Then G,(/) =
f:(X,8x)-^(Y,8Y) is a monomorphism. Let fA8YfB, A,B CX. Then uYfA D
uYfB^0. Since / is a closed embedding, fuxAHfuxB^0 and hence
uxAC\uxB^0. This implies that A8XB and that / is an extremal
monomorphism in SEP.

Let (X, ux) be a topological space, (X, 8X) = G,(X, ux) and (X, vx) =
F(X,8X). Then the identity mapping \X:X-+X induces a morphism
(ai)x: (X, ux)—>(X, vx) and we have a natural transformation a,: 1 => FGt.

PROPOSITION 2.4 / / a topological space (X, ux) satisfies the axiom (Ro)
then («i)x is an isomorphism in TOP.

PROOF. Let (X, vx) = F'Gi(X, ux). Then uxA CvxA for any A CX. Let
x E v'xA. Then {x}8xA and hence there exists an element y E ux{x} D MXA
By the axiom (Ro), x £ Mx{;y}C«x«xA = uxA. Hence uxA = v'xA and this
implies that vx = vx= ux.

PROPOSITION 2.5 (1) Let (ATA, HA)> A EA and (X, MX) fe Ro-topological
spaces such that G,(X, MX) = nAeAG,(XA, MA). T/î n (X, «x) = nA6A(XA, MA).

(2) Let (X,ux) and (Y,uY) be Ro-topological spaces with an extremal
monomorphism f:Gi(X,ux)—>G\(Y,uY) in SEP. Then the mapping
f: X—* Y induces an extremal monomorphism f:(X, ux)—>(Y, uY) in TOP.

This follows immediately from Proposition 2.4.
It is noted that an s-space (X, 8X) belongs to G,(R0-TOP) if and only if

the following are satisfied:
(1) if {x}8x{x £ X\{x}8xA), A CX, then {x}8xA,
(2) A8XB, A, B CX if and only if there exists an element x £ X such that

{x}8xA and {x}8xB.
We shall give another functor G2: TOP^> SEP. Let (X, u'x) be a closure

space. Define a relation 8X as follows: A8XB if and only if (uxA (1B)U
(A DuxB)/0. Then (X, 8x) is an s-space and, by putting G^X, u'x) =
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(X,SX), we have a functor G2:CLS^SEP. Define a functor G2:TOP-»SEP
by G2 = G'2D.

PROPOSITION 2.6 G2 preserves monomorphisms, epimorphisms, extremal
monomorphisms and Mo.

PROOF. Let f:(X, ux)^>(Y, uY) belong to Mo in TOP, (X,8X) =
G2(X,ux), (Y,8Y)= G2(Y, UY) and let fASyfB, A,BCX. Then
(My/A n fB) U {fA fl UyfB) ^ 0 and hence {J~luYfA flB)U
(A n f'uyfB)/ 0 . Since / belongs to Mo in TOP, we have that (uxA f!B)U
(A n MXB) ^ 0 , that is, ASXB and this implies that / belongs to Mo in SEP.

For a topological space (X, ux), let (X, Sx) = G2(X, ux) and (X, ux) =
F(X, Sx). Then the identity mapping 1X:X->X induces a morphism
(«2)x: (X, Mx)—* (X, ux) in TOP and we have a natural transformation a2:l =£>
FG2.

PROPOSITION 2.7 // a topological space (X, MX) satisfies the axiom (Ro)
then (a2)x is an isomorphism in TOP.

This is similar to Proposition 2.4. We can also obtain the fact that G2

reflects products and extremal monomorphisms. An s-space (X, 8X) belongs
to G2(Ro-TOP) if and only if the following are satisfied:

(1) if {x}8x{xEX\{x}8xA}, A CX, then {x}8xA,
(2) A8XB, A, B CX if and only if there exists a point a G A with {a}8xB

or a point b £ B with {b}8xA.

PROPOSITION 2.8 There exists a natural transformation K : G2 ^> Gi such
that each KX: G2(X, HX)—» G,(X, MX) is a bimorphism in SEP.

In fact, KX is induced by the identity mapping 1X:X—>X.

Let (X, d) be a metric space and (X, ux) an associated topological space.
Define an s-space (X, 8X) as follows: A8XB if and only if d(A, B) = 0. Then
we have that G,(X, ux) = (X, 8X), while G2(X, MX) is usually different from
G,(X,Mx).

Now we shall define two kinds of separations of pairs of subsets in TOP.
Proposition 2.2 implies that g, = (TOP, SEP, ENS, TR, Ts, F, Gt, a^isa separa-
tion system for i = 1,2. Let (£, TJ) be a g,-separation and denote S(X, ux) by
(X', o-'x)- Then we can obtain an operator a which associates a topological
space (X, Mx) to a binary relation ax on P(X) as follows: AaxB if and only if
rjxAo-xVxB. o- satisfies the conditions (si), (s2), (s4) mentioned at the
beginning of this section and

(s3') If MXA n uxB/0, then A<TXB.
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(s5) For any continuous mapping f:(X, ux) —*(Y, uY), if AcrxB then
fA*yfB.

It is obvious that there is a one-to-one correspondence between equival-
ence classes of g,-separations (£, 17) and operators o- satisfying the above five
conditions. Hence an operator cr satisfying the above conditions is called a
Qr separation.

Similarly there is a one-to-one correspondence between equivalence
classes of g2-separations and operators r satisfying the conditions (si), (s2),
(s4), (s5) and

(s3") If (uxA PI B)V(A n UxB) /0 , then ATXB.

Such an operator T is also called a g2-separation.
As an application of Theorem 1.3 we have the following.

THEOREM 2.9 The following statements on a subcategory sd of R0-TOP
are equivalent for i = 1,2, respectively.

(a) / / (X, ux)GOb Ro-TOP and (XA, wA) E Ob M for each A G A and if
there is a morphism f: Gt(X, HX)—»nAeAGj(XA, wA) belonging to Mo in SEP,
then (X,u,)G Ob d.

(b) There exists a bireflective subcategory 39 of SEP such that G,(s4) =
% HGi(R0-TOP).

(c) There exists a gf-separation cr such that Ob si consists of all u-
separated R0-topological spaces.

From Proposition 2.6 we have

COROLLARY 2.10 Let r be a g2-separation. If f :(X,ux)^>(Y,uY) is a
morphism in R0-TOP belonging to Mo and if (Y, uY) is r-separated, then
(X, ux) is T-separated.

A g,-separation cr can be considered as a g2-separation which will be
denoted by &. The following is obvious.

PROPOSITION 2.11 If a topological space (X, ux) is a-separated, it is
a-separated.

For a g2-separation r and a topological space (X, ux), define a relation fx
on P{X) as follows: for A, B CX, AfxB if and only if uxA rxuxB. Then f is a
g,-separation. Let (0, £) and (&, C) be the pairs of functors and natural
transformations associated with T and f, respectively. Then there exists a
natural transformation /x :@ ^ 6 such that IK = /J.£: G2 =£> 6.

PROPOSITION 2.12 If f:(X, ux)^>(Y, uY) belongs to Mo in R0-TOP and
(Y, MY) is T- separated for a Q2-separation T, then (X, ux) is i-separated. Hence
T-separated spaces are hereditarily i-separated.
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PROOF. By Corollary 2.10, (X, ux) is T-separated. It is obvious that
r-separated spaces are f-separated.

We shall consider the following condition on g2-separations T.
(H) If f:(X,ux)-^(Y,uY) is an open embedding in TOP, then

fATYfB,A,B CX implies ATXB.

PROPOSITION 2.13 Suppose that a g2-separation T satisfies the condition
(H). Then an Ro-topological space (X, ux) is r-separated if and only if it is
hereditarily r-separated.

PROOF. Let (X, ux) be hereditarily r-separated. For A, BCX with
(uxA HB)U(A HuxB) = 0, let Y = X- ux(A D B) and f:(Y,uY)->
(X, ux) be the embedding. Then uYf~x A D uYf~lB = f~xux(A D B) = 0 .
Since (Y, uY) is f-separated, f~lAiYf~lB and hence f~xAfYf~1B. Since / is an
open embedding and r satisfies (H), we have that AfxB. This implies that
(X, ux) is r-separated.

REMARK. Examples in §4 show that Proposition 2.13 does not hold
without the condition (H) on T.

For a grseparation cr, (o-)v-separatedness coincides with cr-
separatedness. For a g2-separation T, however, (f)A-separatedness is different
from r-separatedness. In fact it will be shown in §4 that there exist
g2-separations r,r' with r-separatedness ^ r'-separatedness and f-
separatedness = f'-separatedness.

3. Separations of pairs consisting of a point and a subset in TOP

In this section we shall consider the separation system I = (TOP, CLS,
ENS, TV, Tc, C, D, 1). For a f-separation (A, A) and a topological space
(X, ux), let A(X, ux) = (X', l'x) and let 1XA = \x

xl'x\xA for A CX. Then the
following are satisfied:

(/I) uxA C/xA for A CX.
(12) lx(A UB)= /XA U 1XB for A, B CX.
(/3) lx<t> = 0 .
(/4) For any morphism /:(X, ux)—*(Y, uY) in TOP and for any A CX,

flxA C WfA.
There is a one-to-one correspondence between equivalence classes of

I-separations (A,A) and operators / which associate with any topological
space (X, Ux) a mapping lx :P(X)—*P(X) satisfying the above conditions
(II) ~ (14). Such an operator / is also called a l-separation.

For I-separations we can apply Corollary 1.4 and obtain the following.
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THEOREM 3.1 A subcategory si of TOP is bireflective in TOP if and only
if there exists a l-separation I such that Ob si consists of all l-separated
topological spaces.

Let TOP0 be the full subcategory of TOP consisting of all To-spaces. It is
known that TOP0 is extremal epi-reflective in TOP. The class Mo in TOP is
used to characterize T0-spaces.

PROPOSITION 3.2 A topological space (X,ux) satisfies the separation
axiom To if and only if any morphism f'.(X, ux)—*(Y, uY) belonging to Mo is
an embedding.

PROOF. Let (X, ux) be not a 7Vspace. Then there are two distinct points
x, y E. X such that every open set containing one of x, y contains them both.
By identifying x and y we can obtain a quotient space (Y, uY). Then it is shown
that the quotient mapping / : (X, ux)^(Y,uY) belongs to Mo. The converse is
obvious.

THEOREM 3.3 A subcategory si of TOP0 is epireflective in TOP if and
only if there exists a l-separation I such that Ob si consists of all l-separated
To-spaces.

PROOF. Suppose that si is epireflective in TOP and denote the reflector
by R: TOP ̂  si and the reflection of (X,ux) by rx :(X, ux)^> R(X, ux).
Define an operator / by 1XA = r~x

luRXrxA for A CX. Then we have a
I-separation /. It is obvious that any object in si is /-separated. Let (X, ux) be
an /-separated T0-space. Then uxA = rx'uRXrxA holds for any A CX and
this implies that rx belongs to Mo. By Proposition 3.2 we have that rx is an
isomorphism and (X, ux) belongs to si. The converse follows from Theorem
3.1.

Sharpe, Beattie and Marsden (1966) gave a uniform definition of point
separation axioms and Wyler gave a characterization of separated spaces.

PROPOSITION 3.4 (Wyler) A subcategory si of TOP is extremal epi-
reflective in TOP if and only if there exists a point separation axiom p such that
Ob si consists of all p-separated spaces.

A point separation axiom p will be called trivial if any topological space
is p-separated.

COROLLARY 3.5 Suppose that a point separation axiom p is non-trivial.
Then the full subcategory sip of TOP consisting of all p-separated spaces is an
intersection of TOP0 and a full subcategory si, of TOP consisting of all
l-separated spaces for some i-separation I.
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PROOF. From the non-triviality of p and Proposition 3.4, we have that
si9 CTOPo- Hence we can apply Theorem 3.3 and obtain the result.

4. Examples

Let (X, Mx) be a topological space and define relations o-x, <rx, rxand TX

as follows:
AaxB if and only if any open subsets U, V C X with U D uxA, V 3 uxB

have a non-empty intersection,
A(T2

XB if and only if there is no continuous mapping /:(X, wx)—>[0,1]
with /(A) = 0 and f(B)= 1,

ATXB if and only if any open subsets [/, V CX with U D A, V D B have
a non-empty intersection,

ATXB if and only if there is no continuous mapping f'.(X, ux) —>[0,1]
with /(A)C[(U) and / (B)C(U].

Then a\ <x2 are gi-separations and T1, T2 are g2-separations. A topologi-
cal space (X, ux) is a-1-, a2-, or r'-separated if and only if it is a T4-,.T4- or
T5-space, respectively, T2- and (cr2)*-separated spaces are considered by
Terada (1975), too. He uses them for characterizing z -embedded spaces.
(T')V- and (T2)"- separatedness coincide with the axiom T4, while it can be
shown that there is a T'-separated space which is not T2-separated.

For the unit interval [0,1] with the usual topology uh let (Ih 5;,) =
G,([0,1], «,) and # be the bireflective hull of (I,, 8,,) in SEP for i = 1,2.

THEOREM 4.1 Let M, and M2 be the full subcategories of R0-TOP
consisting of all a2- and T2-separated spaces respectively. Then

G, {Mt) = $, n G, (Ro-TOP), i = l,2.

PROOF. We shall show that J1, is the bireflective hull in SEP of G,(Mt).
Suppose that (X, ux) is <r2-separated ( = T4-space). Let A be a set consisting of
all pairs (A, B) of closed subsets A, BCX with A fl B = 0 . For (A, B) £ A,
there is a continuous mapping /(A,B>:(X, UX)—*([0, 1],«/) in TOP with
/<A.B)(A) = 0 and fiA,B)(B)= 1 and this induces a morphism
/(A,B):G,(X,UX)-»(/(A,B),S(A.B)) in SEP, where (/(A,B), 5(A.B)) = G,([0,1], «,).
(/(A,B))(A.B)eA defines a morphism / : Gi(X, «x)—>n<A,B)eA (I(A,B), SiA,B)) such
that P(A.B)f = ft.A,B)- Then we can show that / belongs to Mo in SEP and hence
d (X, MX) belongs to $x.

Next, we give examples for I-separations. Let (X, MX) be a topological
space and define operators lx, i = 0,1,2,3 as follows:

I°XA = {x e x | ux{x} n MXA ^ 0},
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ixA = {x £ X | there is a point y £ uxA such that any open subsets U, V
with U 3 x, V 3 y have a non-empty intersection},

1XA = {JC €E X | any open subsets [/, V with U 3 x, V D A have a
non-empty intersection},

/XA = {x £ X | there is no continuous mapping f:(X, ux) —»([0,1], «,)
with /(JC) = O and / ( A ) = l } .

Then each /' is a l-separation. A bireflective subcategory of TOP
consisting of all /'-separated spaces will be denoted by R*-TOP. It is noted
that /"-separatedness coincides with the axiom (Ro). Let A': TOP—* CLS be a
functor associated with /'. Then there are examples in Sharpe, Beattie and
Marsden (1966) and Thomas (1968) which show that CA1: TOP -> TOP does
not coincide with the reflector R'': TOP -> RrTOP for each i = 1,2, while
A3:TOP-»TOP coincides with the reflector R\

PROPOSITION 4.2. RrTOPflTOP0 is an epireflective subcategory whose
reflector is given by the composition T°R' for each / = 0,1,2,3, where
r°:TOP->TOP0 is the reflector, and

Ro-TOP n TOP0 = TOP, (7Vspaces),

R,-TOP n TOPo = TOP2 (T2-spaces),

R2-TOP n TOPo = REG (regular spaces),

R3-TOP n TOPo = CR (completely regular spaces).

REMARK. Davis (1961) defines 'axioms of regularity' Ro, Ri and R2. His
axiom Ri coincides with /'-separatedness for / =0,2, while Rl is rather a
point separation axiom and hence differs from /'-separatedness.

A t-separation / which gives null-dimensionality is defined as follows:
IxA = {x £ X | any open and closed subspace U containing x has a

non-empty intersection with A}.
Let NEAR be the category of all near spaces defined by Herrlich (1974a)

and let g = (R0-TOP, NEAR, ENS, TR, TN, F, G, 1), where
TN : NEAR -» ENS be the forgetful functor, G the embedding functor and F
the coreflector. For an i?0-topological space (X, ux) let f i =
{d CP(X)\ n{uxA \A £ 38}/ 0 for any finite subset 35 Cst}. Then (X.fi)
belongs to NEAR and we have a functor 2 : R0-TOP -»NEAR by taking
2(X, ux) = (X, £i). An identity mapping \X-X-*X induces a morphism
TJX : G(X, «x)—»£(X, ux). Thus we have a g-separation (2, rj). An Ro-
topological space is (2,17 )-separated if and only if it is compact. A near space
belonging to the subcategory denoted by 3&a.V) in Theorem 1.3 is a contigual
space defined in Herrlich (1974a).
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Finally we give another example which concerns collectionwise normal-
ity. For this purpose we shall define quasi-near spaces. Let X be a set. If a
subset £x of P(P(X)) satisfies the following conditions, (X, £x) is called a
quasi-near space.

(Nl) For si = {A, | / iEM}, 38 = {BM |/u, G M} CP(X), if &.s/ and
An C BM for each /x G M, then £X38.

(N2) If Afx^ and Bfx<<?, A, B CX, <€ CP(X), then .4 U B^.
(N3) If ^ C ^ CP(X) and £XM, then fx38.
(N4) {x}£x{*} for any x E X.
(N5) 4>|xX.

Let (X, £x) and (Y, £y) be quasi-near spaces. A mapping f.X —* Y is
called a continuous mapping with respect to £x and gY provided that if ^xsi
then t;Yfsi for any si CP(X). All quasi-near spaces and all continuous
mappings between them form a category Q-NEAR. This category has similar
properties to those of SEP.

For a quasi-near space (X, £*), define ux by u'xA = {x G X\{x}ijxA} for
A CX. Then we have a closure space (X, u'x) and a functor F':Q-
NEAR^CLS with F'(X,£X) = (X, «x). Define a functor F:Q-
NEAR->TOP by F = CF'. For a topological space (X, ux), define £x and f x

as follows: for siCP(X), £xsd if and only if si is a discrete family; for
,s# = {Au. \ii G M}CP(X), £'xs4 if and only if there exists a discrete family
si = {A^ | /A G M} such that AM is open and AM D A^ for each p, G M. Then
we have quasi-near spaces (X, £x) and (X, £x), functors G, 2:TOP—»Q-
NEAR with G(X, ux) = (X, | x ) and 2(X, ux) = (X, f x) and a natural transfor-
mation TJ : G =̂  S such that T/X is induced from the identity mapping lx. Thus
in the category TOP we can define a separation (2,17) such that (2,17)-
separatedness coincides with collectionwise normality. It can also be shown
that a Ti-space is collectionwise normal if and only if it is embedded in a
product of Banach spaces in Q-NEAR.
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