
13

Luck: A Probabilistic Language for Testing
Lampropoulos Leonidas, Benjamin C. Pierce and Li-yao Xia

University of Pennsylvania
Diane Gallois-Wong and Cătălin Hriţcu

INRIA Paris
John Hughes

Chalmers University

Abstract: Property-based random testing à la QuickCheck requires building
efficient generators for well-distributed random data satisfying complex logical
predicates, but writing these generators can be difficult and error prone. This
chapter introduces a probabilistic domain-specific language in which generators
are conveniently expressed by decorating predicates with lightweight annotations
to control both the distribution of generated values and the amount of constraint
solving that happens before each variable is instantiated. This language, called Luck,
makes generators easier to write, read, and maintain.
We give Luck a probabilistic formal semantics and prove several fundamental

properties, including the soundness and completeness of random generation with
respect to a standard predicate semantics. We evaluate Luck on common examples
from the property-based testing literature and on two significant case studies, showing
that it can be used in complex domains with comparable bug-finding effectiveness
and a significant reduction in testing code size compared to handwritten generators.

13.1 Introduction

Since being popularized by QuickCheck (Claessen and Hughes, 2000), property-
based random testing has become a standard technique for improving software
quality in a wide variety of programming languages (Arts et al., 2008; Lindblad,
2007; Hughes, 2007; Pacheco and Ernst, 2007) and for streamlining interaction with
proof assistants (Chamarthi et al., 2011; Bulwahn, 2012a; Owre, 2006; Dybjer et
al., 2003; Paraskevopoulou et al., 2015).
When using a property-based random testing tool, one writes properties in the

form of executable predicates. For example, a natural property to test for a list

a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.

449

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

450 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

reverse function is that, for any list xs, reversing xs twice yields xs again. In
QuickCheck notation:

prop_reverse xs = (reverse (reverse xs) == xs)

To test this property, QuickCheck generates random lists until either it finds a
counterexample or a predetermined number of tests succeed.
An appealing feature of QuickCheck is that it offers a library of property

combinators resembling standard logical operators. For example, a property of
the form p ==> q, built using the implication combinator ==>, will be tested
automatically by generating valuations (assignments of random values, of appropriate
type, to the free variables of p and q), discarding those valuations that fail to satisfy
p, and checking whether any of the ones that remain are counterexamples to q.
QuickCheck users soon learn that this default generate-and-test approach some-

times does not give satisfactory results. In particular, if the precondition p is satisfied
by relatively few values of the appropriate type, then most of the random inputs
that QuickCheck generates will be discarded, so that q will seldom be exercised.
Consider, for example, testing a simple property of a school database system: that
every student in a list of registeredStudents should be taking at least one
course,

prop_registered studentId =

member studentId registeredStudents ==>

countCourses studentId > 0

where, as usual:

member x [] = False

member x (h:t) = (x == h) || member x t

If the space of possible student ids is large (e.g., because they are represented as
machine integers), then a randomly generated id is very unlikely to be a member of
registeredStudents, so almost all test cases will be discarded.
To enable effective testing in such cases, the QuickCheck user can provide a

generator, a probabilistic program that produces inputs satisfyingp – here, a generator
that always returns student ids drawn from the members of registeredStudents.
Indeed, QuickCheck provides a library of combinators for defining such generators.
These combinators also allow fine control over the distribution of generated values –
a crucial feature in practice (Claessen and Hughes, 2000; Hriţcu et al., 2013; Groce
et al., 2012).
Custom generators work well for small to medium-sized examples, but writing

them can become challenging as p gets more complex – sometimes turning into
a research contribution in its own right! For example, papers have been written

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.1 Introduction 451

about random generation techniques for well-typed lambda-terms (Pałka et al., 2011;
Fetscher et al., 2015; Tarau, 2015) and for “indistinguishable” machine states that
can be used for finding bugs in information-flow monitors (Hriţcu et al., 2013,
2016). Moreover, if we aim to test an invariant property (e.g., type preservation),
then the same condition will appear in both the precondition and the conclusion of
the property, requiring that we express this condition both as a boolean predicate
p and as a generator whose outputs all satisfy p. These two artifacts must then
be kept in sync, which can become both a maintenance issue and a rich source
of confusion in the testing process. These difficulties are not hypothetical: Hriţcu
et al.’s machine-state generator (Hriţcu et al., 2013) is over 1500 lines of tricky
Haskell, while Pałka et al.’s generator for well-typed lambda-terms (Pałka et al.,
2011) is over 1600 even trickier ones. To enable effective property-based random
testing of complex software artifacts, we need a better way of writing predicates and
corresponding generators.
A natural idea is to derive an efficient generator for a given predicate p directly

from p itself. Indeed, two variants of this idea, with complementary strengths
and weaknesses, have been explored by others – one based on local choices and
backtracking, one on general constraint solving. Our language, Luck, synergistically
combines these two approaches.
The first approach can be thought of as a kind of incremental generate-and-test:

rather than generating completely random valuations and then testing them against
p, we instead walk over the structure of p, instantiating each unknown variable x
at the first point where we meet a constraint involving x. In the member example
above, on each recursive call, we make a random choice between the branches of the
||. If we choose the left, we instantiate x to the head of the list; otherwise we leave x
unknown and continue with the recursive call to member on the tail. This has the
effect of traversing the list of registered students and picking one of its elements. It
is important to carefully control the probabilities guiding this choice to avoid getting
a distribution which is very skewed towards early elements.
This process resembles narrowing from functional logic programming (Antoy,

2000; Hanus, 1997; Lindblad, 2007; Tolmach and Antoy, 2003). It is attractively
lightweight, admits natural control over distributions (as we will see in the next
section), and has been used successfully (Fischer and Kuchen, 2007; Christiansen
and Fischer, 2008; Reich et al., 2011; Gligoric et al., 2010), even in challenging
domains such as generating well-typed programs to test compilers (Claessen et al.,
2014; Fetscher et al., 2015).
However, choosing a value for an unknown when we encounter the first constraint

on it risks making choices that do not satisfy later constraints, forcing us to backtrack
and make a different choice when the problem is discovered. For example, consider
the notMember predicate:

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

452 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

notMember x [] = True

notMember x (h:t) = (x /= h) && notMember x t

Suppose we wish to generate values for x such that notMember x ys for some
given list ys. When we first encounter the constraint x /= h, we generate a value
for x that is not equal to the known value h. We then proceed to the recursive call of
notMember, where we check that the chosen x does not appear in the list’s tail. Since
the values in the tail are not taken into account when choosing x, this may force us to
backtrack if our choice of x was unlucky. If the space of possible values for x is not
much bigger than the length of ys – say, just twice as big – then we will backtrack
50% of the time. Worse yet, if notMember is used to define another predicate – e.g.,
distinct, which tests whether each element of an input list is different from all
the others – and we want to generate a list satisfying distinct, then notMember’s
50% chance of backtracking will be compounded on each recursive call, leading to
unacceptably low rates of successful generation.
The second existing approach uses a constraint solver to generate a diverse set

of valuations satisfying a predicate.1 This approach has been widely investigated,
both for generating inputs directly from predicates (Carlier et al., 2010; Seidel et
al., 2015; Gotlieb, 2009; Köksal et al., 2011) and for symbolic-execution-based
testing (Godefroid et al., 2005; Sen et al., 2005; Cadar et al., 2008; Avgerinos et
al., 2014; Torlak and Bodík, 2014), which additionally uses the system under test to
guide generation of inputs that exercise different control-flow paths. For notMember,
gathering a set of disequality constraints on x before choosing its value avoids any
backtracking.
However, pure constraint-solving approaches do not give us everything we need.

They do not provide effective control over the distribution of generated valuations.
At best, they might guarantee a uniform (or near uniform) distribution (Chakraborty
et al., 2014), but this is typically not the distribution we want in practice (see
Section 13.2). Moreover, the overhead of maintaining and solving constraints can
make these approaches significantly less efficient than the more lightweight, local
approach of needed narrowing when the latter does not lead to backtracking, as for
instance in member.
The complementary strengths and weaknesses of local instantiation and global

constraint solving suggest a hybrid approach, where limited constraint propagation,
under explicit user control, is used to refine the domains (sets of possible values) of
unknowns before instantiation. This chapter explores such an approach by introducing

1 Constraint solvers can, of course, be used to directly search for counterexamples to a property of interest by
software model checking (Blanchette and Nipkow, 2010; Jackson, 2011; Ball et al., 2011; Jhala and Majumdar,
2009, etc.). We are interested here in the rather different task of quickly generating a large number of diverse
inputs, so that we can thoroughly test systems like compilers whose state spaces are too large to be exhaustively
explored.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.2 Luck by Example 453

a probabilistic domain-specific language, Luck, for writing generators via lightweight
annotations on predicates. In Section 13.2 we illustrate Luck’s novel features using
binary search trees as an example. We also place Luck’s design on a firm formal
foundation, by defining a probabilistic core calculus and establishing key properties:
the soundness and completeness of its probabilistic generator semantics with respect
to a straightforward interpretation of expressions as predicates (Section 13.3).
Finally, we provide a prototype interpreter (Section 13.4) using a custom constraint

solver that supports per-variable sampling. We evaluate Luck’s expressiveness on a
collection of common examples from the random testing literature (Section 13.5)
and on two significant case studies, demonstrating that Luck can be used (1) to find
bugs in a widely used compiler (GHC) by randomly generating well-typed lambda
terms and (2) to help design information-flow abstract machines by generating
“low-indistinguishable” machine states.
This chapter is accompanied by several auxiliarymaterials: (1) a Coq formalization

of the narrowing semantics of Luck and machine-checked proofs of its properties
(available at https://github.com/QuickChick/Luck) (Section 13.3.3); (2)
the prototype Luck interpreter and a battery of example programs, including all
the ones we used for evaluation (also at https://github.com/QuickChick/
Luck) (Section 13.5); (3) an extended version of the paper this chapter is based
on (Lampropoulos et al., 2017) with full definitions and paper proofs for the whole
semantics (https://arxiv.org/abs/1607.05443).

13.2 Luck by Example

Figure 13.1 shows a recursive Haskell predicate bst that checks whether a given
tree with labels strictly between low and high satisfies the standard binary-search
tree (BST) invariant (Okasaki, 1999). It is followed by a QuickCheck generator
genTree, which generates BSTs with a given maximum depth, controlled by the
size parameter. This generator first checks whether low + 1 >= high, in which
case it returns the only valid BST satisfying this constraint – the Empty one.
Otherwise, it uses QuickCheck’s frequency combinator, which takes a list of pairs
of positive integer weights and associated generators and randomly selects one of the
generators using the probabilities specified by the weights. In this example, 1

size+1
of the time it creates an Empty tree, while size

size+1 of the time it returns a Node. The
Node generator is specified using monadic syntax: first it generates an integer x that
is strictly between low and high, and then the left and right subtrees l and r by
calling genTree recursively; finally it returns Node x l r.
The generator for BSTs allows us to efficiently test conditional properties of the

form “if bst t then 〈some other property of t〉,” but it raises some new issues of
its own. First, even for this simple example, getting the generator right is a bit tricky

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://github.com/QuickChick/Luck
https://github.com/QuickChick/Luck
https://github.com/QuickChick/Luck
https://arxiv.org/abs/1607.05443
https://doi.org/10.1017/9781108770750.014

454 Lampropoulos et al.: Luck: A Probabilistic Language for Testing
Binary tree datatype (in both Haskell and Luck):

data Tree a = Empty | Node a (Tree a) (Tree a)

Test predicate for BSTs (in Haskell):

bst :: Int -> Int -> Tree Int -> Bool
bst low high tree =
case tree of
Empty -> True
Node x l r ->
low < x && x < high
&& bst low x l && bst x high r

QuickCheck generator for BSTs (in Haskell):

genTree :: Int -> Int -> Int -> Gen (Tree Int)
genTree size low high
| low + 1 >= high = return Empty
| otherwise =

frequency [(1, return Empty),
(size, do
x <- choose (low + 1, high - 1)
l <- genTree (size ‘div‘ 2) low x
r <- genTree (size ‘div‘ 2) x high
return (Node x l r))]

Luck generator (and predicate) for BSTs:

sig bst :: Int -> Int -> Int -> Tree Int -> Bool
fun bst size low high tree =
if size == 0 then tree == Empty
else case tree of

| 1 % Empty -> True
| size % Node x l r ->

((low < x && x < high) !x)
&& bst (size / 2) low x l
&& bst (size / 2) x high r

Figure 13.1 Binary Search Tree tester and two generators

(for instance because of potential off-by-one errors in generating x), and it is not
immediately obvious that the set of trees generated by the generator is exactly the set
accepted by the predicate. Worse, we now need to maintain two similar but distinct
artifacts and keep them in sync. We can’t just throw away the predicate and keep
the generator because we often need them both, for example to test properties like
“the insert function applied to a BST and a value returns a BST.” As predicates
and generators become more complex, these issues can become quite problematic
(e.g., Hriţcu et al., 2013). Enter Luck.
The bottom of Figure 13.1 shows a Luck program that represents both a BST

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.2 Luck by Example 455

predicate and a generator for randomBSTs. Modulo variations in concrete syntax, the
Luck closely code follows the Haskell bst predicate. The significant differences are:
(1) the sample-after expression !x, which controls when node labels are generated,
and (2) the size parameter, which is used, as in the generator, to annotate the
branches of the case with relative weights. Together, these enable us to give the
program both a natural interpretation as a predicate (by simply ignoring weights
and sampling expressions) and an efficient interpretation as a generator of random
trees with the same distribution as the QuickCheck version. For example, evaluating
the top-level query bst 10 0 42 u = True – i.e., “generate values t for the
unknown u such that bst 10 0 42 t evaluates to True” – will yield random
binary search trees of size up to 10 with node labels strictly between 0 and 42, with
the same distribution as the QuickCheck generator genTree 10 0 42.
An unknown in Luck is a special kind of value, similar to logic variables found

in logic programming languages and unification variables used by type-inference
algorithms. Unknowns are typed, and each is associated with a domain of possible
values from its type. Given an expression e mentioning some set U of unknowns,
our goal is to generate valuations over these unknowns (maps from U to concrete
values) by iteratively refining the unknowns’ domains, so that, when any of these
valuations is substituted into e, the resulting concrete term evaluates to a desired
value (e.g., True).
Unknowns can be introduced both explicitly, as in the top-level query above (see

also Section 13.4), and implicitly, as in the generator semantics of case expressions.
In the bst example, when the Node branch is chosen, the pattern variables x, l, and
r are replaced by fresh unknowns, which are then instantiated by evaluating the
body of the branch.
Varying the placement of unknowns in the top-level bst query yields different

behaviors. For instance, if we change the query to bst 10 ul uh u = True,
replacing the low and high parameters with unknowns ul and uh, the domains
of these unknowns will be refined during tree generation and the result will be a
generator for random valuations (ul �→ i, uh �→ j, u �→ t) where i and j are lower
and upper bounds on the node labels in t.
Alternatively, we can evaluate the top-level query bst 10 0 42 t = True,

replacing u with a concrete tree t. In this case, Luck will return a trivial valuation
only if t is a binary search tree; otherwise it will report that the query is unsatisfiable.
A less useful possibility is that we provide explicit values for low and high but
choose them with low > high, e.g., bst 10 6 4 u = True. Since there are no
satisfying valuations for u other than Empty, Luck will now generate only Empty
trees.
A sample-after expression of the form e !x controls instantiation of unknowns.

Typically, xwill be an unknown u, and evaluating e !uwill cause u to be instantiated

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

456 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

to a concrete value (after evaluating e to refine the domains of all of the unknowns
in e). If x reduces to a value v rather than an unknown, we similarly instantiate any
unknowns appearing within v.

As a concrete example, consider the compound inequality constraint 0 < x &&

x < 4. A generator based on pure narrowing (as in Gligoric et al., 2010), would
instantiate x when the evaluator meets the first constraint where it appears, namely
0 < x (assuming left-to-right evaluation order). We can mimic this behavior in
Luck by writing ((0 < x) !x) && (x < 4). However, picking a value for x
at this point ignores the constraint x < 4, which can lead to backtracking. If, for
instance, the domain from which we are choosing values for x is 32-bit integers, then
the probability that a random choice satisfying 0 < x will also satisfy x < 4 is
minuscule. It is better in this case to write (0 < x && x < 4) !x, instantiating x
after the entire conjunction has been evaluated and all the constraints on the domain
of x recorded and thus avoiding backtracking completely. Finally, if we do not
include a sample-after expression for x here at all, we can further refine its domain
with constraints later on, at the cost of dealing with a more abstract representation
of it internally in the meantime. Thus, sample-after expressions give Luck users
explicit control over the tradeoff between the expense of possible backtracking –
when unknowns are instantiated early – and the expense of maintaining constraints
on unknowns – so that they can be instantiated late (e.g., so that x can be instantiated
after the recursive calls to bst).

Sample-after expressions choose random values with uniform probability from
the domain associated with each unknown. While this behavior is sometimes
useful, effective property-based random testing often requires fine control over
the distribution of generated test cases. Drawing inspiration from the QuickCheck
combinator library for building complex generators, and particularly frequency
(which we saw in genTree (Figure 13.1)), Luck also allows weight annotations on
the branches of a case expression which have a frequency-like effect. In the Luck
version of bst, for example, the unknown tree is either instantiated to an Empty
tree 1

1+size of the time or partially instantiated to a Node (with fresh unknowns for x
and the left and right subtrees) size

1+size of the time.

Weight annotations give the user control over the probabilities of local choices.
These do not necessarily correspond to a specific posterior probability, but the
QuickCheck community has established techniques for guiding the user in tuning
local weights to obtain good testing. For example, the user can wrap properties inside
a collect x combinator; during testing, QuickCheck will gather information on x,
grouping equal values to provide an estimate of the posterior distribution that is being
sampled. The collect combinator is an effective tool for adjusting frequency

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.2 Luck by Example 457

weights and dramatically increasing bug-finding rates (e.g., Hriţcu et al., 2013). The
Luck implementation provides a similar primitive.
One further remark on uniform sampling: while locally instantiating unknowns

uniformly from their domain is a useful default, generating globally uniform
distributions of test cases is usually not what we want, as this often leads to inefficient
testing in practice. A simple example comes from the information flow control
experiments of Hriţcu et al. (2013). There are two “security levels,” called labels,
Low and High, and pairs of integers and labels are considered “indistinguishable” to
a Low observer if the labels are equal and, if the labels are Low, so are the integers.
In Haskell:

indist (v1,High) (v2,High) = True

indist (v1,Low) (v2,Low) = v1 == v2

indist _ _ = False

If we use 32-bit integers, then for every Low indistinguishable pair there are 232
High ones! Thus, a uniform distribution over indistinguishable pairs means that we
will essentially never generate pairs with Low labels. Clearly, such a distribution
cannot provide effective testing; indeed, Hriţcu et al. found that the best distribution
was somewhat skewed in favor of Low labels.
We can easily validate this intuition using a probabilistic programming framework

with emphasis on efficient sampling: R2 (Nori et al., 2014). We can model indistin-
guishability using the following probabilistic program, where labels are modeled by
booleans:

double v1 = Uniform.Sample(0, 10);

double v2 = Uniform.Sample(0, 10);

bool l1 = Bernoulli.Sample(0.5);

bool l2 = Bernoulli.Sample(0.5);

Observer.Observe(l1==l2 && (v1==v2 || l1));

Two pairs of doubles and booleans will be indistinguishable if the booleans are
equal and, if the booleans are false, so are the doubles. As predicted, all generated
samples have their booleans set to true. Of course, one could probably come up with
a better prior or use a tool that allows arbitrary conditioning to skew the distribution
appropriately. If, however, for such a trivial example the choices are non-obvious,
imagine replacing pairs of doubles and booleans with arbitrary lambda terms and
indistinguishability by a well-typedness relation. Coming up with suitable priors
that lead to efficient testing would become an ambitious research problem on its
own!

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

458 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

13.3 Semantics of Core Luck

We next present a core calculus for Luck – a minimal subset into which the examples
in the previous section can in principle be desugared. The core omits primitive
booleans and integers and replaces datatypes with binary sums, products, and
iso-recursive types.
We begin in Section 13.3.1 with the syntax and standard predicate semantics

of the core. (We call it the “predicate” semantics because, in our examples, the
result of evaluating a top-level expression will typically be a boolean, though
this expectation is not baked into the formalism.) We then build up to the full
generator semantics in three steps. First, we give an interface to a constraint solver
(Section 13.3.2), abstracting over the primitives required to implement our semantics.
Then we define a probabilistic narrowing semantics, which enhances the local-
instantiation approach to random generation with QuickCheck-style distribution
control (Section 13.3.3). Finally, we introduce a matching semantics, building on
the narrowing semantics, that unifies constraint solving and narrowing into a single
evaluator (Section 13.3.4). The key properties of the generator semantics (both
narrowing and matching versions) are soundness and completeness with respect
to the predicate semantics (Section 13.3.6); informally, whenever we use a Luck
program to generate a valuation that satisfies some predicate, the valuation will
satisfy the boolean predicate semantics (soundness), and it will generate every
possible satisfying valuation with non-zero probability (completeness).

13.3.1 Syntax, Typing, and Predicate Semantics

The syntax of Core Luck is given in Figure 13.2. Except for the last line in the
definitions of values and expressions, it is a standard simply typed call-by-value
lambda calculus with sums, products, and iso-recursive types. We include recursive
lambdas for convenience in examples, although in principle they could be encoded
using recursive types.
Values include unit, pairs of values, sum constructors (L and R) applied to

values (and annotated with types, to eliminate ambiguity), first class recursive
functions (rec), fold-annotated values indicating where an iso-recursive type should
be “folded,” and unknowns drawn from an infinite set. The standard expression forms
include variables, unit, functions, function applications, pairs with a single-branch
pattern-matching construct for deconstructing them, value tagging (L and R), pattern
matching on tagged values, and fold/unfold. The nonstandard additions are unknowns
(u), instantiation (e ← (e1, e2)), sample (!e) and after (e1 ;e2) expressions.
The “after” operator, written with a backwards semicolon, evaluates both e1 and

e2 in sequence. However, unlike the standard sequencing operator e1; e2, the result
of e1 ;e2 is the result of e1; the expression e2 is evaluated just for its side-effects.
For example, the sample-after expression e !x of the previous section is desugared

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 459

v ::= () | (v, v) | LT v | RT v

| rec (f : T1 → T2) x = e | foldT v

| u
e ::= x | () | rec (f : T1 → T2) x = e | (e e)

| (e, e) | case e of (x, y) � e
| LT e | RT e | case e of (L x � e) (R x � e)
| foldT e | unfoldT e
| u | e ← (e, e) | !e | e ;e

T ::= X | 1 | T + T | T × T | μX . T
T ::= X | 1 | T + T | T × T | μX . T | T → T
Γ ::= ∅ | Γ, x : T

Figure 13.2 Core Luck Syntax

to a combination of sample and after: e ;!x. If we evaluate this snippet in a context
where x is bound to some unknown u, then the expression e is evaluated first,
refining the domain of u (amongst other unknowns); then the sample expression !u
is evaluated for its side effect, instantiating u to a uniformly generated value from its
domain; and finally the result of e is returned as the result of the whole expression.
A reasonable way to implement e1 ;e2 using standard lambda abstractions would
be as (λ x. (λ_. x) e2) e1. However, there is a slight difference in the semantics of
this encoding compared to our intended semantics – we will return to this point in
Section 13.3.4.
Weight annotations like the ones in the bst example can be desugared using

instantiation expressions. For example, assuming a standard encoding of binary
search trees (Tree = μX . 1 + int × X × X) and naturals, plus syntactic sugar for
constant naturals:

case (unfoldTree tree < −(1, size)) of (L x � . . .)(R y � . . .)

Most of the typing rules are standard (these can be found in the extended version
of the paper). The four non-standard rules are given in Figure 13.3. Unknowns are
typed: each will be associated with a domain (set of values) drawn from a type T that
does not contain arrows. Luck does not support constraint solving over functional
domains (which would require something like higher-order unification), and the
restriction of unknowns to non-functional types reflects this. To remember the types
of unknowns, we extend the typing context to include a component U, a map from
unknowns to non-functional types. When the variable typing environment Γ = ∅,
we write U � e : T as a shorthand for ∅;U � e : T . An unknown u has type T
if U(u) = T . If e1 and e2 are well typed, then e1 ;e2 shares the type of e1. An

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

460 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

T-U
U(u) = T

Γ;U � u : T
T-After

Γ;U � e1 : T1 Γ;U � e2 : T2
Γ;U � e1 ;e2 : T1

T-Bang
Γ;U � e : T

Γ;U �!e : T
T-Narrow

Γ;U � e : T1 + T2
Γ;U � el : nat Γ � er : nat

Γ;U � e ← (el, er) : T1 + T2

nat := μX . 1 + X

Figure 13.3 Typing Rules for Nonstandard Constructs

P-Narrow

e ⇓ v e1 ⇓ v1 e2 ⇓ v2
�v1� > 0 �v2� > 0

e ← (e1, e2) ⇓ v
P-Bang

e ⇓ v

!e ⇓ v

P-After
e1 ⇓ v1 e2 ⇓ v2

e1 ;e2 ⇓ v1

�foldnat (L1+nat ())� = 0
�foldnat (R1+nat v)� = 1 + �v�

Figure 13.4 Predicate Semantics for Nonstandard Constructs

instantiation expression e ← (el, er) is well typed if e has sum type T1 + T2 and el
and er are natural numbers. A sample expression !e has the (non-functional) type T
when e has type T .
The predicate semantics for Core Luck, written e ⇓ v, are defined as a big-step

operational semantics. We assume that e is closed with respect to ordinary variables
and free of unknowns. The rules for the standard constructs are unsurprising
(see the extended version). The only non-standard rules are the ones for narrow,
sample and after expressions, which are essentially ignored (Figure 13.4). With
the predicate semantics we can implement a naive generate-and-test method for
generating valuations satisfying some predicate by generating arbitrary well-typed
valuations and filtering out those for which the predicate does not evaluate to True.

13.3.2 Constraint Sets

The rest of this section develops an alternative probabilistic generator semantics for
Core Luck. This semantics will use constraint sets κ ∈ C to describe the possible
values that unknowns can take. For the moment, we leave the implementation of
constraint sets open (the one used by our prototype interpreter is described in the

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 461

extended version of the chapter), simply requiring that they support the following
operations:

�·� :: C− > Set Valuation
U :: C− > Map U T
fresh :: C → T

∗ → (C × U∗)
unify :: C → Val → Val → C
SAT :: C → Bool
[·] :: C → U → Maybe Val
sample :: C → U → C∗

Here we describe these operations informally, deferring technicalities until after we
have presented the generator semantics (Section 13.3.6).
A constraint set κ denotes a set of valuations (�κ�), representing the solutions to

the constraints. Constraint sets also carry type information about existing unknowns:
U(κ) is a mapping from κ’s unknowns to types. A constraint set κ is well typed (� κ)
if, for every valuation σ in the denotation of κ and every unknown u bound in σ,
the type map U(κ) contains u and ∅;U(κ) � σ(u) : U(κ)(u).
Many of the semantic rules will need to introduce fresh unknowns. The fresh

function takes a constraint set κ and a sequence of (non-functional) types of length
k; it draws the next k unknowns (in some deterministic order) from the infinite set
U and extends U(κ) with the respective bindings.
The main way constraints are introduced during evaluation is unification. Given a

constraint set κ and two values, each potentially containing unknowns, unify updates
κ to preserve only those valuations in which the values match.

SAT is a total predicate that holds on constraint sets whose denotation contains at
least one valuation. The totality requirement implies that our constraints must be
decidable.
The value-extraction function κ[u] returns an optional (non-unknown) value: if

in the denotation of κ, all valuations map u to the same value v, then that value is
returned (written {v}); otherwise nothing (written ∅).
The sample operation is used to implement sample expressions (!e): given a

constraint set κ and an unknown u ∈ U(κ), it returns a list of constraint sets
representing all possible concrete choices for u, in all of which u is completely
determined – that is ∀κ ∈ (sample κ u). ∃v. κ[u] = {v}. To allow for reasonable
implementations of this interface, we maintain an invariant that the input unknown
to sample will always have a finite denotation; thus, the resulting list is also finite.

13.3.3 Narrowing Semantics

As a first step toward a probabilistic semantics for Core Luck that incorporates both
constraint solving and local instantiation, we define a simpler narrowing semantics.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

462 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

This semantics is of some interest in its own right, in that it extends traditional
“needed narrowing” with explicit probabilistic instantiation points, but its role here
is as a subroutine of the matching semantics in Section 13.3.4.
The narrowing evaluation judgment takes as inputs an expression e and a constraint

set κ. As in the predicate semantics, evaluating e returns a value v, but now it also
depends on a constraint set κ and returns a new constraint set κ′. The latter is
intuitively a refinement of κ – i.e., evaluation will only remove valuations.

e �κ ⇓t
q κ

′ � v

The semantics is annotated with a representation of the sequence of random choices
made during evaluation, in the form of a trace t. A trace is a sequence of choices:
integer pairs (m,n) with 0 ≤ m < n, where n denotes the number of possibilities
chosen among and m is the index of the one actually taken. We write ε for the empty
trace and t · t ′ for the concatenation of two traces. We also annotate the judgment with
the probability q of making the choices represented in the trace. Recording traces is
useful after the fact in calculating the total probability of some given outcome of
evaluation (which may be reached by many different derivations), but they play no
role in determining how evaluation proceeds.
We maintain the invariant that both the input constraint set κ and the input

expression e are well typed, the latter with respect to an empty variable context
and unknown context U(κ). Another invariant is that every constraint set κ that
appears as input to a judgment is satisfiable and the restriction of its denotation to
the unknowns in e is finite. These invariants are established at the top-level (see
Section 13.4). The finiteness invariant ensures the output of sample will always be
a finite collection and therefore the probabilities involved will be positive rational
numbers. They also guarantee termination of constraint solving, as we will see
in Section 13.3.4. Finally, we assume that the type of every expression has been
determined by an initial type-checking phase. We write eT to show that e has type T .
This information is used in the semantic rules to type fresh unknowns.
The narrowing semantics is given in Figure 13.5 for the standard constructs

(omitting fold/unfold and N-R and N-Case-R rules analogous to the N-L and N-
Case-L rules shown) and in Figure 13.6 for instantiation expressions; Figure 13.8
and Figure 13.7 give some auxiliary definitions. Most of the rules are intuitive. A
common pattern is sequencing two narrowing judgments e1 �κ ⇓t1

q1 κ1 � v and
e2 �κ1 ⇓t2

q2 κ2 � v. The constraint-set result of the first narrowing judgment (κ1)
is given as input to the second, while traces and probabilities are accumulated by
concatenation (t1 · t2) and multiplication (q1 ∗ q2). We now explain the rules in detail.
Rule N-Base is the base case of the evaluation relation, handling values that are

not handled by other rules by returning them as-is. No choices are made, so the
probability of the result is 1 and the trace is empty.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 463

N-Base
v = () ∨ v = (rec (f : T1 → T2) x = e′) ∨ v ∈ U

v �κ ⇓ε
1 κ � v

N-Pair
e1 �κ ⇓t1

q1 κ1 � v1 e2 �κ1 ⇓t2
q2 κ2 � v2

(e1, e2) �κ ⇓t1 ·t2
q1∗q2 κ2 � (v1, v2)

N-CasePair-P
e �κ ⇓t

q κa � (v1, v2)
e′[v1/x, v2/y] �κa ⇓t′

q′ κ′ � v

case e of (x, y) � e′ �κ ⇓t ·t′
q∗q′ κ′ � v

N-CasePair-U

e �κ ⇓t
q κa � u

(κb, [u1,u2]) = fresh κa [T1,T2]
κc = unify κb (u1,u2) u

e′[u1/x, u2/y] �κc ⇓t′

q′ κ′ � v

case eT 1×T 2 of (x, y) � e′ �κ ⇓t ·t′
q∗q′ κ′ � v

N-L
e �κ ⇓t

q κ
′ � v

LT1+T2 e �κ ⇓t
q κ

′ � LT1+T2 v

N-Case-L
e �κ ⇓t

q κa � LT vl

el[vl/xl] �κa ⇓t′

q′ κ′ � v

case e of (L xl � el)(R xr � er) �κ ⇓t ·t′
q∗q′ κ′ � v

N-Case-U

e �κ ⇓t1
q1 κa � u

(κ0, [ul,ur]) = fresh κa [T l,Tr]
κl = unify κ0 u (LT l+T r

ul) κr = unify κ0 u (RT l+T r
ur)

choose 1 κl 1 κr →t2
q2 i

ei[ui/xi] �κi ⇓t3
q3 κ

′ � v

case eT l+T r of (L xl � el)(R xr � er) �κ ⇓t1 ·t2 ·t3
q1∗q2∗q3 κ

′ � v

N-App
e0 �κ ⇓t0

q0 κa � (rec (f : T1 → T2) x = e2)
e1 �κa ⇓t1

q1 κb � v1
e2[(rec (f : T1 → T2) x = e2)/ f , v1/x] �κb ⇓t2

q2 κ
′ � v

(e0 e1) �κ ⇓t0 ·t1 ·t2
q0∗q1∗q2 κ

′ � v

Figure 13.5 Narrowing Semantics of Standard Core Luck Constructs

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

464 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

N-After
e1 �κ ⇓t1

q1 κ1 � v1 e2 �κ1 ⇓t2
q2 κ2 � v2

e1 ;e2 �κ ⇓t1 ·t2
q1∗q2 κ2 � v1

N-Bang
e �κ ⇓t

q κa � v sampleV κa v ⇒t′

q′ κ′

!e �κ ⇓t ·t′
q∗q′ κ′ � v

N-Narrow

e �κ ⇓t
q κa � v

e1 �κa ⇓t1
q1 κb � v1 e2 �κb ⇓t2

q2 κc � v2

sampleV κc v1 ⇒t′1
q′
1
κd sampleV κd v2 ⇒t′2

q′
2
κe

natκe (v1) = n1 n1 > 0 natκe (v2) = n2 n2 > 0
(κ0, [u1,u2]) = fresh κe [T1,T2]

κl = unify κ0 v (LT 1+T 2
u1) κr = unify κ0 v (RT 1+T 2

u2)
choose n1 κl n2 κr →t′

q′ i

eT 1+T 2 < −(enat
1 , e

nat
2) �κ ⇓t ·t1 ·t2 ·t′1 ·t

′
2 ·t

′

q∗q1∗q2∗q′
1∗q

′
2∗q′ κi � v

Figure 13.6 Narrowing Semantics for Non-Standard Expressions

SAT(κ1) SAT(κ2)

choose n κ1 m κ2 →[(0,2)]
n/(n+m) l

¬SAT(κ1) SAT(κ2)
choose n κ1 m κ2 →ε

1 r

SAT(κ1) SAT(κ2)

choose n κ1 m κ2 →[(1,2)]
m/(n+m) r

SAT(κ1) ¬SAT(κ2)
choose n κ1 m κ2 →ε

1 l

Figure 13.7 Auxiliary relation choose

Rule N-Pair: To evaluate (e1, e2) given a constraint set κ, we sequence the
derivations for e1 and e2.
Rules N-CasePair-P, N-CasePair-U: To evaluate the pair elimination expression

case e of (x, y) → e′ in a constraint set κ, we first evaluate e in κ. Typing ensures
that the resulting value is either a pair or an unknown. If it is a pair (N-CasePair-P),
we substitute its components for x and y in e′ and continue evaluating. If it is an
unknown u of type T1 × T2 (N-CasePair-U), we first use T1 and T2 as types for
fresh unknowns u1, u2 and remember the constraint that the pair (u1,u2) must unify
with u. We then proceed as above, this time substituting u1 and u2 for x and y.
The first pair rule might appear unnecessary since, even in the case where the

scrutinee evaluates to a pair, we could generate unknowns, unify, and substitute,
as in N-CasePair-U. However, unknowns in Luck only range over non-functional

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 465

sample κ u = S S[m] = κ′

sampleV κ u ⇒[(m, |S |)]
1/ |S | κ′

sampleV κ () ⇒ε
1 κ

sampleV κ v ⇒t
q κ

′

sampleV κ (foldT v) ⇒t
q κ

′

sampleV κ v ⇒t
q κ

′

sampleV κ (LT v) ⇒t
q κ

′

sampleV κ v ⇒t
q κ

′

sampleV κ (RT v) ⇒t
q κ

′

sampleV κ v1 ⇒t1
q1 κ1 sampleV κ1 v2 ⇒t2

q2 κ
′

sampleV κ (v1, v2) ⇒t1 ·t2
q1∗q2 κ

′

Figure 13.8 Auxiliary relation sampleV

types T , so this trick does not work when the type of the e contains arrows. The
N-CasePair-U rule also shows how the finiteness invariant is preserved: when we
generate the unknowns u1 and u2, their domains are unconstrained, but before we
substitute them into an expression used as “input” to a subderivation, we unify them
with the result of a narrowing derivation, which already has a finite representation
in κa.
Rule N-L: To evaluate LT1+T2 e, we evaluate e and tag the resulting value with

LT1+T2, with the resulting constraint set, trace, and probability unchanged. RT1+T2 e
is handled similarly (the rule is elided) .
Rules N-Case-L,N-Case-U: As in the pair elimination rule, we first evaluate

the discriminee e to a value, which must have one of the shapes LT vl, RT vr , or
u ∈ U, thanks to typing. The cases for LT vl (rule N-Case-L) and RT vr (elided)
are similar to N-CasePair-P: vl or vr can be directly substituted for xl or xr in el
or er . The unknown case (N-Case-U) is similar to N-CasePair-U but a bit more
complex. Once again e shares with the unknown u a type T l + Tr that does not
contain any arrows, so we can generate fresh unknowns ul , ur with types T l , Tr . We
unify LT l+T r

vl with u to get the constraint set κl and RT l+T r
vr with u to get κr . We

then use the auxiliary relation choose (Figure 13.7), which takes two integers n and
m (here equal to 1) as well as two constraint sets (here κl and κr), to select either l or
r . If exactly one of κl and κr is satisfiable, then choose will return the corresponding
index with probability 1 and an empty trace (because no random choice were made).
If both are satisfiable, then the resulting index is randomly chosen. Both outcomes
are equiprobable (because of the 1 arguments to choose), so the probability is one
half in each case. This uniform binary choice is recorded in the trace t2 as either (0,2)
or (1,2). Finally, we evaluate the expression corresponding to the chosen index, with

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

466 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

the corresponding unknown substituted for the variable. The satisfiability checks
enforce the invariant that constraint sets are satisfiable, which in turn ensures that κl
and κr cannot both be unsatisfiable at the same time, since there must exist at least
one valuation in κ0 that maps u to a value (either L or R) which ensures that the
corresponding unification will succeed.
Rule N-App: To evaluate an application (e0 e1), we first evaluate e0 to rec (f :

T1 → T2) x = e2 (since unknowns only range over arrow-free types T , the result
cannot be an unknown) and its argument e1 to a value v1. We then evaluate the
appropriately substituted body, e2[(rec (f : T1 → T2) x = e2)/ f , v1/x], and
combine the various probabilities and traces appropriately.
Rule N-After is similar to N-Pair; however, the value result of the derivation is

that of the first narrowing evaluation, implementing the reverse form of sequencing
described in the introduction of this section.
Rule N-Bang: To evaluate !e we evaluate e to a value v, then use the auxiliary

relation sampleV (Figure 13.8) to completely instantiate v, walking down the
structure of v. When unknowns are encountered, sample is used to produce a list of
constraint sets S; with probability 1

|S | (where |S | is the size of the list) we can select
the mth constraint set in S, for each 0 ≤ m < |S |.
Rule N-Narrow is similar to N-Case-U, modulo the “weight” arguments e1

and e2. These are evaluated to values v1 and v2, and sampleV is called to ensure
that they are fully instantiated in all subsequent constraint sets, especially κe. The
relation natκe (v1) = n1 walks down the structure of the value v1 (like sampleV) and
calculates the unique natural number n1 corresponding to v1: when the input value
is an unknown, natκ(u) = n holds if κ[u] = v′ and �v� = n, where the notation �v�

is defined in Figure 13.4. The rest of the rule is the same as N-Case-U, but with the
computed weights n1 and n2 given as arguments to choose to shape the distribution.
Using the narrowing semantics, we can implement a more efficient method for

generating valuations than the naive generate-and-test described in Section 13.3.1:
instead of generating arbitrary valuations we only lazily instantiate a subset of
unknowns as we encounter them. This method has the additional advantage that, if a
generated valuation yields an unwanted result, the implementation can backtrack to
the point of the latest choice, which can drastically improve performance (Claessen
et al., 2014).
Unfortunately, using the narrowing semantics in this way can lead to a lot of

backtracking. To seewhy, consider three unknowns, u1,u2, and u3, and a constraint set
κ where each unknown has type Bool (i.e., 1+1) and the domain associated with each
contains both True and False (L1+1 () and R1+1 ()). Suppose we want to generate
valuations for these three unknowns such that the conjunction u1 && u2 && u3
holds, where e1 && e2 is shorthand for case e1 of (L x � e2)(R y � False). If we
attempt to evaluate the expression u1 && u2 && u3 using the narrowing semantics,

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 467

we first apply the N-Case-U rule with e = u1. That means that u1 will be unified
with either L or R (applied to a fresh unknown) with equal probability, leading to a
False result for the entire expression 50% of the time. If we choose to unify u1 with
an L, then we apply the N-Case-U rule again, returning either False or u3 (since
unknowns are values – rule N-Base) with equal probability. Therefore, we will have
generated a desired valuation only 25% of the time; we will need to backtrack 75%
of the time.
The problem here is that the narrowing semantics is agnostic to the desired result

of the whole computation – we only find out at the very end that we need to backtrack.
But we can do better. . .

13.3.4 Matching Semantics

In this section we present a matching semantics that takes as an additional input a
pattern (a value not containing lambdas but possibly containing unknowns) and
propagates this pattern backwards to guide the generation process. By allowing
our semantics to look ahead in this way, we can often avoid case branches that
lead to non-matching results. The matching judgment is again a variant of big-step
evaluation; it has the form

p ⇐ e �κ ⇑t
q κ

?

where p can mention the unknowns in U(κ) and where the metavariable κ? stands
for an optional constraint set (∅ or {κ}) returned by matching. Returning an option
allows us to calculate the probability of backtracking by summing the q’s of all
failing derivations. (The combined probability of failures and successes may be less
than 1, because some reduction paths may diverge.)
We keep the invariants from Section 13.3.3: the input constraint set κ is well

typed and so is the input expression e (with respect to an empty variable context and
U(κ)); moreover κ is satisfiable, and the restriction of its denotation to the unknowns
in e is finite. To these invariants we add that the input pattern p is well typed inU(κ)
and that the common type of e and p does not contain any arrows (e can still contain
functions and applications internally; these are handled by calling the narrowing
semantics).
The rules except for case are similar to the narrowing semantics. Figure 13.9

shows several; the rest appear in the extended version.
Rule M-Base: To generate valuations for a unit value or an unknown, we unify v

and the target pattern p under the input constraint set κ. Unlike N-Base, there is no
case for functions, since the expression being evaluated must have a non-function
type.
RulesM-Pair,M-Pair-Fail: To evaluate (e1, e2), where e1 and e2 have types T1

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

468 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

M-Base
v = () ∨ v ∈ U κ′ = unify κ v p

p ⇐ v �κ ⇑ε
1 if SAT(κ′) then {κ′} else ∅

M-Pair

(κ′, [u1,u2]) = fresh κ [T1,T2]
κ0 = unify κ′ (u1,u2) p

u1 ⇐ e1 �κ0 ⇑t1
q1 {κ1} u2 ⇐ e2 �κ1 ⇑t2

q2 κ
?
2

p ⇐ (eT 11 , e
T 2
2) �κ ⇑t1 ·t2

q1∗q2 κ
?
2

M-Pair-Fail

(κ′, [u1,u2]) = fresh κ [T1,T2]
κ0 = unify κ′ (u1,u2) p

u1 ⇐ e1 �κ0 ⇑t1
q1 ∅

p ⇐ (eT 11 , e
T 2
2) �κ ⇑t1

q1 ∅

M-App

e0 �κ ⇓t0
q0 κ0 � (rec f x = e2)

e1 �κ0 ⇓t1
q1 κ

′ � v1
p ⇐ e2[(rec f x = e2)/ f , v1/x] �κ′ ⇑t2

q2 κ
?

p ⇐ (e0 e1) �κ ⇑t0 ·t1 ·t2
q0∗q1∗q2 κ

?

M-After
p ⇐ e1 �κ ⇑t1

q1 {κ1} e2 �κ1 ⇓t2
q2 κ2 � v

p ⇐ e1 ;e2 �κ ⇑t1 ·t2
q1∗q2 {κ2}

Figure 13.9 Matching Semantics of Selected Core Luck Constructs

and T2, we first generate fresh unknowns u1 and u2. We unify the pair (u1,u2) with
the target pattern p, obtaining a new constraint set κ′. We then proceed as in N-Pair,
evaluating e1 against pattern u1 and e2 against u2, threading constraint sets and
accumulating traces and probabilities.M-Pair handles the case where the evaluation
of e1 succeeds, while M-Pair-Fail handles failure: if evaluating e1 yields ∅, the
whole computation immediately yields ∅ as well; e2 is not evaluated, and the final
trace and probability are t1 and q1.
RulesM-App,M-After: To evaluate an application e0 e1, we use the narrowing

semantics to reduce e0 to rec f x = e2 and e1 to a value v1, then evaluate
e2[(rec f x = e2)/ f , v2/x] against the original p. In this rule we cannot use a pattern
during the evaluation of e1: we do not have any candidates! This is the main reason
for introducing the sequencing operator as a primitive e1 ;e2 instead of encoding it
using lambda abstractions. InM-After, we evaluate e1 against p and then evaluate
e2 using narrowing, just for its side effects. If we used lambdas to encode sequencing,
e1 would be narrowed instead, which is not what we want.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 469

M-Case-1

(κ0, [u1,u2]) = fresh κ [T1,T2]
(LT 1+T 2

u1) ⇐ e �κ0 ⇑t1
q1 {κ1}

(RT 1+T 2
u2) ⇐ e �κ0 ⇑t2

q2 {κ2}

p ⇐ e1[u1/xl] �κ1 ⇑t′1
q′
1
κ?a p ⇐ e2[u2/yr] �κ2 ⇑t′2

q′
2
κ?
b

κ? = combine κ0 κ?a κ?b

p ⇐ case eT 1+T 2 of (L xl � e1)(R yr � e2) �κ
⇑t1 ·t2 ·t′1 ·t

′
2

q1∗q2∗q′
1∗q

′
2
κ?

where combine κ ∅ ∅ = ∅
combine κ {κ1} ∅ = {κ1}
combine κ ∅ {κ2} = {κ2}
combine κ {κ1} {κ2} = union κ1 (rename (U(κ1)-U(κ)) κ2)

M-Case-2

(κ0, [u1,u2]) = fresh κ [T1,T2]
(LT 1+T 2

u1) ⇐ e �κ0 ⇑t1
q1 ∅

(RT 1+T 2
u2) ⇐ e �κ0 ⇑t2

q2 {κ2}

p ⇐ e2[u2/y] �κ2 ⇑t′2
q′
2
κ?
b

p ⇐ case eT 1+T 2 of (L x � e1)(R y � e2) �κ ⇑t1 ·t2 ·t′2
q1∗q2∗q′

2
κ?
b

Figure 13.10 Matching Semantics for Constraint-Solving case

The interesting rules are the ones for case when the type of the scrutinee does
not contain functions. For these rules, we can actually use the patterns to guide
the generation that occurs during the evaluation of the scrutinee as well. Instead of
choosing which branch to follow with some probability (50% in N-Case-U), we
evaluate both branches, just like a constraint solver would exhaustively search the
entire domain.
Before looking at the rules in detail, we need to extend the constraint set interface

with two new functions:
rename :: U∗ → C → C
union :: C → C → C

The rename operation freshens a constraint set by replacing all the unknowns in
a given sequence with freshly generated ones. The union of two constraint sets
intuitively denotes the union of their corresponding denotations.
Two of the rules appear in Figure 13.10. (A third is symmetric to M-Case-2;

a fourth handles failures.) We independently evaluate e against both an L pattern

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

470 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

and an R pattern. If both of them yield failure, then the whole evaluation yields
failure (elided). If exactly one succeeds, we evaluate just the corresponding branch
(M-Case-2 or the other elided rule). If both succeed (M-Case-1), we evaluate both
branch bodies and combine the results with union. We use rename to avoid conflicts,
since we may generate the same fresh unknowns while independently computing
κ?a and κ?b. If desired, the user can ensure that only one branch will be executed by
using an instantiation expression before the case is reached. Since e will then begin
with a concrete constructor, only one of the evaluations of e against the patterns L
and R will succeed, and only the corresponding branch will be executed.
The M-Case-1 rule is the second place where the need for finiteness of the

restriction of κ to the input expression e arises. In order for the semantics to
terminate in the presence of (terminating) recursive calls, it is necessary that the
domain be finite. To see this, consider a simple recursive predicate that holds for
every number:

rec (f : nat → bool) u = case unfoldnat u of (L x � True)(R y � (f y))

Even though f terminates in the predicate semantics for every input u, if we allow a
constraint set to map u to the infinite domain of all natural numbers, the matching
semantics will not terminate. While this finiteness restriction feels a bit unnatural,
we have not found it to be a problem in practice – see Section 13.4.

13.3.5 Example

To show how all this works, let’s trace the main steps of the matching derivations
of two given expressions against the pattern True in a given constraint set. We
will also extract probability distributions about optional constraint sets from these
derivations.
We are going to evaluate A := (0 < u && u < 4) ;!u and B := (0 < u ;!u) &&

u < 4 against the pattern True in a constraint set κ, in which u is independent
from other unknowns and its possible values are 0, . . . ,9. Similar expressions were
introduced as examples in Section 13.2; the results we obtain here confirm the
intuitive explanation given there.
Recall that we are using a standard Peano encoding of naturals: nat = μX . 1 + X ,

and that the conjunction expression e1 && e2 is shorthand for
case e1 of (L a � e2)(R b � False). We elide folds for brevity. The inequality
a < b can be encoded as lt a b, where:

lt = rec (f : nat → nat− > bool) x = rec (g : nat → bool) y =
case y of (L _ � False)

(R yR � case x of (L _ � True)
(R xR � f xR yR))

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 471

Many rules introduce fresh unknowns, many of which are irrelevant: they might
be directly equivalent to some other unknown, or there might not exist any reference
to them. We use the same variable for two constraint sets which differ only in the
addition of a few irrelevant variables in one.

Evaluation of A We first derive True ⇐ (0 < u) �κ ⇑ε
1 {κ0}. Since in the

desugaring of 0 < u as an application lt is already in rec form and both 0 and u are
values, the constraint set after the narrowing calls ofM-Appwill stay unchanged.We
then evaluate case u of (L _ � False)(R yR � . . .). Since the domain of u contains
both zero and non-zero elements, unifying u with L1+nat u1 and R1+nat u2 (M-Base)
will produce some non-empty constraint sets. Therefore, rule M-Case-1 applies.
Since the body of the left hand side of the match is False, the result of the left
derivation in M-Case-1 is ∅ and in the resulting constraint set κ0 the domain of u is
{1, . . . ,9}.
Next, we turn to True ⇐ (0 < u && u < 4) �κ ⇑ε

1 {κ1}, where, by a similar
argument following the recursion, the domain of u in κ1 is {1,2,3}. There are 3
possible narrowing-semantics derivations for !u: (1) !u �κ1 ⇓[(0,3)]

1/3 κA1 � u, (2)
!u �κ1 ⇓[(1,3)]

1/3 κA2 � u, and (3) !u �κ1 ⇓[(2,3)]
1/3 κA3 � u, where the domain of u in κAi

is {i}. (We have switched to narrowing-semantics judgments because of the rule
M-After.) Therefore all the possible derivations for A = (0 < u && u < 4) ;!u
matching True in κ are:

True ⇐ A �κ ⇑[(i−1,3)]
1/3 {κAi } for i ∈ {1,2,3}

From the set of possible derivations, we can extract a probability distribution: for each
resulting optional constraint set, we sum the probabilities of each of the traces that
lead to this result. Thus the probability distribution associated with True ⇐ A �κ
is

[{κA1 } �→
1
3
; {κA2 } �→

1
3
; {κA3 } �→

1
3
].

Evaluation of B The evaluation of 0 < u is the same as before, after which we
narrow !u directly in κ0 and there are 9 possibilities: !u �κ0 ⇓[(i−1,9)]

1/9 κBi � u
for each i ∈ {1, . . . ,9}, where the domain of u in κBi is {i}. Then we evaluate
True ⇐ u < 4 �κBi : if i is 1, 2 or 3 this yields {κBi }; if i > 3 this yields a failure ∅.
Therefore the possible derivations for B = (0 < u ;!u) && u < 4 are:

True ⇐ B �κ ⇑[(i−1,9)]
1/9 {κBi } for i ∈ {1,2,3}

True ⇐ B �κ ⇑[(i−1,9)]
1/9 ∅ for i ∈ {4, . . . ,9}

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

472 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

We can again compute the corresponding probability distribution:

[{κB1 } �→
1
9
; {κB2 } �→

1
9
; {κB3 } �→

1
9
; ∅ �→

2
3
]

Note that if we were just recording the probability of an execution and not its trace,
we would not know that there are six distinct executions leading to ∅ with probability
1
9 , so we would not be able to compute its total probability.
The probability associated with ∅ (0 for A, 2/3 for B) is the probability of

backtracking. As stressed in Section 13.2, A is much better than B in terms of
backtracking – i.e., it is more efficient in this case to instantiate u only after all
the constraints on its domain have been recorded. For a more formal treatment of
backtracking strategies in Luck using Markov Chains, see Gallois-Wong (2016).

13.3.6 Properties

We close our discussion of Core Luck by summarizing some key properties; more
details and proofs can be found in the extended version. Intuitively, we show that,
when we evaluate an expression e against a pattern p in the presence of a constraint
set κ, we can only remove valuations from the denotation of κ (decreasingness), any
derivation in the generator semantics corresponds to an execution in the predicate
semantics (soundness), and every valuation that matches p will be found in the
denotation of the resulting constraint set of some derivation (completeness).
Since we have two flavors of generator semantics, narrowing and matching, we

also present these properties in two steps. First, we present the properties for the
narrowing semantics; their proofs have been verified using Coq. Then we present
the properties for the matching semantics; for these, we have only paper proofs, but
these proofs are quite similar to the narrowing ones (details are in the extended
version; the only real difference is the case rule).
We begin by giving the formal specification of constraint sets. We introduce one

extra abstraction, the domain of a constraint set κ, written dom(κ). This domain
corresponds to the unknowns in a constraint set that actually have bindings in �κ�.
For example, when we generate a fresh unknown u from κ, u does not appear in the
domain of κ; it only appears in the denotation after we use it in a unification. The
domain of κ is a subset of the set of keys ofU(κ). When we write that for a valuation
and constraint set σ ∈ �κ�, it also implies that the unknowns that have bindings in
σ are exactly the unknowns that have bindings in �κ�, i.e., in dom(κ). We use the
overloaded notation σ |x to denote the restriction of σ to x, where x is either a set of
unknowns or another valuation.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.3 Semantics of Core Luck 473

Specification of fresh

(κ′,u) = fresh κ T ⇒
⎧⎪⎪⎨⎪⎪⎩

u � U(κ)
U(κ′) = U(κ) ⊕ (u �→ T)
�κ′� = �κ�

Intuitively, when we generate a fresh unknown u of type T from κ, u is really fresh
for κ, meaning U(κ) does not have a type binding for it. The resulting constraint
set κ′ has an extended unknown typing map, where u maps to T and its denotation
remains unchanged. That means that dom(κ′) = dom(κ).

Specification of sample

κ′ ∈ sample κ u ⇒
⎧⎪⎪⎨⎪⎪⎩

U(κ′) = U(κ)
SAT(κ′)
∃v. �κ′� = { σ | σ ∈ �κ�, σ(u) = v }

When we sample u in a constraint set κ and obtain a list, for every member constraint
set κ′, the typing map of κ remains unchanged and all of the valuations that remain in
the denotation of κ′ are the ones that mapped to some specific value v in κ. We also
require a completeness property from sample, namely that if we have a valuation
σ ∈ �κ� where σ(u) = v for some u, v, then is in some member κ′ of the result:

σ(u) = v

σ ∈ �κ�

}
⇒ ∃κ′.

{
σ ∈ �κ′�

κ′ ∈ sample κ u

Specification of unify

U(unify κ v1 v2) = U(κ)
�unify κ v1 v2� = { σ ∈ �κ� | σ(v1) = σ(v2) }

When we unify in a constraint set κ two well-typed values v1 and v2, the typing map
remains unchanged while the denotation of the result contains the valuations from κ
that when substituted into v1 and v2 make them equal.

Specification of union

U(κ1)|U(κ1)∩U(κ2) = U(κ2)|U(κ1)∩U(κ2)
union κ1 κ2 = κ

}
⇒

{
U(κ) = U(κ1) ∪ U(κ2)
�κ� = �κ1� ∪ �κ2�

To take the union of two constraint sets, their typing maps must obviously agree on
any unknowns present in both. The denotation of the union of two constraint sets is
then just the union of their corresponding denotations.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

474 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

Properties of the Narrowing Semantics The first theorem, decreasingness states
that we never add new valuations to our constraint sets; our semantics can only refine
the denotation of the input κ.

Theorem 13.1 (Decreasingness).

e �κ ⇓t
q κ

′ � v ⇒ κ′ ≤ κ

Soundness and completeness can be visualized as follows:

ep vp

e �κ v � κ′

⇓

σ∈�κ�

⇓t
q

σ′∈�κ′�

Given the bottom and right sides of the diagram, soundness guarantees that we can
fill in the top and left. That is, any narrowing derivation e �κ ⇓q

t κ
′ � v corresponds

to some derivation in the predicate semantics, with the additional assumption that
all the unknowns in e are included in the domain of the input constraint set κ (or
that e is well typed in κ).

Theorem 13.2 (Soundness).

e �κ ⇓q
t κ

′ � v

σ′(v) = vp ∧ σ′ ∈ �κ′�

∀u. u ∈ e ⇒ u ∈ dom(κ)

⎫⎪⎪⎬⎪⎪⎭ ⇒ ∃σ ep .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ′|σ ≡ σ
σ ∈ �κ�

σ(e) = ep
ep ⇓ vp

Completeness guarantees the opposite direction: given a predicate derivation
ep ⇓ vp and a “factoring” of ep into an expression e and a constraint set κ such that
for some valuation σ ∈ �κ� substituting σ in e yields ep, if is well typed, there is
always a nonzero probability of obtaining some factoring of vp as the result of a
narrowing judgment.

Theorem 13.3 (Completeness).

ep ⇓ vp
σ(e) = ep
σ ∈ �κ� ∧ � κ
∅;U(κ) � e : T

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇒

∃v κ′ σ′ q t .⎧⎪⎪⎨⎪⎪⎩
σ′|σ ≡ σ ∧ σ′ ∈ �κ′�

σ′(v) = vp
e �κ ⇓t

q κ
′ � v

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.4 Implementation 475

Properties of the Matching Semantics The decreasingness property for the match-
ing semantics is very similar to the narrowing semantics: if the matching semantics
yields {κ′}, then κ′ is smaller than the input κ.

Theorem 13.4 (Decreasingness).

p ⇐ e �κ ⇑t
q {κ′} ⇒ κ′ ≤ κ

Soundness is again similar to the matching semantics.

Theorem 13.5 (Soundness).

p ⇐ e �κ ⇑t
q {κ′}

σ′(p) = vp ∧ σ′ ∈ �κ′�

∀u. (u ∈ e ∨ u ∈ p) ⇒ u ∈ dom(κ)

⎫⎪⎪⎬⎪⎪⎭ ⇒ ∃σ ep .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ′|σ ≡ σ
σ ∈ �κ�

σ(e) = ep
ep ⇓ vp

For the completeness theorem, we need to slightly strengthen its premise; since
the matching semantics may explore both branches of a case, it can fall into a loop
when the predicate semantics would not (by exploring a non-terminating branch that
the predicate semantics does not take). Thus, we require that all input valuations
result in a terminating execution.

Theorem 13.6 (Completeness).

ep ⇓ vp ∧ σ ∈ �κ�

∅;U(κ) � e : T ∧ � κ
σ(e) = ep ∧ σ(p) = vp
∀σ′ ∈ �κ�. ∃v′. σ′(e) ⇓ v′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇒

∃κ′ σ′ q t .⎧⎪⎪⎨⎪⎪⎩
σ′|σ ≡ σ
σ′ ∈ �κ′�

p ⇐ e �κ ⇑t
q {κ′}

13.4 Implementation

We next describe the Luck prototype: its top level, its treatment of backtracking
and its probability-preserving pattern match compiler. We refer the reader to the
extended version for the constraint set implementation.

At the Top Level The inputs provided to the Luck interpreter consist of an expression
e of type bool containing zero or more free unknowns 8u (but no free variables), and
an initial constraint set κ providing types and finite domains2 for each unknown in
8u, such that their occurrences in e are well typed (∅;U(κ) � e : 1 + 1).
2 This restriction to finite domains appears to be crucial for our technical development to work, as discussed in
the previous section. In practice, we have not yet encountered a situation where it was important to be able
to generate examples of unbounded size (as opposed to examples up to some large maximum size). We do

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

476 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

The interpreter matches e against True (that is, L1+1 ()), to derive a refined
constraint set κ′:

L1+1 () ⇐ e �κ ⇑t
q {κ′}

This involves random choices, and there is also the possibility that matching fails (and
the semantics generates ∅ instead of {κ′}). In this case, a simple global backtracking
approach could simply try the whole thing again (up to an ad hoc limit). While not
strictly necessary for a correct implementation of the matching semantics, some local
backtracking allows wrong choices to be reversed quickly and leads to an enormous
improvement in performance (Claessen et al., 2015). Our prototype backtracks
locally in calls to choose: if choose has two choices available and the first one fails
when matching the instantiated expression against a pattern, then we immediately
try the second choice instead. Effectively, this means that if e is already known to be
of the form L_ _, then narrow will not choose to instantiate it using R_ _, and vice
versa. This may require matching against e twice, and our implementation shares
work between these two matches as far as possible. (It also seems useful to give the
user explicit control over where backtracking occurs, but we leave this for future
work.)
After the interpreter matches e against True, all the resulting valuations σ ∈ �κ′�

should map the unknowns in 8u to some values. However, there is no guarantee that
the generator semantics will yield a κ′ mapping every 8u to a unique values. The
Luck top-level then applies the sample constraint set function to each unknown in 8u,
ensuring that σ | 8u is the same for each σ in the final constraint set. The interpreter
returns this common σ | 8u if it exists, and backtracks otherwise.

Pattern Match Compiler In Section 13.2, we saw an example using a standard
Tree datatype and instantiation expressions assigning different weights to each
branch. While the desugaring of simple pattern matching to core Luck syntax is
straightforward (Section 13.3.1), nested patterns – as in Figure 13.11 – complicate
things in the presence of probabilities. We expand such expressions to a tree of simple
case expressions that match only the outermost constructors of their scrutinees.
However, there is generally no unique choice of weights in the expanded predicate:
a branch from the source predicate may be duplicated in the result. We guarantee
the intuitive property that the sum of the probabilities of the clones of a branch is
proportional to the weights given by the user, but that still does not determine the
individual probabilities that should be assigned to these clones.

sometimes want to generate structures containing large numbers, since they can be represented efficiently, but
here, too, choosing an enormous finite bound appears to be adequate for the applications we’ve tried. The
implementation allows for representing all possible ranges of a corresponding type up to a given size bound.
Such bounds are initialized at the top level, and they are propagated (and reduced a bit) to fresh unknowns
created by pattern matching before these unknowns are used as inputs to the interpreter.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.5 Evaluation 477
data T = Var Int | Lam Int T | App T T

sig isRedex :: T -> Bool -- Original
fun isRedex t =
case t of
| 2 % App (Lam _ _) _ -> True -- 2/3
| 1 % _ -> False -- 1/3

sig isRedex :: T -> Bool -- Expansion
fun isRedex t =
case t of
| 1 % Var _ -> False -- 1/9
| 1 % Lam _ _ -> False -- 1/9
| 7 % App t1 _ -> case t1 of

| 1 % Var _ -> False -- 1/18
| 12 % Lam _ _ -> True -- 2/3
| 1 % App _ _ -> False -- 1/18

Figure 13.11 Expanding case expression with a nested pattern and a wildcard. Comments show
the probability of each alternative.

The most obvious way to distribute weights is to simply share the weight equally
with all duplicated branches. But the probability of a single branch then depends on
the total number of expanded branches that come from the same source, which can
be hard for users to determine and can vary widely even between sets of patterns
that appear similar. Instead, Luck’s default weighing strategy works as follows. For
any branch B from the source, at any intermediate case expression of the expansion,
the subprobability distribution over the immediate subtrees that contain at least one
branch derived from B is uniform. This makes modifications of the source patterns
in nested positions affect the distribution more locally.
In Figure 13.11, the False branch should have probability 1

3 . It is expanded into
four branches, corresponding to subpatterns Var _ , Lam _ _ , App (Var _) _ ,
App (App _ _) _ . The latter two are grouped under the pattern App _ _ , while
the former two are in their own groups. These three groups receive equal shares of
the total probability of the original branch, that is 19 each. The two nested branches
further split that into 1

18 . On the other hand, True remains a single branch with
probability 2

3 . The weights on the left of every pattern are calculated to reflect this
distribution.

13.5 Evaluation

To evaluate the expressiveness and efficiency of Luck’s hybrid approach to test case
generation, we tested it with a number of small examples and two significant case

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

478 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

Figure 13.12 Red-Black Tree Experiment

studies: generating well-typed lambda terms and information-flow-control machine
states. The Luck code is generally much smaller and cleaner than that of existing
handwritten generators, though the Luck interpreter takes longer to generate each
example – around 20× to 24× for the more complex generators.

Small Examples The literature on randomgeneration includesmany small examples
– list predicates such as sorted, member, and distinct, tree predicates like BSTs
(Section 13.2) and red-black trees, and so on. In the extended version we show the
implementation of many such examples in Luck, illustrating how to write predicates
and generators together with minimal effort.
We use red-black trees to compare the efficiency of our Luck interpreter to

generators provided by commonly used tools like QuickCheck (random testing),
SmallCheck (exhaustive testing) and Lazy SmallCheck (Runciman et al., 2008). Lazy
SmallCheck leverages Haskell’s laziness to greatly improve upon out-of-the-box
QuickCheck and SmallCheck generators in the presence of sparse preconditions, by
using partially defined inputs to explore large parts of the search space at once. Using
both Luck and Lazy SmallCheck, we attempted to generate 1000 red black trees
with a specific black height bh – meaning that the depth of the tree can be as large as
2 · bh+ 1. Results are shown in Figure 13.12. Lazy SmallCheck was able to generate
all 227 trees of black height 2 in 17 seconds, fully exploring all trees up to depth 5.
When generating trees of black height 3, which required exploring trees up to depth
7, Lazy SmallCheck was unable to generate 1000 red black trees within 5 minutes. At
the same time, Luck lies consistently within an order of magnitude of a very efficient
handwritten QuickCheck generator that generates valid Red-Black trees directly.
Using rejection-sampling approaches by generating trees and discarding those that
don’t satisfy the red-black tree invariant (e.g., QuickCheck or SmallCheck’s ==>) is
prohibitively costly: these approaches perform much worse than Lazy SmallCheck.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.5 Evaluation 479

Well-Typed Lambda Terms Using our prototype implementation we reproduced
the experiments of Pałka et al. (2011), who generated well-typed lambda terms in
order to discover bugs in GHC’s strictness analyzer. We also use this case study to
indirectly compare to two narrowing-based tools that are arguably closer to Luck
and that use the same case study to evaluate their work: Claessen et al. (2014, 2015)
and Fetscher et al. (2015).
We encoded a model of simply typed lambda calculus with polymorphism

in Luck, providing a large typing environment with standard functions from the
Haskell Prelude to generate interesting well-typed terms. The generated ASTs were
then pretty-printed into Haskell syntax and each one was applied to a partial list
of the form: [1,2,undefined]. Using the same version of GHC (6.12.1), we
compiled each application twice: once with optimizations (-O2) and once without
and compared the outputs.
A straightforward Luck implementation of a type system for the polymorphic

lambda calculus was not adequate for finding bugs efficiently. To improve its
performance we borrowed tricks from the similar case study of Fetscher et al.,
seeding the environment with monomorphic versions of possible constants and
increasing the frequency of seq, a basic Haskell function that introduces strictness,
to increase the chances of exercising the strictness analyzer. Using this, we discovered
bugs similar to those found by Pałka et al. and Fetscher et al.. For example, the
[Int] -> [Int] function

seq (id (\a -> seq a id) undefined),

when fed the singleton list [undefined], yields an exception immediately with
-O0 (following the semantics of seq), but prints the toplevel constructor of the result
[before raising the exception if compiled with -O1.
Luck’s generation speed was slower than that of Pałka’s handwritten generator.

We generated terms of average size 50 (internal nodes), and, grouping terms together
in batches of 100, we got a total time of generation, unparsing, compilation and
execution of around 35 seconds per batch. This is a slowdown of 20x compared to
that of Pałka’s. However, our implementation is a total of 82 lines of fairly simple
code, while the handwritten development is 1684 lines, with the warning “. . . the
code is difficult to understand, so reading it is not recommended” in its distribution
page (Pałka, n.d.).
The derived generators of Claessen et al. (2014) achieved a 7x slowdown compared

to the handwritten generator, while the Redex generators (Fetscher et al., 2015)
also report a 7× slowdown in generation time for their best generator. However,
by seeding the environment with monomorphised versions of the most common
constants present in the counterexamples, they were able to achieve a time per
counterexample on par with the handwritten generator.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

480 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

Information-Flow Control For a second large case study, we reimplemented a
method for generating information-flow control machine states (Hriţcu et al., 2013).
Given an abstract stack machine with data and instruction memories, a stack,
and a program counter, one attaches labels – security levels – to runtime values,
propagating them during execution and restricting potential flows of information
from high (secret) to low (public) data. The desired security property, termination-
insensitive noninterference, states that if we start with two indistinguishable abstract
machines s1 and s2 (i.e., all their low-tagged parts are identical) and run each of
them to completion, then the resulting states s1’ and s2’ are also indistinguishable.
Hriţcu et al. found that efficient testing of this property could be achieved in

two ways: either by generating instruction memories that allow for long executions
and checking for indistinguishability at each low step (called LLNI, low-lockstep
noninterference), or by looking for counter-examples to a stronger invariant (strong
enough to prove noninterference), generating two arbitrary indistinguishable states
and then running for a single step (SSNI, single step noninterference). In both cases
one must first generate one abstract machine s and then vary s, to generate an
indistinguishable one s’. In writing a generator for variations, one must reverse the
indistinguishability predicate between states and then keep the two artifacts in sync.
We first investigated the stronger property (SSNI), by encoding the indistinguisha-

bility predicate in Luck and using our prototype to generate small, indistinguishable
pairs of states. In 216 lines of code we were able to describe both the predicate
and the generator for indistinguishable machines. The same functionality required
>1000 lines of complex Haskell code in the handwritten version. The handwritten
generator is reported to generate an average of 18400 tests per second, while the
Luck prototype generates 1450 tests per second, around 12.5 times slower.
The real promise of Luck, however, became apparent when we turned to LLNI.

Hriţcu et al. (2013) generate long sequences of instructions using generation by
execution: starting from a machine state where data memories and stacks are
instantiated, they generate the current instruction ensuring it does not cause the
machine to crash, then allow the machine to take a step and repeat. While intuitively
simple, this extra piece of generator functionality took significant effort to code,
debug, and optimize for effectiveness, resulting in more than 100 additional lines of
code. The same effect was achieved in Luck by the following 6 intuitive lines, where
we just put the previous explanation in code:

sig runsLong :: Int -> AS -> Bool

fun runsLong len st =

if len <= 0 then True

else case step st of

| 99 % Just st’ -> runsLong (len - 1) st’

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

13.6 Related Work 481

| 1 % Nothing -> True

We evaluated our generator on the same set of buggy information-flow analyses
as in (Hriţcu et al., 2013). We were able to find all of the same bugs, with similar
effectiveness (number of bugs found per 100 tests). However, the Luck generator
was 24 times slower (Luck: 150 tests/s, Haskell: 3600 tests/s). We expect to be able
to improve this result (and the rest of the results in this section) with a more efficient
implementation that compiles Luck programs to QuickCheck generators directly,
instead of interpreting them in a minimally tuned prototype.
This prototype gives the user enough flexibility to achieve effectiveness similar

to state-of-the-art generators, while significantly reducing the amount of code and
effort required, suggesting that the Luck approach is promising and pointing towards
the need for a real, optimizing implementation.

13.6 Related Work

Luck lies in the intersection of many different topics in programming languages,
and the potentially related literature is huge. Here, we present just the closest related
work; a more comprehensive treatment of related work can be found in the extended
version of the paper.

Property-Based Testing The works that are most closely related to our own are
the narrowing based approaches of (Gligoric et al., 2010), (Claessen et al., 2014,
2015) and (Fetscher et al., 2015). Gligoric et al. use a “delayed choice” approach,
which amounts to needed-narrowing, to generate test cases in Java. Claessen et
al. exploit the laziness of Haskell, combining a narrowing-like technique with
FEAT (Duregård et al., 2012), a tool for functional enumeration of algebraic types,
to efficiently generate near-uniform random inputs satisfying some precondition.
Fetscher et al. (2015) also use an algorithm that makes local choices with the
potential to backtrack in case of failure. Moreover, they add a simple version of
constraint solving, handling equality and disequality constraints. This allows them
to achieve excellent performance in testing GHC for bugs (as in Pałka et al., 2011)
by monomorphizing the polymorphic constants of the context as discussed in the
previous section. However, both tools provide limited (locally, or globally, uniform)
distribution guarantees, with no user control over the resulting distribution.
Another interesting related approach appears in the inspiring work of Bulwahn

(2012b). In the context of Isabelle’s (Nipkow et al., 2002) QuickCheck (Bulwahn,
2012a), Bulwahn automatically constructs enumerators for a given precondition via a
compilation to logic programs usingmode inference. Lindblad (2007) and (Runciman
et al., 2008) also provide support for exhaustive testing using narrowing-based

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

482 Lampropoulos et al.: Luck: A Probabilistic Language for Testing

techniques. Instead of implementingmechanisms that resemble narrowing in standard
functional languages, Fischer and Kuchen (Fischer and Kuchen, 2007) leverage the
built-in engine of the functional logic programming language Curry (Hanus et al.,
1995) to enumerate tests satisfying a coverage criterion. While exhaustive testing
is useful and has its own merits and advantages over random testing in a lot of
domains, we turn to random testing because the complexity of our applications –
testing noninterference or optimizing compilers – makes enumeration impractical.

Probabilistic programming Semantics for probabilistic programs share many
similarities with the semantics of Luck (Milch et al., 2005; Goodman et al., 2008;
Gordon et al., 2014), while the problem of generating satisfying valuations shares
similarities with probabilistic sampling (Mansinghka et al., 2009; Łatuszyński et al.,
2013; Chaganty et al., 2013; Nori et al., 2014). For example, the semantics of PROB
in the recent probabilistic programming survey of Gordon et al. (Gordon et al., 2014)
takes the form of probability distributions over valuations, while Luck semantics
can be viewed as (sub)probability distributions over constraint sets, which induces
a distribution over valuations. Moreover, in probabilistic programs, observations
serve a similar role to preconditions in random testing, creating problems for
simplistic probabilistic samplers that use rejection sampling – i.e., generate and
test. Recent advances in this domain, like the work on Microsoft’s R2 Markov
Chain Monte Carlo sampler (Nori et al., 2014), have shown promise in providing
more efficient sampling, using pre-imaging transformations in analyzing programs.
An important difference is in the type of programs usually targeted by such tools.
The difficulty in probabilistic programming arises mostly from dealing with a
large number of complex observations, modeled by relatively small programs. For
example, Microsoft’s TrueSkill (Herbrich et al., 2006) ranking program is a very
small program, powered by millions of observations. In contrast, random testing
deals with very complex programs (e.g., a type checker) and a single observation
(observe true).

13.7 Conclusions and Future Work

In this chapter we introduced Luck, a language for writing generators in the form
of lightly annotated predicates. We presented the semantics of Luck, combining
local instantiation and constraint solving in a unified framework and exploring their
interactions. We described a prototype implementation of this semantics and used it
to repeat state-of-the-art experiments in random generation. The results showed the
potential of Luck’s approach, allowing us to replicate the distribution yielded by the
handwritten generators with reduced code and effort. The prototype was slower by
an order of magnitude, but there is still significant room for improvement.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

References 483

In the future it will be interesting to explore ways to improve the performance of our
interpreted prototype, by compiling Luck into generators in a mainstream language
and by experimenting with other domain representations. We also want to investigate
Luck’s equational theory, showing that the encoded logical predicates satisfy the
usual logical laws. Moreover, the backtracking strategies in our implementation
can be abstractly modeled on top of our notion of choice-recording trace; Gallois-
Wong (Gallois-Wong, 2016) shows promising preliminary results using Markov
chains for this.
Another potential direction for future work is automatically deriving smart

shrinkers. Shrinking, or delta-debugging, is crucial in property-based testing, and
it can also require significant user effort and domain specific knowledge to be
efficient (Regehr et al., 2012). It would be interesting to see if there is a counterpart
to narrowing or constraint solving that allows shrinking to preserve desired properties.

References
Antoy, Sergio. 2000. A Needed Narrowing Strategy. Pages 776–822 of: Journal of

the ACM, vol. 47. ACM Press.
Arts, Thomas, Castro, Laura M., and Hughes, John. 2008. Testing Erlang Data

Types with QuviQ QuickCheck. Pages 1–8 of: 7th ACM SIGPLAN Workshop
on Erlang. ACM.

Avgerinos, Thanassis, Rebert, Alexandre, Cha, Sang Kil, and Brumley, David. 2014.
Enhancing symbolic execution with Veritesting. Pages 1083–1094 of: 36th
International Conference on Software Engineering, ICSE ’14, Hyderabad,
India: May 31–June 07, 2014.

Ball, Thomas, Levin, Vladimir, and Rajamani, Sriram K. 2011. A decade of software
model checking with SLAM. Commun. ACM, 54(7), 68–76.

Blanchette, Jasmin Christian, and Nipkow, Tobias. 2010. Nitpick: A Counterexample
Generator for Higher-Order Logic Based on a Relational Model Finder. Pages
131–146 of: First International Conference on Interactive Theorem Proving
(ITP). LNCS, vol. 6172. Springer.

Bulwahn, Lukas. 2012a. The New Quickcheck for Isabelle – Random, Exhaustive
and Symbolic Testing under One Roof. Pages 92–108 of: 2nd International
Conference on Certified Programs and Proofs (CPP). LNCS, vol. 7679.
Springer.

Bulwahn, Lukas. 2012b. Smart Testing of Functional Programs in Isabelle. Pages
153–167 of: 18th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). LNCS, vol. 7180. Springer.

Cadar, Cristian, Dunbar, Daniel, and Engler, Dawson. 2008. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs.
Pages 209–224 of: 8th USENIX conference on Operating systems design and
implementation. OSDI. USENIX Association.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

484 References

Carlier, Matthieu, Dubois, Catherine, and Gotlieb, Arnaud. 2010. Constraint
Reasoning in FocalTest. Pages 82–91 of: 5th International Conference on
Software and Data Technologies. SciTePress.

Chaganty, Arun T., Nori, Aditya V., and Rajamani, Sriram K. 2013 (April). Effi-
ciently Sampling Probabilistic Programs via Program Analysis. In: Artificial
Intelligence and Statistics (AISTATS).

Chakraborty, Supratik, Meel, Kuldeep S., and Vardi, Moshe Y. 2014. Balancing
Scalability and Uniformity in SAT Witness Generator. Pages 60:1–60:6 of:
Proceedings of the 51st Annual Design Automation Conference. DAC ’14. New
York, NY, USA: ACM.

Chamarthi, Harsh Raju, Dillinger, Peter C., Kaufmann, Matt, and Manolios, Panagi-
otis. 2011. Integrating Testing and Interactive Theorem Proving. Pages 4–19 of:
10th International Workshop on the ACL2 Theorem Prover and its Applications.
EPTCS, vol. 70.

Christiansen, Jan, and Fischer, Sebastian. 2008. EasyCheck – Test Data for Free.
Pages 322–336 of: 9th International Symposium on Functional and Logic
Programming (FLOPS). LNCS, vol. 4989. Springer.

Claessen, Koen, and Hughes, John. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. Pages 268–279 of: 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM.

Claessen, Koen,Duregård, Jonas, and Pałka,MichałH. 2014. GeneratingConstrained
Random Data with Uniform Distribution. Pages 18–34 of: Functional and
Logic Programming. LNCS, vol. 8475. Springer.

Claessen, Koen, Duregård, Jonas, and Palka,Michal H. 2015. Generating constrained
random data with uniform distribution. J. Funct. Program., 25.

Duregård, Jonas, Jansson, Patrik, and Wang, Meng. 2012. Feat: Functional Enumer-
ation of Algebraic Types. Pages 61–72 of: Proceedings of the 2012 Haskell
Symposium. Haskell ’12. New York, NY, USA: ACM.

Dybjer, Peter, Haiyan, Qiao, and Takeyama, Makoto. 2003. Combining Testing and
Proving in Dependent Type Theory. Pages 188–203 of: 16th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs). LNCS,
vol. 2758. Springer.

Fetscher, Burke, Claessen, Koen, Palka, Michal H., Hughes, John, and Findler,
Robert Bruce. 2015. Making Random Judgments: Automatically Generating
Well-Typed Terms from the Definition of a Type-System. Pages 383–405 of:
24th European Symposium on Programming. LNCS, vol. 9032. Springer.

Fischer, Sebastian, and Kuchen, Herbert. 2007. Systematic generation of glass-box
test cases for functional logic programs. Pages 63–74 of: 9th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP). ACM.

Gallois-Wong, Diane. 2016 (Aug.). Formalising Luck: Improved Probabilistic
Semantics for Property-Based Generators. Inria Internship Report.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

References 485

Gligoric, Milos, Gvero, Tihomir, Jagannath, Vilas, Khurshid, Sarfraz, Kuncak,
Viktor, and Marinov, Darko. 2010. Test generation through programming in
UDITA. Pages 225–234 of: 32nd ACM/IEEE International Conference on
Software Engineering. ACM.

Godefroid, Patrice, Klarlund, Nils, and Sen, Koushik. 2005. DART: directed
automated random testing. Pages 213–223 of: ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI. ACM.

Goodman, Noah D., Mansinghka, Vikash K., Roy, Daniel M., Bonawitz, Keith, and
Tenenbaum, Joshua B. 2008. Church: a language for generative models. Pages
220–229 of: UAI 2008, Proceedings of the 24th Conference in Uncertainty in
Artificial Intelligence, Helsinki, Finland, July 9-12, 2008.

Gordon, AndrewD., Henzinger, Thomas A., Nori, Aditya V., and Rajamani, SriramK.
2014. Probabilistic programming. Pages 167–181 of: Herbsleb, James D., and
Dwyer,MatthewB. (eds),Proceedings of the on Future of Software Engineering,
FOSE 2014, Hyderabad, India, May 31–June 7, 2014. ACM.

Gotlieb, Arnaud. 2009. Euclide: A Constraint-Based Testing Framework for Critical
C Programs. Pages 151–160 of: ICST 2009, Second International Conference on
Software Testing Verification and Validation, 1-4 April 2009, Denver, Colorado,
USA.

Groce, Alex, Zhang, Chaoqiang, Eide, Eric, Chen, Yang, and Regehr, John. 2012.
Swarm Testing. Pages 78–88 of: Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ISSTA 2012. New York, NY,
USA: ACM.

Hanus, M., Kuchen, H., and Moreno-Navarro, J.J. 1995. Curry: A Truly Functional
Logic Language. Pages 95–107 of: Proc. ILPS’95 Workshop on Visions for the
Future of Logic Programming.

Hanus, Michael. 1997. A Unified Computation Model for Functional and Logic
Programming. Pages 80–93 of: 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM Press.

Herbrich, Ralf, Minka, Tom, and Graepel, Thore. 2006. TrueSkillTM: A Bayesian
Skill Rating System. Pages 569–576 of: Advances in Neural Information
Processing Systems 19, Proceedings of the Twentieth Annual Conference on
Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006.

Hriţcu, Cătălin, Hughes, John, Pierce, Benjamin C., Spector-Zabusky, Antal, Vytinio-
tis, Dimitrios, Azevedo de Amorim, Arthur, and Lampropoulos, Leonidas. 2013.
Testing Noninterference, Quickly. Pages 455–468 of: 18th ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM.

Hriţcu, Cătălin, Lampropoulos, Leonidas, Spector-Zabusky, Antal, Azevedo de
Amorim, Arthur, Dénès, Maxime, Hughes, John, Pierce, Benjamin C., and
Vytiniotis, Dimitrios. 2016. Testing Noninterference, Quickly. Journal of

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

486 References

Functional Programming (JFP); Special issue for ICFP 2013, 26(Apr.), e4 (62
pages). Technical Report available as arXiv:1409.0393.

Hughes, John. 2007. QuickCheck Testing for Fun and Profit. Pages 1–32 of:
9th International Symposium on Practical Aspects of Declarative Languages
(PADL). LNCS, vol. 4354. Springer.

Jackson, Daniel. 2011. Software Abstractions: Logic, Language, and Anlysis. The
MIT Press.

Jhala, Ranjit, and Majumdar, Rupak. 2009. Software model checking. ACM Comput.
Surv., 41(4).

Köksal, Ali Sinan, Kuncak, Viktor, and Suter, Philippe. 2011. Scala to the Power of
Z3: Integrating SMT and Programming. Pages 400–406 of: 23rd International
Conference on Automated Deduction. LNCS, vol. 6803. Springer.

Lampropoulos, Leonidas, Gallois-Wong, Diane, Hritcu, Catalin, Hughes, John,
Pierce, Benjamin C., and Xia, Li-yao. 2017. Beginner’s Luck: a language for
property-based generators. Pages 114–129 of: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017.

Łatuszyński, Krzysztof, Roberts, Gareth O., and Rosenthal, Jeffrey S. 2013. Adaptive
Gibbs samplers and relatedMCMCmethods. The Annals of Applied Probability,
23(1), 66–98.

Lindblad, Fredrik. 2007. Property Directed Generation of First-Order Test Data.
Pages 105–123 of: 8th Symposium on Trends in Functional Programming.
Trends in Functional Programming, vol. 8. Intellect.

Mansinghka, Vikash K., Roy, Daniel M., Jonas, Eric, and Tenenbaum, Joshua B.
2009. Exact and Approximate Sampling by Systematic Stochastic Search.
Pages 400–407 of: Proceedings of the Twelfth International Conference on
Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida,
USA, April 16-18, 2009.

Milch, Brian,Marthi, Bhaskara, Russell, Stuart J., Sontag, David, Ong, Daniel L., and
Kolobov, Andrey. 2005. BLOG: Probabilistic Models with Unknown Objects.
Pages 1352–1359 of: IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July
30-August 5, 2005.

Nipkow, Tobias, Wenzel, Markus, and Paulson, Lawrence C. 2002. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag.

Nori, Aditya V., Hur, Chung-Kil, Rajamani, Sriram K., and Samuel, Selva. 2014. R2:
An Efficient MCMC Sampler for Probabilistic Programs. In: AAAI Conference
on Artificial Intelligence (AAAI). AAAI.

Okasaki, Chris. 1999. Red-Black Trees in a Functional Setting. Journal of Functional
Programming, 9(4), 471–477.

Owre, Sam. 2006. Random Testing in PVS. In: Workshop on Automated Formal
Methods.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

References 487

Pacheco, Carlos, and Ernst, Michael D. 2007. Randoop: feedback-directed random
testing for Java. Pages 815–816 of: 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems And Applications. OOPSLA. ACM.

Pałka, Michał H. Testing an optimising compiler by generating random lambda
terms. http://www.cse.chalmers.se/~palka/testingcompiler/.

Pałka, Michał H., Claessen, Koen, Russo, Alejandro, and Hughes, John. 2011.
Testing an Optimising Compiler by Generating Random Lambda Terms. Pages
91–97 of: Proceedings of the 6th International Workshop on Automation of
Software Test. AST ’11. New York, NY, USA: ACM.

Paraskevopoulou, Zoe, Hriţcu, Cătălin, Dénès, Maxime, Lampropoulos, Leonidas,
and Pierce, Benjamin C. 2015. Foundational Property-Based Testing. Pages
325–343 of: Urban, Christian, and Zhang, Xingyuan (eds), 6th International
Conference on Interactive Theorem Proving (ITP). LNCS, vol. 9236. Springer.

Regehr, John, Chen, Yang, Cuoq, Pascal, Eide, Eric, Ellison, Chucky, and Yang,
Xuejun. 2012. Test-case reduction for C compiler bugs. Pages 335–346 of: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China, June 11–16, 2012.

Reich, Jason S., Naylor, Matthew, and Runciman, Colin. 2011. Lazy Generation of
Canonical Test Programs. Pages 69–84 of: 23rd International Symposium on
Implementation and Application of Functional Languages. LNCS, vol. 7257.
Springer.

Runciman, Colin, Naylor, Matthew, and Lindblad, Fredrik. 2008. SmallCheck and
Lazy SmallCheck: automatic exhaustive testing for small values. Pages 37–48
of: 1st ACM SIGPLAN Symposium on Haskell. ACM.

Seidel, Eric L., Vazou, Niki, and Jhala, Ranjit. 2015. Type Targeted Testing. Pages
812–836 of: Programming Languages and Systems: 24th European Symposium
on Programming, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings.

Sen, Koushik, Marinov, Darko, and Agha, Gul. 2005. CUTE: a concolic unit
testing engine for C. Pages 263–272 of: 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering. ESEC/FSE-13. ACM.

Tarau, Paul. 2015. On Type-directed Generation of Lambda Terms. In: Proceedings
of the Technical Communications of the 31st International Conference on Logic
Programming (ICLP 2015), Cork, Ireland, August 31–September 4, 2015.

Tolmach, Andrew P., and Antoy, Sergio. 2003. A monadic semantics for core Curry.
Electr. Notes Theor. Comput. Sci., 86(3), 16–34.

Torlak, Emina, and Bodík, Rastislav. 2014. A lightweight symbolic virtual machine
for solver-aided host languages. Page 54 of: ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM.

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

http://www.cse.chalmers.se/~palka/testingcompiler/
https://doi.org/10.1017/9781108770750.014

https://doi.org/10.1017/9781108770750.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.014

