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Paradoxes; or, “Here in the Presence of an Absurdity”

Wherein we officially meet some paradoxes: of sets, vagueness, and spatial boundaries.
The chapter is expository, laying out intuitive arguments for thinking that some of these
paradoxes are genuine; it will be the task of later chapters to see how much of this reasoning
can be brought up to logical code.

1.1 Sets

A starting point for taking the paradoxes arch-seriously comes from naive set theory.1

Set theory provides a very natural and intuitive language and basic toolkit for the rest
of mathematics. It also provides an ontology for mathematics, insofar as (it is generally
thought) any mathematical object can be reduced to, or at least modeled by, sets. Set theory
is a foundation. Paradoxes there are paradoxes at the source.

1.1.1 An Analytic Definition

The concept of a set is simple to state. A set is any collection of objects that is itself
an object, with its identity completely determined by its members. A set is the unique
extension of a predicate or property.

Many textbooks open by claiming that “set” cannot be formally defined,2 but this isn’t
so; we’ve just had a fine definition. This is the naive set concept, and it can be completely
characterized by the following principles:

Abstraction: x P tz : ϕ(z)u Ø ϕ(x) and
Extensionality: x = y Ø @z(z P x Ø z P y).

1 For standard presentations of set theory, some good “classic” sources are [Fraenkel, 1953; Levy, 1979], the more advanced
[Kunen, 1980], and of course the compendious [Jech, 1974]. For more attention to philosophical issues, see [Potter, 2004].
Parts of this section go back to [Weber, 2009].

2 E.g., [Quine, 1969] among others. “We cannot say with any kind of conviction what sort of things sets are, so we attempt a
type of ostensive definition of them through axiomatization or ‘listings”’ [Hallett, 1984, p. 303].
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1.1 Sets 29

Abstraction says that something is in the set of ϕs if and only if it is a ϕ, without exception
or qualification.3 The axiom of extensionality vindicates the definite descriptor “the.” These
clauses fix the meanings of P and =, the only nonlogical parts of the vocabulary of set
theory, giving existence and uniqueness conditions over the universe of sets. Existential
generalization on abstraction gives the further quantified principle,

Comprehension: Dy@x(x P y Ø ϕ(x)),

that for any property there is some set of all and only the things with that property.
Frege construed sets as the ontology of predication. In his Grundgesetze [Frege, 1903b],

he stated the set concept in a single axiom, the infamous equivalence

Basic Law V: tx : ϕ(x)u = tx : ψ(x)u Ø @x(ϕ(x) Ø ψ(x)).

Frege’s axiom looks obvious to the point of banality. The ϕs are the ψs exactly when
all and only ϕs are ψs. Indeed. These clauses look very much like analytic definitions of
predication. Peano’s choice of the “P” symbol, from the Greek verb εστ ιν, “to be,” suggests
that set membership is intended to capture the “is” of predication, or more metaphysically,
property instantiation.4 Sets are predicates in extension.5

These are definitions, in the old Socratic sense. For Socrates proposes to describe the
world in terms of collections of things that share precise necessary and sufficient conditions,
forms, or models that provide a standard by which we may be able to say that such and such
an x is ϕ, such another not ϕ (e.g., Euthyphro 6e [Cohen et al., 2000, p. 95]). The naive set
concept captures, in slogan form, sets as the metaphysics of definitions.

The reason textbooks claim that there can be no definition of set, then, is not that the
concept is somehow opaque or ambiguous; and it is not because the concept is so familiar
or primitive that it admits no definition. The reason is that the set concept is inconsistent.
The concept is not indeterminate, or underdetermined; it is overdetermined, famously and
paradoxically inconsistent.6 After reviewing why, I will argue that naive set concept is

3 Priest and Routley: “The naive notion of set is that of the extension of an arbitrary predicate . . . . This is as tight an account as
can be expected from any fundamental notion. It was thought to be problematical only because it was assumed (under the
ideology of consistency) that ‘arbitrary’ could not mean arbitrary. However, it does” [Priest et al., 1989, p. 499]. Or Priest
again: “[A] set just is the extension of an arbitrary condition, and that’s that” [Priest, 2006b, p. 29]. (Cf. Forster, in defense of a
(consistent) universal set [Forster, 1995, ch. 1].) These statements motivate the absolutely unrestricted or generalized
comprehension scheme, explicitly introduced by Routley and then Brady, which allows the set being defined to appear in its
own defining property, “impredicative” instances of the form

x P y Ø ϕ(x,y);
[Routley, 1977, p. 915; Brady and Routley, 1989, p. 419; Brady, 2006, p. 177]. Others who endorse the naive set concept
require a restricted form, where the set being defined cannot appear in the description defining it [Priest, 2006b, ch. 2]. But the
distinction makes little difference, as circular sets can be produced by the sedate version as the unrestricted (Theorem 13 of
Chapter 5); nothing much is gained or lost either way. The redundancy is pointed out at [Petersen, 2000, p. 383, footnote 14].

4 In Peano’s 1889 Principles of Arithmetic, at [van Heijenoort, 1967, p. 89].
5 “By the law of excluded middle, . . . for any predicate there is a set of all and only those things to which it applies (as well as a

set of just those things to which it does not apply). . . . Our thought might therefore be put: ‘Any predicate has an extension”’
[Boolos, 1971, p. 216].

6 “Naive set theory is simple to state, elegant, initially quite credible, and natural in that it articulates a view about sets that
might occur to one quite naturally. . . . Alas, it is inconsistent” [Boolos, 1971, p. 217].

https://doi.org/10.1017/9781108993135.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108993135.004


30 Paradoxes; or, “Here in the Presence of an Absurdity”

correct, and not in spite of but because of its paradoxicality. Its inconsistency cannot be
removed without doing fatal damage to the concept.

1.1.2 The Antinomies

Naive set theory is full of paradoxes, or “antinomies.” Consequently, the general consensus
at the start of the twentieth century was of a crisis in the foundations of mathematics.7 This
is a story that has been told many, many times – even in a 2008 graphic novel, Logicomix –
so I presume familiarity. Here then, in brief, are the famous paradoxes of naive set theory.
It has seemed to many, from [Russell, 1905b] to [Priest, 2002a, ch. 8, 9], that they are all
related (see Chapter 2).

1.1.2.1 The Liar [500 BCE]

Naive set theory includes naive truth theory. (One reasonable, but wrong, hypothesis about
this is that naive set theory is inconsistent because it includes naive truth theory.) For any
sentence (a closed formula, with no free variables) ϕ, just consider the set

xϕy := tx : ϕu,

the set of all x such that ϕ, which exists by naive comprehension. If ϕ is true, then
@x(x P xϕy). For every ϕ there is such a set, and if xϕy = xψy, then by Basic Law V,
ϕ Ø ψ , so the naming is unique. So we can define a truth predicate, where for some
arbitrary but fixed t ,

T(x) := t P x,

and, in particular, T(xϕy) is t P xϕy. Then t P xϕy Ø ϕ and naive set theory has vindicated
the truth schema,

T(xϕy) Ø ϕ.

By making the naive set assumption, we have already assumed naive truth theory
[Priest, 2002b, p. 363; Beall, 2009, p. 114].

To get a liar, we prove a special case of a general fact about naive comprehension, the
fixed point theorem (Theorem 13 of Chapter 5). Consider the open formula �T(x). By
naive comprehension, there is a set L such that

x P L Ø �T(tz : t P Lu).

So by instantiation, t P L Ø �T(tz : t P Lu). Letting � be the sentence t P L, then
x�y = tz : t P Lu, and ergo

� Ø �T(x�y)

is a liar sentence. The liar contradiction follows as in the Introduction.

7 Of that crisis, Fraenkel et al. say that “a treatment of the logico-mathematical antinomies is a task that cannot be dodged”
[Fraenkel et al., 1958, p. 5]. Though for an alternative view of the history, see Lavine [1994, p. 3].
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1.1.2.2 Cantor’s Paradox [c. 1895]

Set theory became an independent discipline when Cantor proved in 1874 that the set of all
subsets of X, the powerset

P(X) = tx : x is a subset of Xu,

must be bigger in size than X itself. For Cantor’s great insight is that the sizes of infinite
sets can be tracked, via the notion of a one-to-one correspondence. Even if we cannot count
all the members of a set, we can say whether or not it is the same size as another set, by
trying to pair off their members exactly. If any attempted pairing off between two sets fails,
then they are not the same size, or cardinality.

Take then a function f from X to P(X). Consider the diagonal subset

rX = tx P X : x R f (x)u

of all the members of X that are not in the subset they map to. Noting that rX is a subset
of X, rX P P(X), Cantor proved that f cannot map anything from X to rX. For if some
x P X had the ill fortune to pair off with this diagonal subset, f (x) = rX, then x P rX if
and only if (iff) x R rX, which is (or classically entails) a contradiction. So, by reductio,
nothing in X maps to this subset, and so the powerset P(X) has more members than X.

That is Cantor’s theorem. But what about the universe of all sets, V? Surely V is the
biggest size there is: any set is in the universe (containment), and any set is a subset of the
universe (inclusion). It would seem that

P(V) = V .

If sets are identical, then of course they are the same size. So then by Cantor’s theorem, the
powerset of the universe is greater than, but not greater than, the universe itself. This is also
known as Frege’s paradox for Basic Law V.

1.1.2.3 Russell’s Paradox [1902]

Russell found his eponymous paradox based on his own study of Cantor’s proof. He trans-
mitted it to Frege in 1902, and it is only a small exaggeration to say that this destroyed the
latter’s life’s work.

Focus on a special case of Cantor’s diagonal process, where X is instantiated by the
universe of sets, and f is just the identity f (x) = x. Then Cantor’s rV = tx P V : x P

f (x)u is just

r = tx : x R xu,

which is called the Russell set: the set of all sets that are not members of themselves
(or “nonselfmembered,” in pseudo-German). Then r P r iff r R r . Hence, by the law
of excluded middle, r P r and r R r .
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Russell’s antinomy is just the tip of the iceberg.8

1.1.2.4 Mirimanoff [1917]

A set M is well-founded (by P) iff from M there is no infinitely descending membership
chain

¨ ¨ ¨M2 P M1 P M0 P M .

A well-founded set M cannot be a member of itself, because if it were then ¨ ¨ ¨ P M P M P

M would be an infinite chain. But the set of all well-founded sets

M = tM : M is well-foundedu

is itself well-founded, since for every M P M there is no infinite descent from M by
definition. Therefore, M PM. But then, by well-foundedness, M RM.9

1.1.2.5 Burali-Forti [1897]

Ordinals are a generalization on the natural numbers. The study of ordinals was one of the
cornerstones of Cantorian set theory [Cantor, 1895], carried on by Hausdorff [Hausdorff,
2005]. Upon later reductions of mathematics to set theory, the ordinals came to form the
central load-bearing column of the mathematical universe. The first ordinals are 0,1,2, . . .
followed by the first transfinite number greater than all of these, ω, followed by further
transfinite successors and limits, with an order relation. The ordering has its members
in a perfectly straight line, and any part of the line has a first (but not necessarily last)
member; the ordinals are not only well-founded (as before) but well-ordered. And ordinals
are transitive: anything that precedes an ordinal in the well-order is itself an ordinal.

Ordinals are the order types of well-ordered sets. Von Neumann found that it works very
nicely to think of an ordinal number α recursively, as the set of all ordinals β that precede
it, so that an ordinal is a well-ordered, transitive set of ordinals. But the set of all ordinals,
On, is itself a well-ordered, transitive set of ordinals – so On is an ordinal, and, being the
set of all ordinals, is also the greatest ordinal. But every ordinal has a successor, which is
strictly greater. Therefore, the successor of On is strictly greater than, and also not strictly
greater than, On.

Indeed, with the ordering relation on the ordinals represented by P, and an ordinal taken
to be the set of all the ordinals that come before it, α = tβ : β P αu, then

On = tα : α P Onu

is clearly an ordinal, and self-membered at that. But since the ordering relation P on ordinals
is well-founded, too, there are no self-members; so the contradiction is just

On P On and On R On,

which is what you should expect from the biggest number.

8 “[A]lthough logic forces us to accept that there isn’t any such [Russell] set, it’s highly paradoxical that there isn’t. . . . [I]sn’t a
collection or totality just the same thing as a set? How COULD there NOT be a set containing all and only the sets that don’t
contain themselves?” [Boolos, 1998, p. 148].

9 See Hallett [1984, § 4.4]; Barwise and Moss [1996]. A variant of this paradox is Smullyan’s hypergame.
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This is my favorite paradox. The ordinals are designed to be recursive, to be a foundation
for arithmetic and transfinite induction. For the ordinals to do their job, they need to be self-
reproducing in an orderly, automatic way. But once you start a flower forever blooming
from within itself, it cannot be stopped.10

Several other more “semantically” flavored paradoxes appeared in a rush.11

1.1.2.6 König [1905]

A set is countable iff it is the same cardinality as the natural numbers. A number is definable
iff there is a finite sequence of (English) words that refers to it. There are only finitely
many words; so there are only countably many finite sequences of words; so there are only
countably many definable numbers. So take the least indefinable number. The previous
sentence just defined it.

1.1.2.7 Richard [1905]

Similarly to König’s, consider the set of definable real numbers on the interval [0,1]. By a
diagonal construction, there is a definable real number not in this set.12

1.1.2.8 Berry [1906]

Consider the set of natural numbers definable by less than 19 syllables. There is a least such
number; this number is defined by less than 19 syllables.

1.1.2.9 Grelling [1908]

A term is homological iff it exemplifies what it describes, e.g., the word “word” is a
word. A word is heterological if not homological. Then “heterological” is heterological iff
it is not.

There are many others, but you get the point. These are apparently sound arguments
with apparently false conclusions. We must deny the reasoning, deny a premise, or accept
the result. In all cases, the premise is naive set comprehension.

1.1.3 Naive Sets and Iterative Sets

1.1.3.1 Why Are There Set Theory Paradoxes?

The antinomies of naive set theory are overwhelming. Obviously true assumptions (in
each case, that there is some set of things with some clearly defined property, such as “is
an ordinal”) lead by simple reasoning to contradictions. By 1925, Hilbert is apocalyptic,
calling for a solution to these problems “not merely for the interests of the individual
sciences, but rather for the honour of the human understanding itself”; for the paradoxes of

10 Burali-Forti himself thought this was a counterexample to trichotomy [van Heijenoort, 1967, p. 105]. Sometimes the
contradiction is expressed as On = On + 1. See [Moore, 1982].

11 On dividing these paradoxes into different categories (set theoretic vs. semantic) as Ramsey suggested, and whether the
division is good or not (it is not), see Priest [2002a, ch. 10].

12 See van Heijenoort [1967, p. 143]; and Priest [2002a, ch. 9].
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set theory, appearing “ever more severely and ominously,” had “a downright catastrophic
effect in the world of mathematics”:

Let us admit that the situation in which we find ourselves with respect to the paradoxes is in the long
run intolerable. Just think: this paragon of reliability and truth, the very notions and inferences, as
everyone learns, teaches, and uses them, lead to absurdity. [Hilbert, 1925, p. 375; emphasis in the
original text]

How could it be? I think the answer lies in thinking about what a set is.
An otherwise disparate collection is encircled by a predicate, a property, a definition.

Birds become a flock, stairs a flight, people a crowd (a Menge), counting numbers the
naturals N. Objects become a set. A set is a multiplicity that forms a unity, a many that is
also a one. Metaphysically speaking, a set is a composition. But this is not a definition; this
is a mystery. Here are birds. Here is a flock. Even at the level of grammar, the former are
plural, while the latter is singular.13 How is a many also a one?

The beauty of naive set theory is that it provides just the right way to say that a flock
is a set of some birds, not unlike Plato’s forms in the Republic (596a6–7). The way this is
possible is that sets play two roles at once, roles that are in tension with each other. A set is
no more and no less than its members together. This is the ultimate reason why set theory
is inconsistent. Let us return to the explication of the nature of sets; Bolzano takes arbitrary
assemblages to be cohesive entities [Bolzano, 1973, p. 128]:

I permit myself, then, to call any group you please, in which the nature of the connection among the
parts is to be regarded as an indifferent matter, a set [Inbegriff ].

And here, more famously, is Cantor echoing the same thought: in the 1895 Beiträge
[Cantor, 1915, p. 85],

A set is any collection into a whole of definite, well-distinguished objects of our intuition or thought.

Or earlier, in the 1883 Grundlagen,14

By a “manifold” or “set” I understand generally any multiplicity which can be thought of as one
[jades Viele, welches sich als Eines denken lasst], that is to say, any totality of definite elements
which can be bound up into a whole by means of a law.. . . By this I believe I have defined something
related to the Platonic ειδoς .

Sets are extensional collections, yes, but they are also grasped (the etymology of
“inbegriff”), “by means of a law.” This is our ingress:

On the one hand, sets are extensional, in that they are determined by their members.
To pick out a set, there is nothing more one needs to know about it than its members. Set
theory is often called the theory of extensions par excellence.15 On the other hand, sets are
intensional, too, in that they are each determined by a property. Within naive set theory is

13 Cf. Lewis [Lewis, 1991, p. 81, emphasis in the original text] on compositions and the things that compose them: “It just is
them. They just are it.”

14 From [Hallett, 1984, p. 33; Jané, 1995, p. 391].
15 Forster calls “the most tough-minded expression” of extensionality, that “the only thing a set theorist can know about = is

that it is a congruence relation with respect to P” [Forster, 1982, p. 2].
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naive property theory, obtained just by dropping the extensionality axiom, and reading “P”
as property instantiation: ϕ(x) just in case x instantiates the property (or form, or eidos)
of ϕ. Sets must be more than extensional, if they are to be useful for any more than some
(small) finite combinatorics. As Weyl aptly observes,

No one can describe an infinite set other than by indicating properties which are characteristic of the
elements of the set. [Weyl, 1919, p. 23]

A collection requires a predicate.16 But sets cannot be more than extensional, since they
are properties in extension. Governing naive set theory is a membership-based notion of
identity, and a property-based notion of membership. It is both “top-down” and “bottom-
up.” And this means a collision of extensionality with intensionality.

Here then is the nexus of the paradox. Sets are themselves objects, intensions over and
above their members, more than the sum of their parts.17 Meanwhile, the extensionality
principle governs all sets, forcing them to be no more than the sum of their parts. Since
these together characterize sets, sets are both intensional and extensional. Frege’s Basic
Law V expresses, correctly, that there is a one-to-one correspondence between extensions
and properties; Cantor’s theorem expresses, correctly, that there are more properties than
extensions.18 This is unstable. This is Cantor’s paradox: there are more objects than fit in
the universe, because there are properties with the same extension; but because (by Basic
Law V) there are exactly as many properties as extensions, the universe is bigger than itself.

My view is that this contradiction inherent in the notion of naive sets is a good thing.
Naive sets provide a foundation that has both these qualities, intensional comprehension
and extensional tractability. Theories that try to do without one or the other will inevitably
be incomplete. The dual nature of naive sets is a feature, not a bug; they offer Platonic forms
with precise identity conditions. And, most tendentiously, if the comprehension axiom turns
out to be true, then this is an even more attractive reason to use it as a foundation.

1.1.3.2 From Twentieth-Century Set Theory to Twenty-First

The naive comprehension principle is an axiom in the old sense: simple, self-evident,
inalienable. I suggest the mathematics of collections cannot abandon the naive view without
ceasing to be a theory of all collections. To see this, let us review the past century’s attempt
to evade the paradoxes. This was done, first, by replacing naive set theory with axiomatic set
theory (from 1908 to the 1920s); and then later (from the 1930s to the 1960s) by clarifying

16 Cf. Beall’s diagnosis of the semantic paradoxes of truth theory: God would have no need of a truth predicate [Beall, 2009,
p. 1], because God in his infinitude does not need to save time by generalizing. By these lights, God would have no need of a
comprehension principle, either.

17 Unlike pluralities, e.g., some birds, which advocates of plural logic say do not always give a further entity, “a plurality,” e.g.,
a flock of birds, over which to quantify. A “plurality” is not itself an entity; referring to “it” in the singular is only a façon de
parler (cf. proper classes in set theory; Section 1.1.3.2). The most prominent argument that not all pluralities are sets is that,
if they were, one could derive Russell’s contradiction [Boolos, 1998, p. 67]. A naive set is also different from a mereological
sum/fusion – the smallest portion of reality that has all the ϕs as parts. (Mereology is the theory of parthood.) A fusion exists,
as a numerically distinct entity from its members, unlike plurals; but the parthood relation is more like subset than
membership. See [Lewis, 1991]; Potter, 2004, ch. 2; [Cotnoir and Baxter, 2014].

18 Or just think of the difference between the properties “equilateral triangle” and “equiangular triangle” even though their
extensions in Euclidean geometry are identical. This basis for the paradoxes of naive set theory is spelled out in [Zalta, 2007].
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the “intended model” of the new axiomatic set theory, and urging that this was the real
(consistent) set concept all along. How did this strategy fare?

Zermelo’s 1908 axioms met with “intense criticism,” not only over the axiom of choice
but because of his decision to molest the comprehension principle; Schönflies, Bernstein,
and Poincaré all rejected this possibility out of hand.19 Zermelo’s axioms name some key
properties sets have, without explaining what a set is.20 The aporia is apparent in the
opening pages of most set theory books. Devlin opens as many do with exposition of basic
Cantorian theory.

In set theory, there is really only one fundamental notion: the ability to regard any collection of objects
as a single entity (i.e. a set). [Devlin, 1979, p. 1]

Or, as a very rigorous textbook puts it,

the idea of the collection of all objects having a specified property is so basic that we could hardly
abandon it. [Takeuti and Zaring, 1971, p. 9]

Reformed set theory since the paradoxes retains “as many as possible of the naive set
theoretic arguments which we remember with nostalgia from our days in Cantor’s paradise”
[Potter, 2004, p. 34]. And since the Gödel/Cohen independence results,21 it has been known
that the axioms of ZFC – Zermelo–Fraenkel set theory with the axiom of choice – are highly
incomplete, leaving key questions about sets permanently unanswered.22

Now, the reader may wish to remind me, gently but firmly, that I appear to be trying
to re-litigate a closed case. During the twentieth century, much work went in to a replace-
ment idea, iterative sets, and their main formal theory, ZFC.23 An iterative set is formed
from already existing objects. Therefore, iterative sets cannot be, are not candidates to be,
members of themselves. The set theoretic universe is a cumulative hierarchy, in which sets
may only be formed from preexisting members, starting with the empty set – formed from
“all” the sets that exist at the start.24 Then the idea is that none of the antinomy-inducing
collections are (iterative) sets. The solution is similar to Tarski’s truth hierarchy, with the

19 [Moore, 1982, pp. 111, 117].
20 “Axiomatization went hand in hand with the divorce from any attempt to understand what sets are or what conceptual role

they play” [Hallett, 1984, p. 303]. The point is made explicitly and overtly not least by Zermelo himself, at the outset of his
1908 axiomatization: “At present, the very existence of the discipline [of set theory] seems to be threatened by the existence
of certain contradictions or ‘antinomies’ that can be derived from its principles – principles necessarily governing our
thinking, it seems – and to which no entirely satisfactory solution has yet been found” [Zermelo, 1967, p. 200]. See Woods
[2003, p. 334]. In 1914, Hausdorff expressed doubt about Zermelo’s system: “At present, these extremely ingenious
investigations cannot be regarded as completed, and introducing a beginner by this [axiomatic] approach would cause great
difficulties. Thus we wish to permit the use of naive set theory here” [Hausdorff, 1957, p. 2]. Zermelo’s axioms are supposed
not even intelligible without naive acquaintance with sets [Devlin, 1979, p. 49]. “A survey of the the axioms does not suffice
to reveal the source of their attraction” [van Aken, 1986, p. 992]. Von Neumann, at the close of his own sophisticated 1925
axiomatization, sighs that despite much work, still he must “entertain certain reservations” because “for the time being no
way of rehabilitating this theory is known” [van Heijenoort, 1967, p. 413].

21 See [Cohen, 1966; Smullyan and Fitting, 1996].
22 As witness to the ongoing dissatisfaction with rejecting naive comprehension, there remains a steady stream of research

attempting either to approximate it with ever-stronger new “large cardinal” axioms [Kanamori, 1994] or to restore some
semblance of the principle, via modalities or other devices.

23 There are many other alternative set theories, before even considering nonclassical logic; [Holmes et al., 2012]. Most land on
saying that some collection is not a set.

24 Note that this – if there are no sets, then all sets are inH – is a form of explosion: p 6 �p Ą q. So the ex nihilo
construction in this form is very classical.
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added weight of the legitimacy and importance of actual mathematics (say as it is needed
for science) and therefore the pragmatic obligation to get some kind of working fix on the
table so that we may get on with life.

Let us ask, though, whether iterative sets can be sufficient for explaining what sets are.
Without impugning the impressive work of the last century, there is an obvious problem in
explaining what sets are in terms of iteration: iterative sets are formed from some collection
of preexisting members. It presupposes collections. And not only that, but it supposes those
collections arise in an orderly, indexed process. For example, in [Potter, 2004], following
an idea from Scott, it is shown how one can justify the axioms of ZF from some “stage
axioms”; these axioms postulate (a) the existence of cumulative stages, (b) an ordering
relation such as “earlier than,” and (c) indices to keep track of the process. But collections,
order relations, and a (transfinite) index set are exactly the sorts of things developed from
within set theory. This is “assuming a considerable amount of ‘set theory’ in order to define
our set theory” [Devlin, 1979, p. 49, emphasis in the original text]. The iterative notion is
therefore not the primary intuition because it presupposes set theory, including the notion
of ordinality. One of the central purposes of set theory is to deliver a theory of ordinals,
not the other way around.25 So the iterative notion is not the last word on sets [Weir, 1998,
p. 780]. Like a Tarskian hierarchy, the iterative universe is simply unable to account for
itself.

There are also problems with making the iterative conception more than an attrac-
tive metaphor. The iterative idea does appeal to our physical intuition about collecting up
objects into a bag; you need to have objects before you can put them in a bag! Beyond
small finite sets, though, the intuition is exhausted – “naturally we are not thinking of
actually building sets in any sense” [Devlin, 1979, p. 43]. Talk of “collecting” must be
taken metaphorically. And only metaphorically:

The notion that an infinite set is a “gathering” brought together by infinitely many individual arbitrary
acts of selection . . . is nonsensical. [Weyl, 1919, p. 23]

To replace the metaphor with mathematics, we can follow Hilbert’s strategy in geometry
[Hilbert, 1902a] of replacing Euclid’s imperative phrasing (“now you construct a triangle
like so”) with a declarative (“triangles exist”). Instead of “forming” the ωth stage, we
simply profess that it is there: there is an ωth stage. This is now mathematically cogent, but
it leaves the constructive intuition behind and with it any explanatory power of the iterative
view. It calls into question whether there is any nonmetaphorical content to the iterative
view. Unless we are some version of strict constructive finitists, or believe some kind of
“idealized” constructing angels,26 then sets simply exist or they do not.

25 Priest and Routley: “We do not deny that once one has a notion of set one can non-circularly produce . . . the cumulative
hierarchy. But to suppose one can use the notion of an ordinal to produce a non-question-begging definition of ‘set’ is
moonshine” [Priest et al., 1989, p. 500].

26 Agents human enough to make the “gathering together” talk more than a pretty locution, but superhuman enough to perform
transfinite tasks up to arbitrary places in the ordinals. See Potter [Potter, 2004, pp. 36–40] for discussion of construction
metaphors, idealized constructors, etc.
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To see that the classical solution to the paradoxes is not entirely happy, I would gesture at
two problematic ideas that underwrite ZFC. One is the tortured doctrine of proper classes,
which introduces entities that are like sets (classes) in every way, except they have a special
property – if they were sets, they would be inconsistent!27 The related doctrine of limitation
on size says that some collections are “too big” to be sets – namely, those collections that
are the same size as a proper class.28 Suffice to say that both of these ideas are rather
euphemistic – as Boolos says, “you can’t get out of this paradox merely by substituting one
word for another” – and could be criticized at some length if one were so inclined (e.g.,
the very enjoyable [Weir, 1998]). As Woods puts it, these problems are “central, deep,
and disabling” [Woods, 2003, p. 162]. These doctrines suggest, on my reading, that practi-
tioners who are committed to doing some mathematics mainly want to get past paradoxes
for the sake of getting on to some results. And indeed this seems like one of the better
arguments in favor of “classical” set theory. Fair enough. But the argument is irrelevant
in the present context. The natural notion of set is inconsistent, and attempts to replace it
either acknowledge the inconsistency or rest content with mathematical storytelling.

Rather than relitigating the past, or peevishly throwing stones at the towers of modern
ZFC, I can find much to agree on in statements such as this one:

It should not be forgotten that the paradoxes never applied to any type structure, and in this sense they
are not paradoxes of set theory . . . . If we call such things properties then it is clear that the paradoxes
are a real problem to be dealt with before a thoroughgoing theory of properties can be developed.
[Drake, 1974, p. 14]

Or, to a lesser extent, this one:

It has been pointed out that the paradoxes of Russell, Burali-Forti etc, never really caused a crisis
in mathematics (where one deals only with unproblematic examples of sets) but rather in logic (and
general set theory), where one tries to provide a general and universal frame for mathematics and in
particular for arbitrary sets. [Reinhardt, 1974, p. 190]

These statements acknowledge unsolved problems in what is being called “property theory”
and “logic” or “general set theory.” So let “iterative set theory” carry on unperturbed, as
long as it is admitted that ZFC sets are a subconcept of what collections are, as long as it is
clear that iterative sets are not all the sets or have somehow solved, rather than deferred, the
paradoxes.29 After all, “simply saying that we ought never to have expected any property
whatever to be collectivizing, even if true, leaves us well short of an account which will
settle which properties are” [Potter, 2004, p. 27]. As Dummett puts it,

27 As such, proper classes cannot, by definition, be members of anything. See [Maddy, 1983]. Here is Halmos: “[I]t seems a
little harsh to be told that certain sets are not really sets and even their names must never be mentioned. Some approaches to
set theory try to soften the blow by making systematic use of such illegal sets but just not calling them sets; the customary
word is ‘class”’ [Halmos, 1974, p. 11]. Shapiro and Wright sum up neatly: “Invoking proper classes is an attempt to do the
very thing we are intuitively barred from doing. . . . Set is supposed to encompass the maximally general category of entities
of the relevant kind” [Shapiro and Wright, 2006, p. 272].

28 “A great diffculty of the theory is that it does not tell us how far up the series of ordinals it is legitimate to go” [Russell,
1905b, p. 44]. See [Hallett, 1984].

29 Reinhardt goes on to say, “We now consider such a frame to have been provided for set theory by the clarification of the
intuitive idea of the cumulative hierarchy” – a kind of disciplinary “monster barring” and “withdrawal to a safe domain”
[Lakatos, 1976] by drawing the boundaries of “set theory” to exclude problems in “logic” and “general set theory.”
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A mere prohibition leaves the matter a mystery. . . . To say, ‘If you persist in talking about the number
of all cardinal numbers, you will run into a contradiction’, is to wield the big stick, but not to offer an
explanation. [Dummett, 1991, p. 315]

There remains a more general theory, naive set theory, with a lot of work still to do. If
there is something true about collections that is not captured by a theory of collections, then
that theory is eo ipso inadequate as a theory of collections – sets. If the naive set concept
were not ineluctable, then its inconsistent consequences would be reason to reject it. But it
“seem[s] forced upon us in such a way,” writes Slaney, “that we should in all intellectual
honesty take [it] seriously” [Slaney, 1989, p. 472].30

1.1.3.3 Prospects

Classical logic makes set comprehension absurd. It pushes us to say that there is no univer-
sal set, and thus that there is no such thing as universal quantification (“for all” claims) in
absolute generality, because there is no universe to quantify over. This has been cause of
much surprise and consternation. The consternation is due to the deep sense that compre-
hension is not absurd, because there is a collection – a set – of all sets, and we do indeed
universally quantify. That, indeed, saying “all universal quantification is impossible” is, in
the long run, intolerable.

At the end of an exhaustive survey of possible approaches to the paradoxes of set theory
(the Burali-Forti paradox in particular), Shaprio and Wright say that “frankly, we do not
see a satisfying position here,” but they do mention one other option:

Allow the quantification and the predicates, allow the associated order-types, allow that they are
ordinals as originally understood, . . . and just accept that there are ordinals that come later than all the
ordinals. Cost: none – unless one demurs from the acceptance of contradiction. [Shapiro and Wright,
2006, p. 293]

As with the solutions to the liar, there is no option for resolving the paradoxes that gives
us everything and costs us nothing. But the paraconsistent dialetheic approach dangles the
possibility of an absolutely comprehensive theory of sets, where the paradoxes can finally
be accepted for what they are, proofs.

Cantor knew that there exist what he called “inconsistent multiplicities”; he even used
them in a proof in a letter to Dedekind, proving that every cardinality is an aleph.31 Potter
warns us to be wary of the Panglossian view that “the paradoxes are not really so paradox-
ical if we only think about them in the right way” [Potter, 2004, pp. 26, 37]. The paradoxes
are paradoxes. Forster advises:

In the ZF world, . . . the paradoxes are viewed as large holes in the ground that one might fall into.
. . . However, it is always a mistake to think of anything in mathematics as a mere pathology, for there
are no such things in mathematics. . . . One should think of the paradoxes as supernatural creatures,

30 For more pugilistic motivations for naive set theory, and attacks on ZFC and its associates, see [Priest and Routley, 1983]; cf.
Priest [2006b, ch. 2].

31 “As we can readily see, the ‘totality of everything thinkable,’ for example, is such a multiplicity” [Cantor, 1967, p. 114].
Cantor had been thinking about absolute paradoxes at least since 1895 [Lavine, 1994, p. 55].

https://doi.org/10.1017/9781108993135.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108993135.004


40 Paradoxes; or, “Here in the Presence of an Absurdity”

oracles, minor demons – on whom one should keep a weather eye in case they make prophecies or by
some other means divulge information from another world not normally obtainable otherwise. One
should approach them as closely as is safe, and from as many different angles as possible. [Forster,
1995, p. 11, emphasis in the original text]

The question turns on just how close is still a safe distance. The idea of maintaining
comprehension in a nonclassical logic goes back at least to Skolem [Skolem, 1963]. The
idea of mathematics founded on self-evident axioms goes back even further. Naive set
theory in paraconsistent logic is presented in Chapter 5.

1.2 Vagueness

Let’s leave set theory for a while and go outside. It was raining very heavily earlier, but
now we can go out. It is not raining, although it is still raining a bit. It is what in Ireland is
sometimes called a “soft day.”

Like most predicates, “is raining” is vague.32 And vagueness gives rise to the sorites
paradox. The sorites paradox, like the liar, is attributed to Eubulides in the fourth century
BCE. The sorites paradox may seem different from the inconsistencies of naive set theory
or truth theory. But the sorites exhibits some of the same and most important features,
especially in the way that most solutions to it fall prey to revenge, and in the way it connects
with the spatial/boundary paradoxes of Section 1.2.1.33

1.2.1 The Sorites Paradox

Olympus Mons is the tallest mountain in the known universe.34 It is an extinct shield
volcano on Mars, and its summit stands 26 kilometers over the surrounding plains – three
times the height of Mt. Everest. Unlike Everest, though, Olympus Mons is much wider
than it is tall, about 600 km wide, so its slope is generally extremely gentle, about 2.5
degrees around the caldera at the top and 5 degrees on the wider foothill; atmosphere
notwithstanding, one could easily walk most of the path to the top, and down again, without
need of climbing gear or any special athletic skill. A path down the gentle slope of the
mountain (which, when viewed from the summit, extends beyond the horizon) can be
sketched out by a discrete linear order,

a0 ă a1 ă . . . ă an,

with the indices natural numbers and an a point at surface level.35 The top, point a0, is very
high up. The bottom of the mountain is not high up any more.

32 The discussion here is mostly neutral as to the locus of vagueness – whether is it linguistic (vague predicates), metaphysical
(vague properties), or ontic (vague objects). (The idea of ontic vagueness is unpopular, but can be made at least an intelligible
thesis [Barnes, 2010].) Throughout, as before, “predicate” can be substituted mutatis mutandis for “property,” depending on
your preferences.

33 Thanks to Mark Colyvan for collaboration on topics here [Weber and Colyvan, 2010].
34 Gary Hardegree (in conversation) objects that surely there are taller mountains out there in the big, big universe. Yes,

probably. But they are not (yet) known.
35 Or “martian geodetic datum.” Since Mars has no sea, it has no sea level, so measuring the elevation of Olympus Mons is more

complicated than I’ve suggested. See Carr [2007, p. 51]; Frankel [2005, ch. 6].
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Let’s have our points spaced one centimeter apart. Then any two consecutive points are
too similar in all relevant respects, too close to each other, for one to be high up but not the
other. This is an instance of the tolerance principle;36 any ϕ is tolerant when it obeys the
following:

Tolerance: It is not the case that two things are very, very ϕ-similar, and yet one is ϕ, but
the other is not.

Formalizing a bit, then, we have the (material) conditional version of the sorites paradox,
following Hyde’s very useful classification of the sorites paradoxes [Hyde and Raffman,
2018]: tolerance is that, for all i, it is not that case that ai is high up but ai+1 is not, and
the soritical argument is spelled out:

a0 is high up
a0 is high up Ą a1 is high up
a1 is high up Ą a2 is high up
...
an´1 is high up Ą an is high up

6 an is high up,

with Ą the material conditional (Section 0.2.2.3), “ai is not high up or else ai+1 is.” Then
the conclusion follows by a sufficient number of applications of disjunctive syllogism, or
“material modus ponens”:

high(a0)
not high(a0), or high(a1)

not high(a1), or high(a2)
not high(a2), or high(a3)

. . .

high(an).

But an is at the foot of the mountain. It is not high up. Generalizing, we get the inductive
version of the paradox, which uses mathematical induction rather than material modus
ponens:

a0 is high up
For each i in the sequence, (ai is high up Ą ai+1 is high up)

6 For every i in the sequence, (ai is high up).

This argument has led from truth to falsity.
This is a paradox in the sense defined in the Introduction. It is an apparently sound

argument with an apparently false conclusion. We must deny the reasoning, deny a premise,

36 The name “tolerance” comes from [Wright, 1976, p. 334]: a predicate ϕ is tolerant “if there is also some positive degree of
change in respect of ϕ insufficient ever to affect the justice with which [the predicate] applies to a particular case.”
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or accept the result. In this case, we cannot accept the result: not all points in the path are
high up. Accepting “all points are high up” would make a nonsense out of the predicate.
And all the more so since this is just an example. If sound, the conditional inductive sorites
would render any vague predicate completely vacuous. Everything is red, everyone is bald,
all jokes are funny. In fact, if “vague” is itself a vague predicate (as some have urged
[Sorensen, 1985; Hyde, 1994]), and we accept soritical reasoning such as the preceding,
then it would follow that all predicates are vague, and in particular truth, and then, like all
grains of sand are heaps, so too would everything be true. Absurd.

So, as Sorensen is careful to explain [Sorensen, 2001, ch. 1], the obvious solution to the
paradox now is to deny the conclusion, and instead derive the falsity of tolerance, via a
line-drawing form of the argument. Informally, on Olympus Mons, the soritical situation is
thus described with three true sentences:

Some point is high up.
Not all points are high up.

6 Some point is high up while the very next one is not.

Here the conclusion is the negation of Tolerance. This is a sound argument, stemming
from a truism about finite sets of natural numbers: if some number is such and so, then
there is a least such number. Not only is the argument valid, but the premises are true.
Since the vague predicate eventually ceases to apply, there must be a line – a sharp cutoff –
between what is high up and what is not.

Except tolerance is not so easily dismissed. Our new conclusion, that “high up”
comes abruptly to an end at some exact centimeter-length patch of martian hillside, smacks
just as false, just as unacceptable as the initial conclusion that “high up” never ends.
This is especially pressing when we observe that the centimeter-length patches could be
made as small as we like. However it is that a baby becomes a non-baby, it is not in the
duration of a millionth of a picosecond, right? It is unavoidable – there must be such a line,
a counterexample to an otherwise disastrous proof. But all the same, Tolerance seems
basic: vague predicates do not, almost by definition, have sharp cutoff points. That’s a truth
of the world we live in. Here then is the appearance of revenge, and the point at which the
paradox becomes genuine.

The original problem from the conditional/inductive sorites was that it would be absurd
if all points were equally “high up” (bracketing any mystical epiphanies). The only (appar-
ent) option was to affirm that not all points are high up, and rejig the argument accordingly,
from the conditional version with a false conclusion (of the form p, q Ą r 6 s) to its
contrapositive, the line drawing version (p,�s 6 q &�r). But now there is a new problem,
which is that the line-drawing version has a false conclusion, too: it seems absurd to think
there is some exact spot – right there, and nowhere else – at which a predicate like “high
up” cuts off. The proposed solution is every bit as counterintuitive as the original, since the
original was driven by the conviction that tolerance is true. This is how we know we are
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dealing with a genuinely paradoxical problem. Like the derivation of a Kantian antinomy,
there are parallel reasons that

tolerance is true and tolerance is false

– a contradiction.
As with all serious paradoxes, our intuitions combine with the facts to box us into a

corner, between impossibility and inevitability. Some mountains are tall; some are not; and
the notion is tolerant: there aren’t two mountains that are extremely close in height, but one
of them is tall and the other is not. The notion is, nevertheless, as prone to having a “cutoff”
as any other: since tallness gives out, it must give out somewhere. The existence of a cutoff
point is inevitable. It is also incredible. It is a paradox.37

Going forward, it would be good to have a (provisional) definition of what it means to be
vague. Susceptible to the sorites? Satisfying tolerance? Many accounts of vagueness begin
by describing the phenomenon as a kind of indeterminacy – a predicate is vague when
there are cases where it is too hard to say whether, e.g., a mountain is tall or not. But this is
already a theory-laden diagnosis,38 casting the whole situation in an epistemological light,
and one pushing toward a gappy solution. I suggest defining a predicate ϕ as vague in a
more theory neutral way, if and only if the following are true:39

• ϕ is nontrivial: something is ϕ, and something is not ϕ.

• ϕ satisfies tolerance.

A nice consequence of the definition is duality: if ϕ is vague, then �ϕ is vague. A more
basic consequence is that, given some simple mathematics, a contradiction follows, as
sketched previously; the specific mathematical principles involved will be laid out in
Section 3.3.3.2.

1.2.1.1 A Continuous Sorites

Before moving to the options, let’s look at a generalization of the paradox, a continu-
ous sorites, which concerns a smooth (rather than incremental) transition. Increasing the
level of abstraction in this way forces attention on cutoff points of vague predicates. This
generalization shows that nothing about the paradox relies on the discrete nature of the
presentation. Indeed, in presenting the previous paradox for “high up on Olympus Mons,”
I needed to “digitize” it in order to express the paradox – taking the continuous slope of the
mountain and breaking it into centimeter-sized pieces. Vague properties as they are found

37 It is worth noticing just how many apparently independent philosophical problems and positions have the sorites paradox as a
key part: the problem of the many [Unger, 1980]; universalism and nihilism as answers to the special composition question
[van Inwagen, 1990, ch. 12], based on the argument from vagueness [Lewis, 1986, p. 212]; and four-dimensionalism about
time as a solution to the Ship of Theseus [Sider, 2001], to name a few.

38 See [Bueno and Colyvan, 2012]. Thanks to Mark Colyvan here.
39 Thanks to Lloyd Humberstone for useful suggestions here. And also, once upon a time, for teaching me the correct way to

use the abbreviation “cf.,” among other things.
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in nature are often not broken up into units; but there still seems to be the same “slippery
slope” problem about continuous properties – maybe even more so. We ought to be able to
formulate the sorites paradox in terms of continuous transitions and not merely discretise
continuous cases; otherwise, it would look like the problem is to do with N, not vagueness.
But the smaller the increments, the more compelling the sorites argument.

The sorites may be generalized to the continuous case.40 The argument, which is entirely
classical, draws out consequences of two properties of the real numbers R, which is that
(i) any set of reals bounded from above has a least upper bound, its supremum or sup;
and (ii) the reals are dense, in the sense that if x ă y, then there is a real z such that
x ă z ă y. From (i), every set of reals bounded from below has a greatest lower bound,
its infimum, or inf. Now consider a vague predicate ϕ mapped onto a real-number interval
[0,1], exhaustively partitioned into two nonempty sets,

A = tx P [0,1] : ϕ(x)u

B = tx P [0,1] : �ϕ(x)u,

with a ă b for all a P A,b P B. We assume that ϕ(0) and �ϕ(1). The nonempty set A

has a least upper bound, call it sup A. Now, ϕ is vague, hence tolerant; therefore, since
points vanishingly close to sup A are ϕ, then also ϕ(sup A). By a symmetrical argument,
�ϕ(inf B). By the linear order on R, one of the following must be true:

sup A ă inf B

or inf B ă sup A

or sup A = inf B.

Since the reals are dense (between any two reals is another one), we have the following
contradiction. If sup A and inf B are different numbers, then there is some z between them,
sup A ă z ă inf B or inf B ă z ă sup A. But then ϕz and �ϕz, by examining both cases:
if sup A ă z ă inf B, then anything less than inf B is ϕ but anything greater than sup A

is not; if inf B ă z ă sup A, then anything less than sup A is ϕ but anything greater than
inf B is not. On the other hand, if sup A = inf B, then again ϕ sup A and �ϕ sup A. This
exhausts all the cases. Therefore, there is a point both ϕ and �ϕ, a contradiction.41

What can we learn from this version of the paradox? We see how the sorites can be
constructed so that it relies upon a property of the real line – the property of being connected
(see Section 1.3.1.2). Because the reals are connected, a continuous path must cross over
from A to B at some distinct point. If A and B are partitioned by a vague property, then
that point of crossing is inconsistent. A very common response to the discrete forms of the
sorites paradox is to see a problem with exclusively and exhaustively separating objects into
two closed categories, ϕ and not. This problem is well expressed in terms of connectedness,

40 Due to James Chase [typescript], via Mark Colyvan.
41 The argument can be represented in analogy to the discrete inductive form of the sorites, via Cauchy sequences, appealing to

what Priest calls the Leibniz continuity condition [Priest, 2006b, ch. 11]: whatever is going on arbitrarily close to some
limiting point is also going on at the limiting point; natura non facit saltus. See Weber and Colyvan [2010, p. 316].
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and is the key in generalizing from the discrete to the continuous. We can use this property
to generalize again, for a metric-free topological version, but this will be better to return to
at the end of the chapter.

1.2.2 The Options

In the Introduction we looked at dialectics of dealing with paradox – the options breaking
into classical, paracomplete, and paraconsistent directions. The patten repeats here. There
are already many impressive surveys on vagueness and analyses of the problem, so as with
truth, I don’t attempt that scholarship here.42 The aim of the discussion is to suggest that,
like the liar, all standard solutions to sorites (except, perhaps, nihilism) face revenge, either
at the first level or higher orders, because they are committed to sharp cutoffs in some way.
That means they deny tolerance, which I think is getting it half-right.43

1.2.2.1 Classical Solutions

According to a venerable tradition – Frege, Russell, and Quine – vague predicates are
not amenable to logic. The sorites paradox is a reductio against the existence, as far as
logic is concerned, of most ordinary properties. Another tradition extends this nihilism to
ontology, as mentioned in the Introduction: mereological nihilists take the sorites paradox
as reductio against the existence of most ordinary objects. Any “object” that gives rise to
sorites arguments does not even exist. Nihilists give some sophisticated explanations as to
why our ordinary beliefs are in such massive error. But it would take us off-topic to dwell
on this option. Nihilism is its own sort of revenge. The world I live in includes tables and
chairs and tallish mountains and rainy days, and these things can be reasoned about using
logic. Our job is to explain, not explain away. Stories about why we are wrong about almost
everything are about some other world.

Another classical solution to the sorites paradox is to accept the conclusion of the line-
drawing argument – there is indeed a sharp cutoff point for vague predicates – but to
explain our incredulity about this by positing that the cutoff is unknowable. This is called
epistemicism. Vagueness is hence a knowledge problem [Williamson, 1994; Sorensen,
2001]. Since I agree on much of the epistemicist’s setup of the problem – that our job is not
to get rid of cutoffs but rather to explain why they are “embarrassing” – all that matters for
the purposes of this chapter is that epistemicism by design includes the existence of sharp
cutoffs for vague predicates.

1.2.2.2 Gappy Solutions

Vagueness is, perhaps, the most widely accepted reason for dipping into nonclassical logic.
And the most widely accepted way to do that is to deny bivalence, or the law of the

42 See, e.g., [Keefe, 2000], [Hyde, 2008], and [Smith, 2008].
43 Priest urges that a solution to the sorites paradox can only be in form of explaining why the existence of a cutoff is

counterintuitive [Priest, 2003] in [Beall, 2003]. A different sort of option I don’t discuss is contextualism (e.g., [Shapiro,
2006]).
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excluded middle. The basic idea is that some people are bald, some are not, and some
are indeterminate, neither bald nor not bald. The aim here is to accept tolerance in some
sense, but the vague property does not spread everywhere, because somewhere along the
way the vague property falls into a gap. For some points, the answer to whether they are
high up or not is “neither.”

There are many ways to go with this idea, but as with truth, the main problem for gappy
solutions is revenge. For these approaches all still end up with a sharp cutoff point for the
vague predicate somewhere.

• According to the popular supervaluationism of van Frassen and others, being, e.g., bald
admits of different evaluations. Someone is “super”-bald iff they are bald on every admis-
sible valuation. Then there is a cut between bald and “super”-bald – the first number of
head-hairs that come out as bald on every valuation.

• In subvalutationism, someone is supra-bald iff they are bald on some admissible valua-
tion.44 This position is symmetrical to supervaluationism, as all involved attest, and so
comes with sharp cutoffs, too.

• Using the fuzzy logic of Hajek, or the fuzzy set theory of Zadeh, baldness comes in
degrees. Then there is a cut between those who are bald to degree 1, and those who are
not, because “is bald to degree 1” is itself determinate, not fuzzy.45

This is called the problem of higher-order vagueness. It is a clear case of revenge: elimi-
nating one cutoff gives rise to two new ones. The very notion invoked to solve a problem
(that some things are neither ϕ nor not ϕ) then gives rise to a problem of exactly the same
sort. See [Colyvan, 2008b].

Gap solutions to the sorites attempt to preserve Tolerance, at least in spirit, but at some
level must (like everyone) deny it, by allowing sharp cuts.46 I think if that’s what is going
to happen anyway, then as with the liar paradox we should be upfront about it. The gap
theory takes only one horn of the dilemma, that there is something wrong with saying ‘this
is exactly what it takes to be a tall mountain’. But this is a dilemma with two horns. Let’s
look at the glutty solution.

1.2.2.3 Glutty Solutions

Because there is a difference between being high up and not, the difference must begin
somewhere, and so there must be cutoffs. Tolerance is true, but it is also false. The idea
of the glutty solution is just to accept the existence of the cutoff and explain it.47 Because
Tolerance is both true and false, borderline cases of ϕ are both ϕ and not ϕ. The guiding

44 See [Hyde, 1997; Beall and Colyvan, 2001a].
45 For a formidable elaboration of a fuzzy approach, see [Smith, 2008].
46 Although maybe not so for gap theorists who are so thorough as to adopt a different view of mathematics. In a Brouwerian

setting, the intermediate value theorem fails [Bishop and Bridges, 1985] and with it the argument that a continuous shading
off from red to not red must cross a sharp line somewhere; similarly for Heyting arithmetic, where the least number principle
is weakened [Heyting, 1956].

47 See [Priest, 2019a]. From their start, paraconsistent logics were intended for application to vagueness [Jaśkowski, 1969]; cf.
Priest and Routley [1989a, p. 389]. See also [Hyde and Sylvan, 1993] and [Beall and Colyvan, 2001b] on ontic (inconsistent)
vagueness and seeing contradictions.
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picture in the background is of the extension of a vague predicate ϕ overlapping with its
complement, which looks like this:

ϕ
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

a0 ă . . . ă aj´1 ă aj ă . . . ă ak ă ak+1 ă . . . ă an
loooooooooooooooooooomoooooooooooooooooooon

�ϕ

Vagueness is not indeterminacy, but overdeterminacy. The point of the approach is to
admit the joint truth of two claims: Tolerance and nontriviality – the empirical fact that
some points on Olympus Mons are high up, but others are not. Put these together with a
mathematical principle asserting that if a change occurs, it must occur somewhere, and a
contradiction follows.

How can this be coherently maintained? Tolerance is extensional: it just says that
either n cm is not high up, or else n + 1 is. And since in a paraconsistent logic, disjunctive
syllogism is invalid (the material conditional does not obey modus ponens; see Section
0.2.2.3), the apocalyptic conclusion that all points are high up does not follow.48 Reconsider
the classical conditional sorites premises: they present pairs, ai,ai+1, such that either ai is
not high up or ai+1 is high up. At each pair, to conclude that ai+1 is high up would be to
take as valid the argument

ϕ(ai),�ϕ(ai)_ ϕ(ai+1) 6 ϕ(ai+1),

implicitly assuming that it couldn’t be that ai both is high up and is not. If there can be,
or is, an inconsistency, then the conclusion that everything is high up does not follow, and
the sorites comes to an abrupt but natural end. Rather than the soritical reasoning running
unchecked to an absurdity, on this account, the sorites argument halts because it reaches
an inconsistency. The inconsistency is revealed by the soritical reasoning: Tolerance on
vagueness, which we must respect if we are trying to understand the phenomenon, insists
that being high up does not abruptly come to a halt; since it does, one of the sorites premises
is false as well as true, and nontriviality is preserved.

I will put more detail on this in a moment. For now, the crucial element of “saving the
appearances” while escaping revenge is again a major virtue of the dialetheic approach.
Revenge for the other approaches is an attempt to deny cutoffs, only to have them recur at
higher levels. The dialetheic approach simply accepts the cutoff, and makes this possible
via inconsistency. A baby becomes a non-baby by being, for a while, both a baby and not a
baby. If you’ve ever lived with a baby, this should not seem so implausible.

1.2.3 Paraconsistency, Definite Descriptions, and Uniqueness

In the previous section, I suggested that the phenomenon of vagueness is that tolerance
is both true and false; as such, vague predicates like “is high up” have inconsistent cutoff

48 What about phrasing tolerance with a conditional that does obey modus ponens? See [Beall and Colyvan, 2001a]. Depending
on the conditional, that would deliver a principle that is simply false. See Section 2.2.3.5 and [Weber et al., 2014].
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points. Some altitude is both high up and not high up. I will now argue that, correlatively,
there can be more than one “first” high up point, and that the abundance of legitimate
cutoffs is why it seems vague: there are so many “the first” to choose from, we can’t believe
any of them are really the first. But they are.

How can there be more than one “the first” cutoff point? Definite descriptions such as
“the first high-up point” can, on a paraconsistent analysis, be satisfied by multiple objects.
Russell’s 1905 analysis [Russell, 1905a] suggests that “ak is the unique ϕ” should be
glossed as

ak is ϕ, and for all j , if aj is ϕ then aj = ak .

Russell uses a material conditional. Unpacking the description, then:

ak is ϕ, and for all j , either aj is not ϕ, or aj = ak .

Now establishing that aj = ak , given that aj is ϕ, would require an application of disjunc-
tive syllogism. If, however, it is possible that aj is both ϕ and not, then such an inference
would be incorrect. What does this portend?

Using the idea of definite descriptions, we will say that some z is a cutoff for ϕ on the
condition that it is the first non-ϕ, e.g., z is not ϕ but nothing before z is not ϕ, or

�ϕz & @y(y ă z Ą ϕy).

Now, consider what counts as a cutoff in the following stripped down scenario:49

ϕ
hkkkkkkkikkkkkkkj

a ă b ă c
loooooooomoooooooon

�ϕ

It may appear that b is the obvious cutoff point, and that c is not a cutoff. But this would
not be the whole story. Because b is overdetermined, it will turn out that both b and c are
cutoffs for ϕ, even while they are numerically distinct. For everything before b, namely a,
is high up, but b is not high up. So b is (at least) a cutoff. On the other hand, everything
before c is high up (because b also is high up), but c is not, so c is a cutoff. So both b and c

are cutoffs. On assumption, b was distinct from c. Therefore, being a cutoff does not imply
being unique. Uniqueness of the cutoff is not necessary.

If we read the Russellian analysis as suggested – that ak is the ϕ – then there can be more
than one least such and so. A definite description, “the first ϕ,” may be satisfied by more
than one object. According to the paraconsistent picture of sorites, a Russellian definite
description holds, as it should, without the further consequences that are only drawn if
inconsistency is discounted. If vagueness behaves anything like the picture presented here,
drawing these further consequences about uniqueness would be as disastrous as inferring
that everyone is bald. The notion of “least” is not univocal in inconsistent contexts.50

49 A four-element model was first suggested by Sam Butchardt. Is there a one-element model that would do the same job?
Stay tuned.

50 What about rephrasing Russell’s definite description scheme with a conditionalÑ that does obey modus ponens, e.g.,
“ϕ(x) & @y(ϕ(y)Ñ x = y)”? As with the issue of rephrasing the sorites argument with a detachable conditional, this
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One more feature of the model should be pointed out. Both b and c are cutoffs, and not.
That is, b is high up, so b is also not a cutoff:

�ϕb & @y(y ă b Ą ϕy) and �(�ϕb & @y(y ă b Ą ϕy))).

Meanwhile, b is not high up, so some things before c are not high up and therefore c is (at
least) not a cutoff:

�ϕc & @y(y ă c Ą ϕy) and �(�ϕc & @y(y ă c Ą ϕy)).

Thus it is false, as well as true, that they are cutoffs; but they are the only cutoffs. While it
is therefore true that in the model there is a cutoff for ϕ,

Dz(z is a cutoff for ϕ),

it is, consequently, also false, and hence has a true negation:

�Dz(z is a cutoff for ϕ).

Read literally, this says that there is no cutoff at all. This accounts for our incredulity about
the existence of a cutoff point: no n is the cutoff point, because Dk(ϕk &�ϕ(k´1)) comes
out as both true and false. There is more than one cutoff point, and none.

How does this explain the sorites? In part, I think the pull of tolerance is due to
an implicit, utterly reasonable question. If tolerance is false and there really is is a
cutoff point, where could it be? Intuitions cry out that it is impossible to believe that vague
predicates have sharp boundaries. It is incredible – there cannot be such a sharp boundary;
otherwise, why can’t we identify it? One has the feeling that if there were a sharp boundary,
we could say where it is. And while I suspect this sort of worry places too much emphasis
on epistemic accessibility,51 I do think part of any approach to the sorites paradox needs
to offer some sort of answer to this reasonable question. The model here goes some way
in doing so. Why can’t we identify cutoffs? Because we expect any such identification to
be unique, fixing the one-and-only first ϕ, and such cutoffs are not unique. In the three-
element model, just by dint of cutoff b being overdetermined, c turns out to be a cutoff.
Despite appearances, one cutoff point cannot be said to be a more natural or obvious cutoff
point than the other, and this is how to vindicate our competing intuitions: the first ϕ is
not the only ϕ. The progression is like descending from Olympus Mons itself. A single
inconsistent cutoff appears; but then, by inconsistency, there cannot be just one cutoff; and
so finally, since any one cutoff is a defeater for all the others, there is no cutoff, which is
what we expected all along.

depends on the conditional (e.g., for using relevant implication in related applications, see [Dunn, 1987]) but the upshot is
that anything stronger than the material hook is implausible as an expression of “the.” We will return to this in the context of
mathematical functions versus relations in Chapter 5.

51 Williamson writes: “When we conceive that something is so, we tend to imagine finding out that it is so. We are uneasy with
a fact on which we cannot attain such a first-personal perspective. We have no idea how we ever could have found out that the
vague statement is true, or that it is false, in an unclear case; we are unable to imagine finding out that it is true, or that it is
false; we fallaciously conclude that it is inconceivable that is it true, and inconceivable that it is false” [Williamson, 1994,
p. 3].
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50 Paradoxes; or, “Here in the Presence of an Absurdity”

“How did you go bankrupt?” asks a character in Hemingway. “Two ways,” is the answer:
“Gradually, then suddenly.” The sorites is a paradox, because the situation it describes is
unbelievable, even while the principles generating that description make it unavoidable.
The sorites paradox is that vague predicates cannot have sharp boundaries, even as they
must. The dialetheic paraconsistent solution to the paradox is that it is true. Every toler-
ance pair ϕn Ą ϕn+1 is true, but some things are ϕ and some things are not. There is some
cutoff point, but there is also no such cutoff, since both tolerance and its negation are true.
The intuitive data are (putatively) preserved, without absurdity, and the sorites is explained
as a feature of more fundamental inconsistency. The paraconsistent mathematics to back
this up is in Part III. Connections between sorites and the other paradoxes are discussed at
the end of Section 1.4.

1.3 Boundaries

It is getting dark. Let’s go back inside. It is twilight now, both day and night, but soon it
will be only night.

Night is when we are in the the shadow of the Earth. But we do not think of the darkness
of the night as one big shadow. Why not? Casati suggests it is because the shadow of night
has no edges, or at least not ones we usually see,52 and a shadow is ordinarily thought of as
something with edges, or boundaries. Shadows are strange in themselves;53 and yet, even
for entities that minimally qualify as entities, there is a clear intuition that shadows must
have an edge in order to exist. Boundaries are integral in some way to there being objects.
Euclid [Book 1, Def 13–14, emphasis added] [Euclid, 1956]; emphasis added:

A boundary [terma] is the extremity of any thing. A boundary is the limit within which anything is
contained. A figure is given by its boundaries.

Without the limit of a figure, there is no figure at all.
Even more so than with sets, truth, or vagueness, objects with boundaries are so much a

part of our everyday experience that it is at first highly implausible that they be paradoxical.
We navigate boundaries all the time, from not bumping into people when we walk down
the street, to turning off the water tap before the sink overflows. The boundaries of human
bodies are basic to our phenomenal experience.54 We are inclined to assume, incorrectly,
that if something is a commonplace, then it could not be problematic; but material objects
in space are every bit as puzzling – and paradoxical in the same way – as sets, semantics,
and sorites.55

52 In [Casati, 2003]. A planet’s terminator is the edge of the night.
53 Cf. the Yale shadow paradox, 1975 (see [Sorensen, 2008]), used to motivate dialetheism in [Mares, 2004b].
54 As Merleau-Ponty argues; see [Dillon, 1997].
55 Thanks to Aaron Cotnoir for collaboration on this topic in [Weber and Cotnoir, 2015].
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1.3.1 The Problem: Symmetry and Connected Space

There is a Great Red Spot on the planet Jupiter.56 Estimates vary as to how old it is
(in the vicinity of 350 years), but all agree it is an anticyclonic vortex, a gigantic and
remarkably persistent storm at least twice the size of the Earth.57 Although the Spot is
dynamic, fluctuating in size and shape, it is stable and stark, visible through Earth-based
telescopes. What is it that makes the Great Red Spot a distinctive part of the Jovian sky?

The Great Red Spot is a very large and red example of a much more general
phenomenon – the existence of material, ordinary objects. What is it that makes the
Great Red Spot an object at all? This is like the question that we asked, and answered,
around set composition, about how the many particles become one spot (Section 1.1.3.1).
For the world is unquestionably full of stuff;58 some of this stuff composes so as to make
other stuff, called ordinary objects;59 and a natural observation about ordinary objects is
that each of them has a boundary. Aristotle defined the boundary of an object as “the first
thing outside of which no part is to be found, and the first thing inside of which every
part is to be found” (Metaphysics V, 17, 1022a4–5). As Varzi puts it, “whether sharp or
blurry, natural or artificial, for every object there appears to be a boundary that marks it off
from the rest of the world” [Varzi, 2004]. A boundary contributes crucially to there being
a figure at all, a thing, and not merely a disenfranchised mess of unrelated stuff.

Boundaries are puzzling, too. The sorites paradox has already shown this: the existence
of twilight threatens to, but cannot, mean there is no difference between day and night.60

Now focus on the dual problem: could there be a difference between day and night without
the intermediary of twilight? Take the following puzzle: consider the Great Red Spot on
Jupiter, and trace a path from a red-colored point inside the Spot to a non-red colored point
outside the Spot. What happens as we pass through the boundary of the Spot?

The most obvious answer is that we pass from the last red point to the first non-red point
(passing over any question of whether points have a color). But on the assumption that
space is dense (recalling the continuous sorites in Section 1.2.1), there would be an infinite
number of points in between. What color are they? Do they belong to the Great Red Spot,
or to its complement in the Jovian atmosphere? Either some point both is and is not part
of the Great Red Spot, or else neither, leaving a “gap” on the face of Jupiter. It is arbitrary
simply to assign the boundary to the Spot, say, and leave its complement in the atmosphere
unbounded [Varzi, 2004], or vice versa. That would violate the principle of sufficient reason
(PSR), our Premise 0 from the preface. It is incomplete not to assign the boundary at all;
but the remaining alternative is inconsistent, as I will now try to bring out.61

56 There is also a giant hexagon on Saturn. Look it up.
57 [Rogers, 1995, pp. 191–196].
58 “Stuff” is a technical term; as in [Miller, 2009], it is contrasted with “thing”: there is a thing but some stuff.
59 Another technical term; see [Thomasson, 2007], also [Koslicki, 2008].
60 Example attributed to Dr. Samuel Johnson.
61 For discussions of similar material, see Varzi [1997]; Casati and Varzi [1999, p. 74]; Dainton [2010, ch. 17]; Hudson [2005,

chs. 2, 3]; Priest [2006b, chs. 11, 12, 15]; Arntzenius [2012, ch. 4]; Hellman and Shapiro [2018, 7§4].

https://doi.org/10.1017/9781108993135.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108993135.004


52 Paradoxes; or, “Here in the Presence of an Absurdity”

1.3.1.1 Symmetry

As with the sorites paradox, the boundary puzzle does not go away once we bring it
mathematical rigor. It becomes more puzzling.

As mentioned in the Introduction, the modern theory of continuity was developed in
part by Dedekind [Dedekind, 1901], as a reverse engineering feat around the intermediate
value theorem. He wanted to ensure that, given a starting point inside a set of points, e.g.,
the Great Red Spot, and a finishing point outside it, that a continuous path must cross
the boundary between them. As for which side the boundary line belongs to, Dedekind
dismissed the problem: one or the other, but whichever we like, he said.

If now any separation of the system R into two classes A1, A2 is given which possesses only this
characteristic property that every number a1 in A1 is less than every number a2 in A2, then for brevity
we shall call such a separation a cut [Schnitt] and designate it by (A1,A2). We can then say that every
rational number a produces one cut or, strictly speaking, two cuts, which, however, we shall not look
upon as essentially different [Dedekind, 1901, § IV, emphasis in the original text.]

By definition, a closed object includes its boundary. The boundary of an open object
belongs to its complement. So Dedekind’s solution is that a boundary splits a (continuous)
space into two parts, where one part will be open and the other closed. The same goes for
dividing a one-dimensional line, as we saw (in the Introduction): the center of the line is
an indivisible geometric point, so any division of it leaves one side open and the other side
closed.

Dedekind’s solution is ingenious, but it solves a mathematical problem by creating a
metaphysical one. Given no other facts about the space, why do the open/closed properties
fall where they do? Neither macroscopic analysis nor mathematical argument settle the
matter, since physically the object loses its definition at very small scales, and logically, the
properties of being open and closed may be interchanged without any rational difference.62

The principle of sufficient reason63 motivates the following constraint:

Symmetry: Objects that otherwise have no relevant difference between them have no
relevant difference between their boundaries.

From Symmetry follows a corollary: if there is an object with a closed proper part, then,
absent any further compelling reason otherwise, the relative complement of that part is
closed too, if no reason can be given why one side should get the boundary rather than the
other. Note carefully, however, that Symmetry does not say that every division of an object
is symmetric. That would be silly. Nor does it say that all objects are closed. Symmetry
says that there is some way to divide an object without creating an imbalance. Symmetry
is violated when every way of dividing objects forces an arbitrary difference between its
otherwise indifferent parts.

62 [Pratt-Harmon, 2007, p. 14], although see Chapter 9.
63 “The principle of sufficient reason, on the strength of which we hold that no fact can ever be true or existent, no statement

correct, unless there is a sufficient reason why things are as they are and not otherwise – even if in most cases we can’t know
what the reason is” [Leibniz, 1714, p. 32]. For more on the PSR, and its role in Spinoza, see [Della Rocca, 2008].
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To put Symmetry the other way around, then, if there is a difference between the
boundaries of two objects a,b, (which we will write B(a),B(b) (a precise definition of B
is given in Section 9.2.1)), a principled and explicable difference that persists across all
cases, then there is an explicable difference between the objects after all. This is itself a
continuity intuition (cf. Section 8.3.2), and closely related to tolerance – roughly, if a is
very similar to b, then B(a) is very similar to B(b). Where one object is open and another is
closed, there should be some reason as to why; to ask which is which about Jupiter and its
Spot is to ask “an embarrassing question” [Casati and Varzi, 1999, p. 87].

The puzzle is not merely physical or mathematical. An object may be open and closed
(even classically, where this is sometimes called being “clopen”), but two open-and-closed
objects cannot, on the classical account, touch (Section 1.3.1.2). What metaphysical sense
can we make of the classical account of bounded objects in connected space? Are there
mysterious metaphysical forces such that some objects (ones that are both closed) simply
must repel one another?64 Or, if not mysterious forces, then primitive mysterious differ-
ences, a “preordained asymmetry”? Nothing at this level of generality accounts for some
objects being open and others closed. And the level of generality is important: we are not
trying to understand why some objects are round, and others square, or why some objects
are flowers and others are trees; we want to know why for the continuum, and so for any
continuous object, symmetric division always fails. The reason must be something about
objects qua objects – not a case-by-case inspection of each situation, but something about
the pure geometry of how things sit together in the world, just by virtue of their being
things. No matter how serendipitous one thinks the conferring of structural properties has
been, differences at this level of generality call out for an explanation. The Symmetry
problem is the postulation of a distinction without a difference.

1.3.1.2 Connectivity

The bite of the boundary puzzle comes from the assumption that space is connected. The
key fact is just this:

Separation: A space is separated iff there is an exclusive and exhaustive division of the
space into two closed parts.

Spaces that are not separable are connected:

Connection: A space is connected iff every exhaustive division of the space into two
closed parts is not exclusive (has a nonempty overlap).

Since the basics of topology tell us that the complement of a closed set is open,65 both parts
of the partition in a separation are open, too. Connectivity is enmeshed with the concepts of
open and closed sets: if a space is connected, then according to classical topology following

64 “A certain class of objects are unaccountably differential to one another – always just managing to step out of one another’s
way – while they bang heedlessly into the members of another class of objects. Surely repulsive forces would have to be
posited to explain such behavior” Zimmerman [1996, p. 12]. See Sider [2000, p. 587] for a reply.

65 Kelley [1955, p. 40].
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Dedekind, it cannot be that it divides symmetrically. That would just be a separation.66

What this shows is that a space that satisfies the symmetry intuition cannot, apparently, be
connected. And this is itself a problem, because the space of naive experience is connected.
There are no rips or tears.

In classical topology, the definition given in Separation is equivalent to another: that
the only sets in connected space that are both open and closed are the entirety of the space,
and the empty set.67 Why? How does this rather recondite restatement follow from intuitive
claims about space? Well, consider an apparently connected space like Jupiter, and some
nonempty proper part of it, like the Great Red Spot, G. The boundary of G, intuitively,
is made up of all the points that are “extremely close” to both G and its complement G.
Suppose G is both open and closed. Then:

(1) If G includes its boundary B(G), if it is closed, then all the points in B(G) are points
in G.

(2) If G is open, then all the points in B(G) are points in G.
(3) Ergo if G is both open and closed, then for any x P B(G),

x P G and x P G

which is a contradiction, x P G and x R G.
(4) By classical reductio, then, there is no x P B(G), and the boundary is empty, B(G) = H.
(5) But an empty boundary between G and its host space means that G is separated from

the host space, and that the overall surface is disconnected.

Therefore, if the Great Red Spot is really a nonempty proper subspace of Jupiter’s atmo-
spheric surface, and it is both open and closed, then there is a rip in the fabric of the space,
and so the space is not connected. Thus a connected space has no nonempty subspaces that
are both open and closed.

The existence of bounded, discrete entities grates against the connectivity of space (cf.
Section 9.2.1). The problem aligns closely with the sorites, as discussed in Section 1.2, with
symmetry for tolerance and separation for the line-drawing negation of tolerance.
If objects differ, they must inevitably begin to differ somewhere, but any exact point where
the difference begins looks to “cut” our lived-world impossibly.

Reasoning has led us into a corner once again. On the one hand, objects that are touching
share a boundary; space is connected. On the other hand, objects do not arbitrarily differ;
boundaries are not random; and so both objects in the connection can still have their
boundary as a part. This breaks the space into two subobjects that are both open and closed.
If a subobject in space is both open and closed, then the space is not connected – but there
are subobjects in space that are both open and closed, and yet space is connected! The
underlying principles here – intuitions about the topology of our lived experience – are

66 Cf. [Paul, 2006].
67 [Kelley, 1955, p. 53; Hocking and Young, 1961, p. 15].
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perhaps not as axiomatically compelling as naive set comprehension, but they are robust,
as we’re about to check by considering if there are other options.

1.3.2 Options

The previous section has already detailed the orthodox cause and solution to the problem,
for example defended in [Bolzano, 1851]: a boundary may be part of an object or its
complement, but not both. Other approaches all endeavor to explain how a boundary never
arbitrarily belongs to an object over its complement, always assuming the connectivity
of space. The increasingly familiar options of incompleteness and inconsistency return;
but now, unlike in the case of abstracta such as propositions or sets, the implications are
literally palpable.

1.3.2.1 Underlap

Analogous to the nihilist view of vagueness, or the nihilist view of mereology, is the so-
called eliminativist response to this problem: boundaries do not exist. At least, not as parts
of objects: boundaries are either abstractions (equivalence classes) of convergent series of
nested bodies, the boundary of the space-time receptacle of that object, or some other ersatz
replacement concept.68

Eliminativism automatically avoids assigning boundaries arbitrarily, but only because
it does not assign boundaries at all. Since we are interested in explaining boundaries, not
explaining them away, this way of (vacuously) accommodating symmetry is a nonstarter. It
may be a problem (paradoxical, even) to face liar sentences, Russell sets, vague predicates,
and boundaries, but that does not excuse us from doing so.

Analogous to the “indeterminateness” intuition from vagueness, it is natural enough
to think that a boundary may be neither part of an object nor part of its complement.69

And in analogy to the paracomplete/gappy approaches to the sorites paradox, proposing an
“underlap” between objects faces basic revenge problems. For what separates the Great Red
Spot from its complement? A boundary exists between them, neither part of the Spot nor its
complement – which leads to a new question: since the boundary and the Spot are disjoint,
what separates the boundary from the Spot itself? What separates the boundary from the
Spot’s complement? Presumably, by parity of reasoning, there must be a new boundary
between the Spot and its boundary. If we reapply the underlap solution, this boundary
is part of neither the Spot, nor the boundary of the Spot, and we’re off on a regress of
infinitely many distinct gaps between any two objects in contact. To the extent that one
boundary needs explaining, multiplying new boundaries only multiplies the problem. This
is very similar to the chase of cutoffs in higher-order vagueness (Section 1.2.2.2);70 this is
paradigmatic revenge.

68 The most notable eliminativist is Whitehead; see [Clarke, 1985; Hellman and Shapiro, 2018].
69 Varzi [Varzi, 1997, p. 27] attributes this view to Leonardo.
70 Thanks to Marcus Rossberg here.
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1.3.2.2 Overlap

In what is known as the coincidence view, there are two coinciding boundaries: one that is
part of an object, and one that is part of its complement.71 These two boundaries occupy
the same space. The theory claims that all entities whatsoever have boundaries as parts as
a matter of metaphysical necessity [Smith, 1997, p. 18]:

. . . the possibility of a coincidence of boundaries is essential to the concept of what is continuous
[Brentano, 1988, p. 5].

On this view, all entities are closed. In this way, there is no arbitrary choice between two
adjacent objects as to which is to be open and which closed. Both must be closed, each
including their own boundary.72

The coincidence view approaches, but does not embrace, acceptance of contradiction.
Even if the boundaries coincide, they are distinct. The view then suffers from basic revenge.
For, on this view, there are many otherwise indistinguishable boundaries, all colocated and
doing the same work. While Symmetry is nominally respected in that there is no arbitrary
choice between bounded and unbounded objects, there still is a choice as to which object a
given boundary belongs. The Great Red Spot has a boundary b1 and so does its complement
b2. But given the coincidence of b1 and b2, what makes it the case that it is b1 and not b2

that is the Spot’s boundary? The two boundaries occupy exactly the same set of points;
to mark any difference at all beyond two names, it must be that boundaries are essentially
“directional,” intensional. A given boundary is always directed toward the (only) entity that
it bounds. (A point in the interior of a solid sphere is a boundary in every direction.) But
there is no explanation for a given boundary’s direction. Boundaries are attached to their
objects in an essentially arbitrary way. So the violation of Symmetry is very basic: there is
a distinction between two boundaries, recorded by directionality, but no difference between
them. This is little better than the original problem, which was explaining why a boundary
went one way rather than the other. This is revenge.

1.3.3 Toward a Paraconsistent Topology

The coincidence view is approaching a simpler glutty view: a nonempty boundary may
simply be part of both an object and its complement. Points very near both the Great Red
Spot and its complement are both parts of the Spot and not. It is perhaps Brentano’s coinci-
dence view that best shows how our competing intuitions are irreconcilable – if consistency
must be maintained. Objects in contact overlap, if they are to touch symmetrically. Overlap
means that the objects share some points, either their entire boundaries or some relevant
portions thereof; when an object touches its complement, there will be points both on and

71 See [Chisholm, 1984; Brentano, 1988]; cf. [Smith, 1997].
72 Concomitantly, there are a great deal of coincident objects: “Each point within the interior of a two- or three-dimensional

continuum is in fact an infinite (and as it were maximally compressed) collection of distinct but coincident points . . . (Not for
nothing were the scholastic philosophers exercised by the question as to how many zero-dimensional beings might be fitted
onto the head of a pin)” [Smith, 1997, p. 10].
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not on an object, calling for a paraconsistent treatment. Being disjoint (no overlap) may
hold simultaneously with overlap. Thereby, symmetry can be satisfied simultaneously with
connection.

That’s the thought, in any case. The project of understanding boundaries (at this level
of generality) comes down to a need for an account of proper, nonempty subspaces of
connected space that may themselves be both open and closed. And, it should be added, the
theory that vindicates this still must bear enough resemblance to ordinary topology to be
modeling the same concepts. It is left to Chapter 9 to see whether enough precision can be
given to this naive idea. For the moment, let’s circle back to make the connections between
this paradox and the others clearer, by looking at how to express the sorites paradox in
purely topological terms.

1.3.3.1 A Topological Sorites

As with the continuous sorites, the sorites paradox does not require a digital or discrete
presentation; in fact, it does not even require an ordering relation. Or so a toplogical sorites
purports to show.73

A function f is locally constant iff for each x P X there is a “neighborhood” of nearby
points such that the restriction of f to that neighborhood is constant, all taking the same
value. A globally constant function always takes the same value, without restriction to a
neighborhood. It is a classical lemma that if f is locally constant in a connected space,
then f is globally constant.

Let X be connected, and f a function from X to some set Y . Consider some region A

of X. Now the range of f , Y , can be thought of as the pair of truth values t0,1u, in which
case the characteristic function σ of the set A is defined thus:

σA(x) =
#

1 if x P A,

0 if x R A,

where A = tx : ϕ(x)u, the analogous σϕ(x) = 1 if ϕ(x) and 0 otherwise. But if f is
locally constant on A, so that σϕ(x) = 1 for every x P A, then by the preceding lemma, f

is globally constant: σϕ(x) = 1 for every x P X.
In keeping with the proposed definition of vagueness offered at the end of Section 1.2.1,

say that a predicate is vague iff something satisfies it, and its characteristic function is
locally constant – that’s tolerance – but not globally constant. As ever, in connected
space, vagueness threatens to trigger a slippery slope avalanche: either nothing satisfies a
vague predicate, or everything does.

Let X be connected and A be a subset of X, with A the extension of a vague ϕ. Then
by the previous reasoning about locally constant functions, either A = X or A = H. This
gives us a topological inductive version of the sorites:

73 This is a completely classical argument. As such, I only sketch the argument; see [Weber and Colyvan, 2010] for unpacking,
or just [Jänich, 1984, p. 14], where I got it from. For criticism of this sorites construction, see [Rizza, 2013].
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Some member of X is ϕ.
X is a connected space, and ϕ is vague.

6 Every member of X is ϕ.

Contrapositively, the result is a topological line-drawing sorites: for some vague ϕ,

Some things in X are ϕ.
Some are not.

6 X is separated.

The boundary of the ϕs in X is empty, on pain of contradiction. The usual sorites paradox
is a special case of the boundary problem in space. The glutty interpretation of the line-
drawing form, following from the preceding, is that X is only “separated” in the sense that
ϕ has an inconsistent boundary.

* * *

With the topological sorites in view, let’s see how it helps with the more usual sorites,
and paradoxes in general. Here is not how the boundary puzzle was presented: given this
object,

then is its boundary black or white? This form of the question is static, third-personal. It has
all the needed components for the puzzle, but does not feel puzzling. No, rather the question
is posed: as you cross the threshold, what do you see? It takes longer acquaintance with the
situation to generate the relevant phenomenology of paradox (unbelievable!) with a static
object, as the topological version of the sorites attempts to do. The sorites paradox feels
most acute when it is dynamic, for example in the form of a “forced march” (. . . and is this
man bald? What about this man? And this . . . ?).74 But topologically, no paths are required.
The underlying structure of the space that makes a problem for the march is already there.
Our first personal experience is how we come to learn about facts, but we (perhaps to our
disappointment) eventually begin to learn that the facts don’t care whether we interact with
them or not. Marching has nothing to do with it.

I do not think that, if only we could speak or think about these problems clearly enough,
they would be resolved. I think the history shows that the more clearly we think about
these problems, the more irascible they become. Absurdity arises whether or not we the

74 See [Horgan, 1994].
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humans bring our demands to bear on the world; we are not so powerful that we can make
the otherwise-sanguine world absurd. We notice the paradox at the penumbra because it is
there to be noticed – we are here in the presence of an absurdity. So, while our participation
in the process makes the problem vivid, whatever is driving revenge would already be there
even if no one ever tried to solve the paradoxes.

If there were only paradoxes to do with sets or semantics, that would be quite a lot – but
the effect would remain intangible, abstruse.75 The paradoxes could be compartmentalized
away, as a quirk about human cognition, representation, language, or the like. Similarly, if
there were only paradoxes to do with our responses to vague stimuli, that would be quite a
lot, but not the job of pure metaphysics or mathematics to answer. The paradoxes go beyond
subjective and mental experiences. I think the topological case indicates that the problem
can be generated with no more than some points in space.

Just as logic is not a solution to the paradoxes (Section 0.2.3), the paradoxes are not
about us. To put it colorfully, the paradoxes would be paradoxical even to God, and “God
has no need of any arguments, even good ones” [Meyer, 1976, p. 94]. If that is right, our
attention can focus at the right level to be trying to understand the paradoxes: what it is
about the world as such, about objects and their boundaries, that makes there be paradoxes?

1.4 Conclusion

This chapter has presented several interconnected paradoxes. They are a problem for any-
one with basic convictions about comprehension, continuity, and composition. Start with
something obviously true (set comprehension; tolerance; the existence of boundaries in
connected space), and you find a contradiction – but any attempt to evade the contradiction
leads to revenge, because what you started with was obviously true.

One thing these paradoxes all have in common is that they are resilient. This is the
revenge phenomenon, and a tell-tale sign of a genuine paradox. Revenge is what drives, I
think, an acceptance-based approach of dialetheic paraconsistency (though not without its
own costs; see Section 3.3.2, Chapter 4, and Chapter 10). The paradoxes are not solvable.
Simple immunity to revenge is not a virtue just on the basis of scoring points against
competing views; immunity to revenge shows that a position has got to grips with the
real problem, while those that evade and are stung, evade and are stung, again and again,
have not. Any solution does not merely fail, but recapitulates the original paradox.

Tappenden points out the striking fact that to state what is wrong with these paradoxes
is just to state the paradoxes. In the case of the liar, we have a sentence � for which

(*): � is true iff � is not true.

Sentence (*) “seems to capture one feature of the sentence � in virtue of which � is paradox-
ical,” says Tappenden (he uses “k” instead of “�”); he explains [Tappenden, 2002, p. 552]:

75 Semantic dialetheism is discussed in [Mares, 2004b] and defended by Beall [Beall, 2009]. From another direction,
fictionalism about dialetheism is discussed in [Kroon, 2004].
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Imagine that you are explaining the liar to someone who does not catch on right away. You might
well say: “Here is what is funny about �. If � is true then it is not true, and if � is not true then it
is true.” You have apparently just contradicted yourself by uttering a variation on (*). But (*) seems
to be the right thing to say in the situation. And does it not get across precisely what is odd about
the liar?

This is an intuitive way of explaining revenge. An attempt to solve the problem – or even
articulate it – triggers the problem itself! As with the liar, so the sorites.76 Tappenden
describes a parallel scenario [Tappenden, 2002, p. 553]: you explain that “if any two
samples are observationally indistinguishable to you, then one looks red to you if and
only if the other looks red to you.” Just like (*), this “seems like just the thing to say
[to] correct the other person’s mistakes . . . But if we are attempting to say something true,
we are failing.” And spatial boundary paradoxes suggest a common structure underlying
these puzzles: that there is inconsistency at the edges of things.

In the last two chapters, I have tried, in effect, to suggest that this is the case for all the
relevant paradoxes: simply to describe them (ordinals are sets of proceeding ordinals; some
people are babies and some are not; closed objects in connected space can touch) is to find
ourselves led into contradiction. And then, I’ve suggested ([Priest, 2002a] argues the point
at length) that if we try to find our way out of the contraction, by denying the data in one
fashion or another, that leads into contradiction again. In abstract, the structure of revenge
is as follows:

Step 1 – there is a paradox, at the boundary between two (exclusive/exhaustive)
categories.
Step 2 – solve the paradox by introducing a new, third category.
Step 3 – a new (is it?) paradox arises at the two new boundaries.

The pattern of the paradoxes is a particular sort of valid argument that ends in a particular
sort of contradiction. The argument is one in which denial of a premise leads to a regress,
or more euphemistically, a “hierarchical” picture (iterative sets, higher-order vagueness,
gappy boundaries) where the hierarchy in some direct sense then affirms the very premise
being denied; cf. [Priest, 2007].

In emphasizing revenge, I am not endorsing a principle like the following: “If two
paradoxes respond the same way to treatment, they are the same type of paradox.” That
is not correct.77 Rather, the problem in both the liar and the sorites (and by extension, the
Russell paradox) is that there is something on a boundary where it shouldn’t be – between
truth and falsity, high and not high, the Russell set and its complement. We are compelled
to admit that it really is there, because attempts to remove the bad overlapper lead to more
boundaries with more overlappers, and not as a one-off accident but no matter what, a

76 The thought that the sorites and the paradoxes of self-reference have something important to do with each other is also found
in [Dummett, 1978, ch. 12; McGee, 1990; Sorensen, 1994, p. 53; Field, 2008, p. 106]. More recently, prominent approaches
to paradox using substructural logic ([Zardini, 2011; Ripley, 2013]) are developed to treat both the liar and the sorites.

77 See [Colyvan, 2008b].

https://doi.org/10.1017/9781108993135.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108993135.004


1.4 Conclusion 61

structural necessity.78 The standard consistent/incomplete responses lead to the same end.
They lead me to a paraconsistent approach – not as a last resort, but as first step toward
something new.

* * *

In this chapter, I have set the scene by making the following case. Naive set theory
is true. Therefore, there are true contradictions – paradigmatically, the liar and Russell
paradox, among more sophisticated others. Naive sets provide a simple account of multi-
tudes grasped together as a singular entitity. In the case of material, ordinary objects, this
cohesion is particularly vivid when looking at the boundaries of things, and points on the
boundary. The sorites paradox is the sharp edge of the boundary paradox, occurring on
spaces where we find it particularly noticeable that there are boundary points that seem
both part and not part of an object, multiple “first” cutoff points. Any response to these
paradoxes leads, because of revenge, either explicitly or implicitly to a contradiction.

I’ve made this case at full speed, and don’t pretend to have given proper consideration to
all the arguments. We’ve seen some paradoxes, and I have broadly recommended dialetheic
paraconsistency as a promising response. We could keep weighing up the options in the
abstract, but to understand the glutty option properly, I think we need to see what it can
actually do, in terms of making sense of the paradoxes. That’s what I plan to pursue here.
The question now, then, is: how is the dialethetic approach to proceed?

78 Compare, for example, your plan to live a life of unfettered adventure, and your plan to settle down securely with a long-term
partner; see [Slote, 2011], echoing Kierkegaard’s injunction in Either/Or that whether you marry or do not marry, “you will
regret it either way.” : “Marry and you will be unhappy; do not marry, and you will be unhappy.”

https://doi.org/10.1017/9781108993135.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108993135.004


https://doi.org/10.1017/9781108993135.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108993135.004

