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Abstract

Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater under-
standing of the factors which promote tumour progression, metastatic development and
therapeutic resistance is needed. In recent years, a distinct microbiome has been detected
in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular
relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucle-
atum is enriched in breast tumour tissue compared with matched healthy tissue and has been
shown to promote mammary tumour growth and metastatic progression in mouse models.
Current literature suggests that F. nucleatum modulates immune escape and inflammation
within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore,
the microbiome, and F. nucleatum specifically, has been shown to affect patient response to
therapy including immune checkpoint inhibitors. These findings highlight areas of future
research needed to better understand the influence of F. nucleatum in the development and
treatment of breast cancer.

Breast cancer

Breast cancer (BC) has exceeded lung cancer to become the most commonly diagnosed cancer
worldwide, with 2.3 million cases in 2020 alone (Ref. 1). At present, 70–80% of early-stage,
non-metastatic cases are curable (Ref. 2). However, secondary/metastatic BC is considered
incurable with the currently available treatments. Unfortunately, in 2020 there were over
650 000 BC-related deaths worldwide, contributing to approximately 7% of cancer deaths
that year (Ref. 1). Therefore, there is an unmet clinical need to understand what causes certain
cancers to resist treatment and what drives metastasis.

BC is a heterogeneous disease showing molecular and histological diversity between
patients, resulting in variability in disease outcome and response to treatment. Biomarker
expression has been used successfully to stratify breast tumours into molecular subgroups,
guide treatment options and to develop targeted treatments such as endocrine therapies.
The current molecular biomarkers with clinical significance include the oestrogen receptor
(ERα), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)
(Ref. 2). Additionally, BCs that are ERα/PR negative and lack HER2 amplification are grouped
as triple negative breast cancers (TNBCs), which lack available targeted treatment options
(Ref. 3), although some advances are being made in subsets of TNBC through the use of
immune checkpoint inhibitors (ICIs) (Refs 4, 5, 6, 7) and/or antibody-drug conjugates (Ref. 8).

However, there are still limitations with current BC treatments, where patients may relapse
even with subtype-specific treatment regimens. Therefore, further stratification and the iden-
tification of more effective and actionable prognostic and predictive biomarkers are required to
improve patient management.

This review aims to examine the known molecular consequences of the species of bacteria
Fusobacterium nucleatum (F. nucleatum) within the tumour microenvironment (TME),
potentially identifying actionable pathways modulated by the bacterium that may have rele-
vance in the BC setting.

The microbiome and cancer

The human body is host to a large population of microbes, estimated at 10–100 trillion cells
(Ref. 9), the majority of which exist within the gastrointestinal (GI) tract. Due to the develop-
ment of next-generation sequencing techniques, organs which were previously believed to be
sterile have been revealed to host microbial populations (Ref. 10). Furthermore, the human
microbiome is shaped via co-evolution with the host, resulting in large compositional variations
between age, sex, diet and geographical location. Therefore, the microbiome may contribute to
the diversity observed in disease outcomes and treatment response between patients.

The imbalance in the relationship between the host and the microbiota (dysbiosis) is char-
acterised by a reduction in the diversity of microbes present, and a shift towards a population
in which pathogenic bacteria dominate. With the microbiome recently included as a hallmark
of cancer (Ref. 11) growing evidence suggests that both cancer-protective and tumour-
promoting species exist, and can influence susceptibility, development, therapeutic response
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and metastasis (Ref. 12) of certain cancers. Therefore, particular
members of the microbiome could be, and have already been,
identified as biomarkers with clinical importance, including the
human papilloma virus (HPV), hepatitis B and C and the bacter-
ium Helicobacter pylori (Ref. 13).

However, more microbial species have been identified in recent
years within tumour tissue as a result of the development of high-
depth next-generation sequencing of bacterial 16S ribosomal
RNA and more complete databases of sequenced organisms
(Refs 13, 14, 15, 16, 17, 18). Critically, these approaches have
been expanded to also characterise low-biomass intra-tumoural
microbiomes, including introducing stringent pipelines which
account for background noise and contamination (Ref. 10), and
mining shotgun sequencing data generated on tumour tissue
biopsies (Ref. 19).

A number of these newly detected intra-tumoural microbes
have been shown to modulate or contribute to cancer (Ref. 20).
Conversely, some species have been exploited for cancer treat-
ments such as probiotic treatments given alongside conventional
therapy regimes or bacteria-assisted tumour-targeting therapies
(Refs 21, 22).

Importantly, in a study by Nejman et al. (Ref. 10) which char-
acterised the link between the microbiome and different types of
solid tumours using next-generation sequencing, breast tumours
were shown to have a rich and more diverse microbiome com-
pared to the other tumour types tested, including melanoma
and lung, but not including the GI tract. Furthermore, they
noted variation within the dominant bacterial taxa between the
ERα+, PR+ and HER2+ subtypes of BC (Ref. 11). Other studies
have confirmed that there is an altered microbiome in breast
tumours compared with healthy tissue (Refs 23, 24, 25, 26, 27,
28, 29, 30), the findings of which have been reviewed previously
(Refs 31, 32). The potential to utilise the bacterial signature of
breast biopsy tissue to infer malignancy status has also recently
been reported (Ref. 33).

Breast cancer-associated bacteria have been found predomin-
antly to reside intracellularly, both within breast tumour epithelial
cells and immune cells (Refs 10, 34). However, the microbiome of
distant organs such as those of the GI tract can also affect carcino-
genesis and progression of BC by influencing factors such as diet,
obesity, levels of free circulating oestrogens and immune modula-
tion (Refs 12, 35, 36). Moreover, the microbiome of both distant
organs and the site of the tumour has been linked to local and sys-
temic impacts on cancer chemotherapy efficacy and toxicity
(Refs 12, 37). Studies have also shown that modulating the gut
microbiome before and during chemotherapy treatment could
improve efficacy and reduce the incidence of adverse events
(Refs 38, 39), and more specifically, the gut microbiome was
used as a predictive biomarker for doxorubicin responsiveness
in a 4T1 murine TNBC model (Ref. 37).

Furthermore, some bacterial species have been shown to alter
the TME, which is important in tumour formation, progression,
metastasis and drug resistance (Refs 40, 41). Bacterial colonisation
of the tumour has been shown to activate the intertwined processes
of tumour-promoting inflammation and evasion of tumour
destruction by the immune system (Fig. 1) (Refs 11, 42).
Investigations into how the intra-tumoral bacteria may influence
the breast TME are only beginning. However, remodelling of the
TME in BC by bacteria has already been shown using the 4T1 syn-
geneic model inoculated with Escherichia coli K-12, where
increased type IV collagen deposition, increased matrix metallo-
proteinase 9 (MMP9) expression and altered distribution of
tumour-associated macrophages were observed (Ref. 24).
Additionally, intraductal injection of mouse teats with
Bacteroides fragilis resulted in increased local inflammation, tissue
fibrosis and higher T-cell infiltration than in control mice (Ref. 43).

Fusobacterium nucleatum: an overview

F. nucleatum is a Gram-negative, anaerobic, adhesive bacterium
and is commonly found within the oral mucosa where it aids in
biofilm formation, supporting a normal oral microenvironment
(Ref. 44). However, F. nucleatum has also been associated with
adverse pregnancy outcomes (Refs 45, 46), appendicitis
(Ref. 47) and importantly, many tumour types (Refs 10, 48, 49).
For example, F. nucleatum has been reported to be a potential bio-
marker for populations of colorectal cancer (CRC) (Refs 50, 51,
52, 53).

Studies have shown that F. nucleatum presence in tumour tis-
sue is associated with poor overall survival (OS) in oesophageal
squamous cell carcinomas (ESCC), early-stage HPV-negative ton-
gue cancer (Ref. 54), as well as increased metastasis in CRC
patients (Refs 52, 55, 56, 57, 58). However, in oral squamous
cell carcinoma (OSCC), F. nucleatum presence is associated
with a lower recurrence rate, reduced metastases and longer OS
(Ref. 59). This highlights the complexity of host–pathogen rela-
tionships, and therefore the need for individual, context-specific
studies.

Methods to detect and quantify specific microbes have
advanced, and the development of RNA in situ hybridisation
(Refs 60, 61, 62), next-generation sequencing (Refs 10, 49) and
qPCR on tumour tissue (Refs 48, 63) has enabled detection of
F. nucleatum in both high- and low-biomass tumour tissues.

F. nucleatum was identified in approximately 30% of breast
tumours by Nejman et al. (Ref. 10), and within other BC cohorts
(Refs 23, 29, 64, 65, 66). Additionally, while the abundance of
F. nucleatum relative to cancer cells is low, it is shown to increase
in abundance in higher stage breast tumours (Ref. 28). However,
the clinical significance has not yet been fully elucidated for
F. nucleatum in the breast. Given the findings that F. nucleatum
is associated with both favourable outcomes in OSCC, and
adverse outcomes in CRC and ESCC, it will be important in
the future to determine the significance of F. nucleatum in the
breast on survival outcomes.

Parhi et al. (Ref. 64) showed that F. nucleatum promoted
mammary tumour growth and, critically, metastatic progression
when inoculated into mice. They suggested that this effect may
be mediated by suppression of T-cell infiltration into the TME
and/or increased expression of MMP9 (Ref. 64).

The oncogenic mechanisms of F. nucleatum in cancer

An important feature of F. nucleatum is its ability to bind to a var-
iety of host and neighbouring bacterial cells via a range of viru-
lence factors including the Fap2 protein that binds to the sugar
D-galactose-β-N-acetyl-D-galactosamine (Gal-GalNAc) (Refs 1,
2, 3)(Refs 64, 67) which is overexpressed in CRC and BC
(Refs 64, 67). Specifically, F. nucleatum binds to tumour cells,
influencing downstream oncogenic and pro-metastatic signalling
(Refs 68, 69, 70, 71, 72, 73, 74). A summary of known oncogenic
F. nucleatum interactions in CRC through F. nucleatum virulence
factors is summarised in Figure 2 (Refs 73, 75, 76, 77, 78, 79). This
review expands on the influence of F. nucleatum on the TME, and
how these findings may guide the research into the relationship
between BC and F. nucleatum.

Fusobacterium nucleatum and inflammation within the
tumour microenvironment

Inflammation is one of the hallmarks of cancer, with up to 20% of
cancers being preceded by chronic inflammation at the site
(Refs 80, 81). While F. nucleatum can bind to cancer cells and acti-
vate oncogenic signalling directly, as observed in CRC, there is also
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evidence that F. nucleatum is able to indirectly promote tumour
progression by modulating the inflammatory microenvironment.

F. nucleatum infection is closely linked to NF-κB signalling by
numerous studies in multiple cell types (Refs 63, 73, 74, 82, 83, 84,
85, 86), however this link has not yet been investigated in BC.
NF-κB signalling can be activated by bacteria through immune
receptors including the Toll-like receptors (TLRs) to upregulate
many chemokines and cytokines (described in further detail
below). For example, TLR2 and TLR4 are implicated in
F. nucleatum-stimulated macrophage cytokine production
(Ref. 87). Constitutive activation of NF-κB signalling has been
linked to inflammation and cancer (Ref. 88) via regulation of
genes involved in cell proliferation, differentiation and innate
and adaptive immune responses (Ref. 89).

A number of studies have identified an inflammatory signature
associated with F. nucleatum presence within CRC (Refs 67, 79,
85, 90). Specifically, F. nucleatum presence within human colonic
tumours has been associated with the upregulation of the
pro-inflammatory cytokines IL-6, IL-8 and IL-1β, among others
(Refs 79, 85, 90). It is possible that with further investigation
into the breast TME, comparisons could be made between the
effect of F. nucleatum in these two cancers.

In BC, upregulation of serum IL-6 levels is associated with
poor prognosis (Refs 91, 92), where hormone-sensitive tumour
cells have a greater response to IL-6 (Ref. 93). IL-6 has been linked
to epithelial-mesenchymal transition (EMT) in BC and enhances
mesenchymal stem cell recruitment in the breast TME (Refs 94,
95). Therefore, it is interesting that IL-6 secretion is induced by
F. nucleatum infection in B lymphocytes (Ref. 96) and macro-
phages (Ref. 83). Similarly, in CRC, Wang et al. noted that F.

nucleatum infected CRC cells displayed an EMT cancer stem cell-
like behaviour as a result of IL-6/STAT3 signalling (Ref. 97).

Additionally, multiple studies have identified upregulated IL-8
as a result of F. nucleatum infection in CRC cells (Refs 68, 79, 85,
96, 98). IL-8 in BC is associated with positive lymph node status
and higher-stage tumours (Refs 99, 100).

In colonic cells, F. nucleatum-secreted outer membrane vesi-
cles, and the FomA porin that is present on them, induced IL-8
expression in a TLR2- and TLR4-dependent manner (Refs 96,
101), as a result of NF-κB signalling (Ref. 102). TLRs recognise
microbial products, such as lipopolysaccharide from
Gram-negative bacteria like F. nucleatum and stimulate secretion
of inflammatory mediators and/or activate immune cells.
Extracellular vesicles were further found to induce IL-8 secretion
in colonic epithelial cells in a TLR4-dependent mechanism
(Ref. 101), again involving NF-κB signalling. F. nucleatum
induces IL-8 expression through pathways involving increased
reactive oxygen species (Ref. 103), β-catenin signalling (Refs 73,
75) and invasion via its FadA adhesin (Ref. 67), as depicted in
Figure 3.

Fusobacterium nucleatum and the tumour immune
microenvironment

The studies highlighted in Table 1 provide abundant evidence that
F. nucleatum is capable of altering the composition and actions of
the immune cell population of the TME. It is possible that
F. nucleatum promotes an immunosuppressive TME, enabling
tumour cell escape from immune surveillance. While research
into how the presence of F. nucleatum alters the immune response

Figure 1. The microbiome is a key regulator of the tumour microenvironment (TME). Secreted factors and ‘immunomodulatory’ factors produced by bacteria can
activate damage sensors on immune cells, for example, outer membrane vesicles which contain proinflammatory molecules such as lipopolysaccharide (LPS) on
Gram-negative bacteria which stimulates Toll-like receptor (TLR)-4 signalling in immune cells. This activation results in the expression of a range of chemokines and
cytokines, which further influence the recruitment and behaviour of immune cells within the TME and can lead to a state of chronic inflammation. Cells present in
the TME can also produce growth factors and serine proteases which induce tumour progression. Furthermore, bacteria secrete metabolites such as short chain
fatty acids (SCFAs) which can interact with the TME to reshape it, and/or cause genomic instability within the cells. LPS, lipopolysaccharide; SCFA, short-chain fatty
acid; ROS, reactive oxygen species; TLR, Toll-like receptor; NLR, Nod-like receptor. Figure created with BioRender.
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to other cancers is more advanced, little is known at this time with
respect to the impact of F. nucleatum on the TME in BC. Given
the importance of the immune response to BC and its impact
on survival, drug efficacy and metastatic potential (Ref. 104),
the presence of F. nucleatum and its known ability to alter the
tumour immune microenvironment is an important area of future
research.

Fusobacterium nucleatum and tumour response to treatment

Treatment of BC is multi-faceted, using a combination of surgery,
radiotherapy and/or systemic therapy guided by the cancer
molecular subtype (Ref. 2). However, drug resistance (intrinsic
and acquired) often develops. F. nucleatum may influence treat-
ment response in CRC, ESCC, OSCC and rectal adenocarcinoma.
Given the presence of F. nucleatum in approximately 20% of BCs
(Ref. 10), the importance of F. nucleatum as a biomarker which
may aid in predicting response of BC subtypes to their treatments
warrants further investigation. Additionally, F. nucleatum itself
presents a potential therapeutic target, with antibiotic treatment
successfully restricting growth and metastasis of mammary
tumours in a mouse model, where the mice were inoculated
with F. nucleatum (Ref. 64).

Fusobacterium nucleatum and chemotherapy resistance
As chemoresistance in BC is not yet fully understood, under-
standing mechanisms underlying drug resistance is vital to
improve therapeutic approaches and clinical outcomes.
Importantly, F. nucleatum has been reported to contribute to

chemoresistance within CRC, ESCC and OSCC (Refs 122, 123,
124, 125).

In CRC cell lines, F. nucleatum was shown to promote che-
moresistance to oxaliplatin and 5-fluorouracil (5-FU) by upregu-
lating autophagy (Ref. 124) in a TLR4- and MYD88-dependent
signalling pathway, and by preventing apoptosis via upregulation
of ANO1 (Ref. 126) or BIRC3 (Ref. 125). Additionally, F. nuclea-
tum promotes chemoresistance to 5-FU as well as cisplatin and
docetaxel in ESCC (Refs 116, 122, 127) via upregulation of autop-
hagy and preventing apoptosis. It is important to note that 5-FU
is often used in BC treatment as a part of the FEC regime (5-FU,
epirubicin and cyclophosphamide), in combination with doce-
taxel. Additionally, cisplatin is used in the neo-adjuvant setting
for TNBC treatment (Ref. 128). Furthermore, F. nucleatum
induced autophagy is linked to CRC metastasis (Ref. 70). These
studies correlate with the observed poor patient response to
neoadjuvant chemotherapy in ESCC tumours with high abun-
dance of F. nucleatum (Refs 129, 130). Similarly, F. nucleatum
was also shown to be enriched in OSCCs which were unrespon-
sive to chemotherapy (Ref. 123).

Fusobacterium nucleatum and radiotherapy resistance
Serna et al. (Ref. 131) showed that chemotherapy and radiother-
apy treatment was able to shift rectal adenocarcinoma tumours
from F. nucleatum-positive to F. nucleatum-negative, which
then showed improved relapse-free survival. However, any persist-
ent F. nucleatum positivity correlated with a higher risk of relapse
development.

Figure 2. Known oncogenic pathways modulated by Fusobacterium nucleatum. F. nucleatum (shown in blue) binds to tumour cells via interaction of its Fap2 protein
with D-galactose-β(1–3)-N-acetyl-D-galactosamine (Gal-GalNAc) or by FadA interacting with E-cadherin, which is enhanced by Annexin A1 (ANXA1), enabling attach-
ment and invasion of tumour cells. F. nucleatum also secretes outer membrane vesicles (OMVs) and lipopolysaccharide (LPS) which interact with the Toll-like recep-
tors (TLRs) to initiate downstream signalling pathways that mediate the release of inflammatory cytokines and transcription of miR-21 which is known to regulate
the activity of the oncoprotein RASA1. The E-cadherin and TLR4 signalling induced by F. nucleatum binding stimulates β-catenin accumulation in the cytoplasm and
its subsequent translocation to the nucleus where it upregulates transcription of oncogenes including c-MYC and Cyclin D1. Furthermore, F. nucleatum is able to aid
metastasis through OMV-mediated degradation of E. cadherin, NF-κB mediated increased expression of keratin 7 (KRT7), and via induction of the inflammatory
cytokines IL-8 and CXCL1. Figure created with BioRender.
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Additionally, Dong et al. (Ref. 132) demonstrated that oral
administration of F. nucleatum in CRC mice impaired the effi-
ciency of radiotherapy, promoted colonic inflammation, increased
the volume and number of tumours present and further increased
metastases.

With radiotherapy being a major adjuvant therapy for eradica-
tion of BCs, F. nucleatum within the tumour tissue may be an
important biomarker that predicts treatment response to
radiotherapy.

Fusobacterium nucleatum and immunotherapy
Immune checkpoint therapy inhibits the interaction between a
T-cell inhibitory receptor and its canonical ligand(s), allowing
T lymphocytes to elicit antitumour responses (Ref. 133). For
example, programmed cell death protein 1 (PD-1) when bound
to its ligand PD-L1 inhibits T-cell activation (Ref. 134). While
BC is considered to be less sensitive to immunotherapy than
other cancers (Refs 135, 136, 137), PD-L1 is still expressed on a
small subset of BC tumour cells (Refs 138, 139), and is associated
with TNBC and HER2 overexpressing BCs (Refs 139, 140).
Furthermore, treatment with ICIs such as atezolizumab has
been approved for metastatic TNBC, and pembrolizumab
improved clinical outcome for metastatic TNBC and high-risk
early-stage TNBC (Refs 141, 142, 143, 144, 145). Recently, the
FDA has granted accelerated approval to pembrolizumab in com-
bination with chemotherapy for high-risk early-stage TNBC and
for metastatic TNBC whose tumours express PD-L1. Therefore,
the impact that F. nucleatum has on altering response to immuno-
therapy across BC subgroups should be further investigated, as

well as its potential as a biomarker able to identify patients
which will benefit from it.

In both patients and mice with CRC, Gao et al. found that F.
nucleatum presence was correlated with improved response to
PD-1/PD-L1 blockade treatment (Ref. 146). In the murine
model of CRC, treatment with F. nucleatum enhanced
anti-PD-L1 treatment response, and further improved survival
(Ref. 146). Moreover, when F. nucleatum treatment was combined
with anti-PD-L1 treatment, there was a significant increase in the
amount of CD8+ T lymphocytes in the TME. Cancers with higher
populations of CD8+ T lymphocytes are expected to have the
greatest response to immunotherapy (Ref. 147). Therefore, it is
possible to hypothesise that the alterations induced by F. nuclea-
tum in CRC may result in a TME which responds more effectively
to immunotherapy. However, a higher abundance of F. nucleatum
in the patient’s airways has been associated with a worse response
of lung cancer to PD-1 blockade treatment (Ref. 148).

Conclusions and future directions

F. nucleatum has been identified as a bacterial species which colo-
nises the breast and recent findings indicate that it may contribute
to BC progression and metastatic development (Ref. 64).
However, the underlying pathogenic mechanisms are poorly
understood, with few studies investigating the potential role of
F. nucleatum in BC patient cohorts. Typically, F. nucleatum has
been identified in approximately 20–30% of BC tumours
(Refs 10, 29, 64), but correlation with clinical characteristics
such as tumour stage or BC subgroup requires further
investigation.

Figure 3. Known pathways induced by F. nucleatum binding that result in increased interleukin-8 (IL-8) secretion. (a) F. nucleatum infection in Caco-2 colorectal
cancer cells impaired autophagic flux, which enhanced the production of TNF-α, IL-1β and IL-8 via the increase in reactive oxygen species (ROS). (b) F. nucleatum
binding via its FadA adhesin to the sugar D-galactose-β(1–3)-N-acetyl-D-galactosamine (Gal-GalNAc) on colorectal cancer cells enables invasion, which further sti-
mulates the release of IL-8 and CXCL1. (c) Outer membrane vesicles and the porin FomA secreted by F. nucleatum stimulate Toll-like receptors (TLRs) 2 and 4 on
colonic epithelial cells, inducing NF-κB signalling that results in increased IL-8 secretion. (d) F. nucleatum’s FadA adhesin binds to E-cadherin, activating β-catenin
signalling in CRC cells, resulting in increased expression of pro-inflammatory cytokines, including IL-8. Figure created with BioRender.
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Table 1. The effect of F. nucleatum on immune cells from different studies

Cell type Model Effect of F. nucleatum Mechanism Ref

Peripheral blood
lymphocytes

Human peripheral blood
lymphocyte cells

Inhibition Via altered DNA, RNA and protein
synthesis

(Ref. 105)

Human peripheral blood
mononuclear cells

Reduction Induction of apoptotic cell death (Ref. 106)

CD3 + T lymphocytes Human T lymphocyte cell line Inhibition of replication Prevented from entering the G0/G1
phase of cell cycle

(Ref. 107)

Human T lymphocyte cell line Reduction Cell death induced via Fap2 and RadD
proteins

(Ref. 108)

Human CRC tumour tissue Reduction Unknown (Ref. 109)

CD4 + T lymphocytes Murine CRC model No change Unknown (Ref. 85)

Human CRC tumour tissue Reduction Via a reduced expression of T
lymphocyte developmental protein TOX

(Ref. 110)

CRC lymphocyte cell line Inhibition The interaction of the human TIGIT and
Fap2

(Ref. 111)

Human CD4+ cells Inhibition F. nucleatum activates CEACAM1 (Ref. 112)

Human CD4+ cells Inhibition F. nucleatum binds to and activates
CEACAM1 via CbpF

(Ref. 113)

Murine BC model Reduction Unknown (Ref. 64)

Human OSCC tumour tissue Reduction Unknown (Ref. 59)

T-regulatory
lymphocytes
(TREGS)

Human ESCC tumour tissue Increase Unknown (Ref. 62)

Human intestine tissue and
mouse models

Increase F. nucleatum stimulates Toll-like
receptors 2 and 4

(Ref. 114)

TH17T lymphocytes Murine CRC model Increase Via a FFAR2 (SCFA receptor) dependent
manner

(Ref. 115)

CD8+ T lymphocytes Murine CRC model No change Unknown (Ref. 85)

CRC lymphocyte cell line Inhibition The interaction of the human TIGIT and
Fap2

(Ref. 111)

Human CD8+ cells Inhibition F. nucleatum activates CEACAM1 (Ref. 112)

Murine BC model Reduction Unknown (Ref. 64)

Human ESCC tumour tissue and
cell line

Inhibition F. nucleatum stimulates the CD8+ cell
surface inhibitory receptor KIR2DL1
expression

(Ref. 116)

B lymphocytes Human OSCC tumour tissue Reduction Unknown (Ref. 59)

Natural killer cells Murine model Reduced colonic NK cell
activity and frequency

Unknown (Ref. 117)

CRC natural killer cell line Inhibition The interaction of the human TIGIT and
Fap2

(Ref. 111)

Human NK cells Inhibition F. nucleatum activates CEACAM1 (Ref. 112)

Macrophages Human OSCC tumour tissue Reduction in M2
macrophages

Unknown (Ref. 59)

Mouse and human CRC tumour
tissue and cultured
macrophages

Promotes M2 polarisation via a TLR4/IL-6/p-STAT3/c-MYC pathway (Ref. 83)

Human CRC tumour tissue Increase Unknown (Ref. 118)

Human CRC tumour tissue and
patient faeces

Increased macrophage
infiltration and M2
polarisation

Via CCL20 activation (Ref. 119)

Human CRC tumour tissue Promotes M2 polarisation F. nucleatum activates the TLR4/NF-κB/
S100A9 cascade

(Ref. 120)

Macrophage cell line Promotes M1 polarisation AI-2 activates the TNFSF9/IL-1β pathway (Ref. 121)

AI-2; autoinducer-2, BC; breast cancer, CbpF; chlorine-binding protein; CCL20, chemokine (C-C motif) ligand 20; CD, cluster of differentiation; CEACAM1, CEA cell adhesion molecule 1; c-MYC,
cellular-MYC; CRC, colorectal cancer; DNA, deoxyribonucleic acid; ESCC, oesophageal squamous cell carcinoma; FFAR2, free fatty acid receptor 2; IL-1β, interleukin 1β; IL-6, interleukin-6;
KIR2DL1, killer cell immunoglobulin-like receptor 2DL1; NF-κB, nuclear factor kappa B; NK, natural killer cell; OSCC, oral squamous cell carcinoma; p-STAT3, phospho-signal transducer and
activator of transcription 3; RNA, ribonucleic acid; SCFA, short-chain fatty acid; S100A9, S100 calcium-binding protein A9; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; TLR4,
Toll-like receptor 4; TNFSF9, tumour necrosis factor ligand superfamily member 9; TOX, thymocyte selection-associated high mobility group box protein.
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The literature from research into other cancer types, including
CRC, indicates that F. nucleatum is able to modulate the local
TME, promoting an inflammatory state and further interacting
with and influencing infiltrating immune cells. The question of
whether the presence of F. nucleatum in the TME of breast carcin-
omas will show the same trends in inflammation and immuno-
modulation requires further investigation. In particular,
advanced in vitro models such as organoids could be beneficial
to recapitulate how the hypoxic environment of the tumour influ-
ences the survival and growth of the anaerobic F. nucleatum.
Additionally, in vivo models should be considered for further
investigating the relationship between F. nucleatum in breast
tumours with the tumour immune microenvironment (Ref. 64).

Multiple protocols have been suggested in order to quantify
the presence of F. nucleatum in cancer patients, for example, a
faecal F. nucleatum-based assay for CRC (Ref. 149), and qPCR
of F. nucleatum DNA in tumour tissue (Refs 50, 150, 151, 152,
153). However, current literature highlights the difficulties in
detecting microbial DNA from human host tissues, which is exa-
cerbated in low microbial biomass tumour tissues such as is seen
in the breast (Refs 35, 154, 155, 156). Before F. nucleatum can be
used as a biomarker for any cancer type, a sensitive, yet cost-
effective assay must be developed to detect and quantify F. nucle-
atum in patients. Salivary F. nucleatum DNA has been identified
as a non-invasive biomarker for CRC and gastric cancer diagnosis
(Refs 53, 157). Further research is required to determine if these
findings could also apply to other F. nucleatum-linked cancers,
including breast.

Targeting F. nucleatum in the tumour could potentially intro-
duce an exciting novel treatment option. Parhi et al. (Ref. 64)
showed that antibiotic treatment of a BC mouse model inoculated
with F. nucleatum eliminated F. nucleatum from the tumour and
further suppressed F. nucleatum-induced tumour growth. It is
therefore tempting to consider antibiotics adjunct to current BC
treatments to target tumour-promoting bacteria. However, given
the role of the patient’s microbiome in influencing drug efficacy
(Refs 12, 35, 37, 38, 158, 159, 160), broad microbe-targeting treat-
ments may not be beneficial. Interestingly, a F. nucleatum-specific
bacteriophage, FNU1, has been recently suggested as a means to
eradicate the oncobacterium from the tumour (Ref. 161). Strong
evidence supports the influence of the gut microbiome in
response to cancer therapy, most notably ICIs (Ref. 162). Given
the increasing use of ICIs in BC, especially for TNBC (Refs 141,
142, 143, 163), the potential interaction between F. nucleatum
within the breast and ICI therapy (Ref. 146) is an especially inter-
esting area of future research.

In conclusion, by better understanding the consequences of
the presence of this bacterium, it will provide valuable insights
into the role of the microbiota in BC progression and how it influ-
ences treatment efficacy in patients.
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