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Abstract. In this study we give a first description of De Haerdtl’s 3:7 inequality between the
Jovian satellites Ganymede and Callisto and 1:5 inequality between the Saturnian Titan and
Iapetus and the resonant arguments associated. For each inequality, 19 arguments are associated.
The overlapping of resonant zones induces stochasic layers that the system might have crossed
in the past thanks to tidal dissipation.
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1. Introduction
The problem of high order resonances has often been studied in the case of resonances

between asteroides and Jupiter (see for instance Moons & Morbidelli (1995)) but there
might have been such resonances in satellite systems, since there is a 3:7 great inequality
(De Haerdtl’s inequality, see De Haerdtl (1892)) between the Jovian satellites Ganymede
and Callisto and 1:5 inequality between the Saturnian ones Titan and Iapetus. The case
of satellites is very different from asteroides because there are not 3-bodies restricted
problems, so there are much more arguments involved, but there are fewer bodies. This
study is based on Ganymede - Callisto and Titan - Iapetus problems.

2. Physical description of the two systems
Physical and dynamical data related to Ganymede-Callisto and Titan-Iapetus are listed

in Tables 1 and 2. It is important to notice that the ratio of the mean motions of
Ganymede and Callisto is very near from 3

7 and the one of Titan and Iapetus very near
from 1

5 . The mass ratios are important too. The one of Ganymede-Callisto is near 1, so
this problem is very different from an asteroide-Jupiter problem, which can be modeled by
a 3-bodies restricted problem. The one of Titan-Iapetus is here 76 but could be evaluated
between 45 and 125 because of a large uncertainty on Iapetus’ mass.

Table 1. Physical data related to Ganymede and Callisto. The mean motions, semimajor axis
and inclinations come from E5 ephemerides (Lieske (1998)), the eccentricities from Burns (1986),
the mean radii from the IAU recommandations (Seidelmann et al. (2002)) and the masses from
Pioneer and Voyager spacecrafts (Campbell & Synnott (1985)).

Ganymede Callisto

Mean motion n (rad . d−1) 0.878132432119 0.376443069266
Semi-major axis a (km) 1070427.5 1882758.6
Eccentricity e 0.0021 0.007
Inclination i 11′8” 15′10”
Mean radius r (km) 2632.345 2409.3
Mass m (Mj ) 7.80431 × 10−5 5.66832 × 10−5
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Table 2. Physical data related to Titan and Iapetus. The mean motions, semi-major axis,
eccentricities, inclinations as well as Iapetus’ mass come from TASS1.6 (Vienne & Duriez (1995)),
whereas Titan’s mass comes from Pioneer and Voyager data (Campbell & Anderson (1989)) and
the mean radii from the IAU recommamdations (Seidelmann et al. (2002)).

Titan Iapetus

Mean motion n (rad . d−1) 0.3940956849 0.07924104005
Semi-major axis a (km) 1221728.7 3559387.7
Eccentricity e 0.0289 0.029
Inclination i 27′ − 50′ 11◦ − 18◦

Mean radius r (km) 2575 718
Mass m (Ms) 2.36638 × 10−4 3.1 × 10−6

3. Location of the resonances
The common point between two groups of resonances of the same order (here 4) is

that they have the same number of arguments, every argument being likely to generate
a resonance if considered isolated. For k:k+4 resonances, there are 19 arguments of the
form:

φ = kλ − (k + 4)λ′ + q1� + q2�
′ + q3Ω + q4Ω′ (3.1)

where q1 + q2 + q3 + q4 = 4 and q3 + q4 is even, so as to respect D’Alembert law. At the
middle of the resonance zone, < φ̇ >= 0, what gives:

kn − (k + 4)n′ + q1�̇ + q2�̇
′ + q3Ω̇ + q4Ω̇′ = 0 (3.2)

A knowledge of the velocities of nodes and pericentres could allow us to determine
a ratio α between the semi-major axis, deduced from the mean motions. Velocities of
the nodes and pericentres (Table 3) come from Lainey’s ephemerides (Lainey, Arlot &
Vienne (2004)) for Ganymede and Callisto and TASS1.6 (Vienne & Duriez (1995)) for
Titan and Iapetus.

Table 3. Estimations of velocities of pericentres and nodes of the involved satellites in the
laplacian plane

Pericentre Node

Ganymede 1.27274 × 10−4d−1 −1.24913 × 10−4d−1

Callisto 3.20651 × 10−5d−1 −3.05609 × 10−5d−1

Titan 2.44596 × 10−5d−1 −2.44524 × 10−5d−1

Iapetus 5.40641 × 10−6d−1 −5.27184 × 10−6d−1

So as to really model the location of resonances, we have to evaluate their width thanks
to Eq. (3.3) from Champenois & Vienne (1999) giving the α’s amplitude for an isolated
resonance:

∆α = 4k
2
3 (k + 4)−

5
3 y

√
1
3
[k2α−2

r m′ + (k + 4)2m]|f(αr)| (3.3)

where

y =
√

e|q1|e′|q2|γ|q3|γ′|q4| with γ = sin
i

2
(3.4)
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Figure 1. Locations of the resonance for the case Ganymede - Callisto. The x-axis is α, the
y-axis is y

y1
where y1 is y (see Eq.3.4) evaluated with e = 0.0021, e′ = 0.007, γ = 0.0016 and

γ′ = 0.0022 (actual values of these parameters).

Figure 2. Locations of the resonance for the case Titan-Iapetus. Here y1 is evaluated with
e = 0.289, e′ = 0.029, γ = 0.055 and γ′ = 0.012. These values correspond to actual values
except of Iapetus’ inclination which is nowadays 10 times bigger; its actual value maybe due to
the crossing of this chaotic zone.

Moreover, αr is α’s value at the exact resonance (say, < φ̇ >= 0, see also Eq. (3.2),
and f is a function of α appearing in the developpement of the disturbing function, see
for instance Champenois & Vienne (1999).

When two resonances overlap, as in Figures 1 and 2, a stochastic layer appears (see
Chirikov (1979)). In our cases, there are always at least three overlaps due to the quasi
equality < �̇ + Ω̇ >= 0, but more may appear due to significant values of eccentricities
and inclinations that enlarge the resonance zones.

4. A first exploration of the resonance zones
4.1. Migration due to tidal effects

The two systems are not actually in the resonance zones described above, the actual
values of α being respectively 0.56854 for Ganymede-Callisto and 0.34324 for Titan-
Iapetus. Migration of the systems is mostly due to tidal dissipation in the satellites and
planets, which provokes change in semi-major axes and so in the mean motions as in
Eq. (4.1) taken from Kaula (1964) and Peale & Cassen (1978):

ṅ

n
= −9k2nm

2QM

(
r

a

)5[
1 +

51e2

4

]
+

63k∗
2nM

2Q∗m

(
r∗

a

)5

e2 (4.1)
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where ∗ refers to the satellite, k2 and k∗
2 are Love numbers, Q and Q∗ are dissipation

functions, and r and r∗ are the mean radii. This formula works for Callisto, Titan and
Iapetus but not for Ganymede since the laplacian resonance with Io and Europa provokes
energy transfer to Ganymede (see Yoder (1979)), in fact Ganymede’s secular acceleration
depends strongly on Io’s, as shown by Lainey’s numerical simulations (Lainey (2002)).
So, we can estimate Ganymede’s secular acceleration as −10−11 . y−1, Callisto’s as ±2×
10−14 . y−1 and Iapetus’ as 10−19 − 10−18 . y−1. The value of Titan’s is very important
because it determines whether the system has crossed the 1:5 stochastic zone or not.
With Eq. (4.1) this quantity can be estimated as ±10−12 . y−1 but only a negative value
is compatible with the hypothesis that the system has crossed the stochastic layer, which
gives a condition on geophysical parameters of Saturn and Titan, more precisely:

0.0178
k∗
2

Q∗ <
k2

Q
(4.2)

4.2. Analytical study of some resonances

To describe analytically the systems, we used the second fundamental model of the
resonance (see Henrard & Lemâıtre (1983)). First of all, we expressed the hamiltonian
of the system in Jacobi variables while keeping only the terms associated to the studied
inequality and the secular terms, which gave :

H(S1, S2, S3, S4,Φ1,Φ2, s1, s2, s3, s4, φ1, φ2) = Γ0 +
4∑

i=1

ΓiSi +
4∑

i=1

ΓiiS
2
i

+
4∑

j=i+1

4∑
i=1

ΓijSiSj + K4000S
2
1 cos(4s1) + K3100S

3
2
1

√
S2 cos(3s1 + s2)

+K2200S1S2 cos(2s1 + 2s2) + K1300

√
S1S

3
2
2 cos(s1 + 3s2) + K0400S

2
2 cos(4s2)

+K0040S
2
3 cos(4s3) + K0022S3S4 cos(2s3 + 2s4) + K0004S

2
4 cos(4s4)

+K1111

√
S1S2S3S4 cos(s1 + s2 + s3 + s4) + K2020S1S3 cos(2s1 + 2s3)

+K2011S1

√
S3S4 cos(2s1 + s3 + s4) + K2002S1S4 cos(2s1 + 2s4)

+K0220S2S3 cos(2s2 + 2s3) + K0211S2

√
S3S4 cos(2s2 + s3 + s4)

+K0202S2S4 cos(2s2 + 2s4) + K1120

√
S1S2S3 cos(s1 + s2 + 2s3)

+K1102

√
S1S2S4 cos(s1 + s2 + 2s4) + K0031S

3
2
3

√
S4 cos(3s3 + s4)

+K0013

√
S3S

3
2
4 cos(s3 + 3s4) +

√
S1S2

(
C0 +

4∑
i=1

CiSi

)
cos(s1 − s2)

+
√

S3S4

(
D0 +

4∑
i=1

DiSi

)
cos(s3 − s4) + ES1S2 cos(2s1 − 2s2) + FS3S4 cos(2s3 − 2s4)

+G
√

S1S2S3S4 cos(s1 + s2 − s3 − s4) + I
√

S1S2S3S4 cos(s1 − s2 − s3 + s4)

+J
√

S1S2S3S4 cos(s1 − s2 + s3 − s4) + KS1S3 cos(2s1 − 2s3)
+LS1S4 cos(2s1 − 2s4) + MS2S3 cos(2s2 − 2s3) + NS2S4 cos(2s2 − 2s4)

(4.3)
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where S1 and S2 are proportional to the squares of eccentricities, S3 and S4 to the
squares of inclinations, the 19 first angular terms are related to the great inequality, and
the others are secular terms.

Our first study consists in studying a resonance as isolated, so all angular terms dis-
appear except one. The case of arguments like 4si is the easiest to study and has already
been studied by Lemâıtre (1984) because it is a reliable modelization of the 3-bodies
restricted problem where only one argument is significant.

In such a case, the hamiltonian becomes (second fundamental model of the resonance):

H = αS + βS2 + 4εS2 cos 4s (4.4)

which becomes

K = R2 − δR + bR2 cos 4r (4.5)

after the canonical transformation

R = S

r = (signβ)s if βε > 0r = (signβ)s − π

4
if βε < 0

with

δ = −α

β

b = 4
∣∣∣∣ ε

β

∣∣∣∣
The exact resonance is reached when δ = 0. When δ < 0, the argument circulates and

when δ > 0 the phase space is divided into 3 zones: 2 circulation zones (one prograde
and one retrograde) and a resonance zone. Since the resonance zone and the retrograde
circulation zone appear at the same time, the capture into resonance is always proba-
bilistic, the probability depending on the evolution of the areas of the critical zones (see
Figure 3).

When the hypothesis of the adiabatic invariant is reliable, the probability of capture
can be expressed as

P =
2π − 2 arccos 3b−1

1+b

π(2 − b2) − arccos 3b−1
1+b

(4.6)

when δ is increasing. If this expression gives a negative result, P = 0, and if it gives
something bigger than 1, P = 1. When δ is decreasing, capture is impossible.

In our cases, P can be estimated at a few percents.

5. Conclusion
This study shows that 4-order resonances in satellites systems might have played a

significant role in the dynamical history of the systems and it is worth to continue the
study, while using proper elements instead of nodes and pericentres which are much
more representative of the resonant arguments. We also have to check the hypothesis of
the adiabatic invariant. If this hypothesis is wrong, probabilities of capture may change
(see Gomes (1997)). An exhaustive study of every arguments and their overlaps, as we
plan, will precise the role of these inequalities, and maybe will explain Iapetus’ actual
inclination.
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Figure 3. The phase space in the case of an isolated resonance of the form 4s, taken from
Lemâıtre (1984). On the left there is only one circulation zone, whereas on the right the resonance
zone has appeared with its 4 stable equilibria. These figures have been obtained using the
Poincaré’s variables x =

√
2R cos r and y =

√
2R sin r.
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