CONCAVITY PROPERTIES FOR CERTAIN LINEAR COMBINATIONS OF STIRLING NUMBERS

J. C. AHUJA
(Received 20 April 1970)
Communicated by B. Mond

In the notation of Riordan ([5], p. 33), the Stirling numbers, $s(n, k)$ and $S(n, k)$, of the first and second kind respectively are defined by the relations

$$
\begin{align*}
(x)_{n} & =\sum_{k=1}^{n} s(n, k) x^{k} \tag{1}\\
x^{n} & =\sum_{k=1}^{n} S(n, k)(x)_{k} \tag{2}
\end{align*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$ is the factorial power function. They have been used by Jordan ([3], p. 184) to define the numbers $C(m, k)$ and $D(m, k)$, as linear combinations of $s(n, k)$ and $S(n, k)$ respectively, given by

$$
\begin{equation*}
C(m, k)=\sum_{j=m+1}^{2 m-k+1}(-1)^{j+k}\binom{2 m-k}{j} s(j, j-m) \tag{3}
\end{equation*}
$$

where $C(m, k)=0$ for $k>m-1, C(1,0)=-1, C(m, m-1)=(-1)^{m} m!$ and $C(m, 0)=(-1)^{m} 1.3 .5 \cdots(2 m-1)$, and

$$
\begin{equation*}
D(m, k)=\sum_{j=m+1}^{2 m-k+1}(-1)^{k+j}\binom{2 m-k}{j} S(j, j-m) \tag{4}
\end{equation*}
$$

where $D(m, k)=0$ for $k>m-1, \quad D(1,0)=D(m, m-1)=1, \quad$ and $\quad D(m, 0)$ $=1.3 .5 \cdots(2 m-1)$.

As indicated by Jordan [3], the numbers $C(m, k)$ and $D(m, k)$ satisfy the following partial difference equations:

$$
\begin{equation*}
C(m+1, k)=-(2 m-k+1)[C(m, k-1)+C(m, k)] \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D(m+1, k)=(m-k+1) D(m, k-1)+(2 m-k+1) D(m, k) \tag{6}
\end{equation*}
$$

Harper [2] has proved the unimodality conjecture for the numbers $S(n, k)$, while Lieb [4] has shown that the Stirling numbers $s(n, k)$ and $S(n, k)$ are both strong logarithmic concave ($S L C$) functions of k for fixed n, that is, they satisfy the inequalities:

$$
\begin{equation*}
[s(n, k)]^{2}>s(n, k+1) s(n, k-1) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
[S(n, k)]^{2}>S(n, k+1) S(n, k-1) \tag{8}
\end{equation*}
$$

for $k=2,3, \cdots, n-1$. To prove the $S L C$ property of $s(n, k)$ and $S(n, k)$, Lieb [4] used the following result of Newton's inequality given in Hardy, Littlewood, and Polya ([1], p. 52): If the polynomial $P(x)=\sum_{k=1}^{n} c_{k} x^{k}$ has only real roots, then

$$
\begin{equation*}
c_{k}^{2}>c_{k+1} c_{k-1} \tag{9}
\end{equation*}
$$

for $k=2,3, \cdots, n-1$.
The purpose of this paper is to show that the numbers $C(m, k)$ and $D(m, k)$ defined above are also $S L C$ function of k for fixed m. To do this, we need the following two lemmas:

Lemma 1. If $P_{m-1}(x)=\sum_{k=0}^{m-1} C(m, k) x^{k}$, then the $(m-1)$ roots of $P_{m-1}(x)$ are real, negative, and distinct for all $m=1,2, \cdots$.

Proof. It can be easily verified that $P_{m-1}(x)$, using (5), may be written in the form

$$
\begin{aligned}
P_{m-1}(x) & =\sum_{k=0}^{m-1} C(m, k) x^{k} \\
& =-\sum_{k=0}^{m-1}(2 m-k-1)[C(m-1, k-1)+C(m-1, k)] x^{k} \\
& =-[(2 m-2) x+(2 m-1)] P_{m-2}(x)+x(x+1) d P_{m-2}(x) / d x .
\end{aligned}
$$

By induction $P_{0}(x)=-1, P_{1}(x)=2 x+3$, and $P_{2}(x)=-\left(6 x^{2}+20 x+15\right)$, so that the statement is true for $m=1,2$, and 3. For $m>3$, assume that $P_{m-2}(x)$ has $m-2$ real, negative, and distinct roots.

If we define

$$
\begin{equation*}
Q_{m}(x)=\left[(x+1) / x^{2 m+1}\right] P_{m-1}(x) \tag{11}
\end{equation*}
$$

then the roots of $P_{m-1}(x)$ are among those of $Q_{m}(x)$, and the identity (10) for $P_{m-1}(x)$ gives

$$
\begin{equation*}
Q_{m}(x)=[(x+1) / x] d Q_{m-1}(x) / d x \tag{12}
\end{equation*}
$$

Using (10), it can be easily verified that $P_{m-1}(-1)=(-1)^{m}$, which shows that $Q_{m-1}(x)$ has $m-1$ real, negative, and distinct roots. $Q_{m-1}(x)$ also has $-\infty$ as a root, and by Rolle's theorem between any two roots of $Q_{m-1}(x), d Q_{m-1}(x) / d x$ will have a root. This proves the result by induction.

Lemma 2. If $H_{m-1}(x)=\sum_{k=0}^{m-1} D(m, k) x^{k}$, then the $(m-1)$ roots of $H_{m-1}(x)$ are real, negative, and distinct for all $m=1,2, \cdots$.

Proof. The proof is similar to that of Lemma 1 except that, in this case, we can write $H_{m-1}(x)$, using (6), in the form

$$
\begin{equation*}
H_{m-1}(x)=[(m-1) x+(2 m-1)] H_{m-2}(x)-x(x+1) d H_{m-2}(x) / d x \tag{13}
\end{equation*}
$$

and if we define

$$
\begin{equation*}
T_{m}(x)=\left[(x+1)^{m+1} / x^{2 m+1}\right] H_{m-1}(x), \tag{14}
\end{equation*}
$$

then the identity (13) for $H_{m-1}(x)$ becomes

$$
\begin{equation*}
T_{m}(x)=\left[-(x+1)^{2} / x\right] d T_{m-1}(x) / d x \tag{15}
\end{equation*}
$$

As before, using (13), we find that $H_{m-1}(-1)=m$!. The rest of the argument is the same as in Lemma 1.

It is now easily seen that Lemma 1 and Lemma 2 together with the inequality (9) provide us the following $S L C$ property of the numbers $C(m, k)$ and $D(m, k)$:

Theorem. For $m \geqq 3$, and $k=1,2, \cdots, m-2$, the numbers $C(m, k)$ and $D(m, k)$ defined by (3) and (4) satisfy the inequalities
(i) $[C(m, k)]^{2}>C(m, k+1) C(m, k-1)$
ard
(ii) $\quad[D(m, k)]^{2}>D(m, k+1) D(m, k-1)$
respectively.

References

[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (University Press, Cambridge, 1952).
[2] L. H. Harper, 'Stirling behavior is asymptotically normal', Ann. Math. Statist. 38 (1967), 410-414.
[3] C. Jordan, Calculus of Finite Differences (Chelsea, New York, 1950).
[4] E. H. Lieb, 'Concavity properties and a generating function for Stirling numbers'. J. Combinatorial Theory 5 (1968), 203-206.
[5] J. Riordan, An Introduction to Combinatorial Analysis (Wiley, New York, 1958).
Portland State University
Portland, Oregon, U. S. A.

