CONCAVITY PROPERTIES FOR CERTAIN LINEAR COMBINATIONS OF STIRLING NUMBERS

J. C. AHUJA

(Received 20 April 1970)

Communicated by B. Mond

In the notation of Riordan ([5], p. 33), the Stirling numbers, s(n,k) and S(n,k), of the first and second kind respectively are defined by the relations

(1)
$$(x)_n = \sum_{k=1}^n s(n,k) x^k$$

(2)
$$x^{n} = \sum_{k=1}^{n} S(n,k)(x)_{k}$$

where $(x)_n = x(x-1)\cdots(x-n+1)$ is the factorial power function. They have been used by Jordan ([3], p. 184) to define the numbers C(m,k) and D(m,k), as linear combinations of s(n,k) and S(n,k) respectively, given by

(3)
$$C(m,k) = \sum_{\substack{j=m+1 \ j=m+1}}^{2m-k+1} (-1)^{j+k} {\binom{2m-k}{j}} s(j,j-m)$$

where C(m,k) = 0 for k > m-1, C(1,0) = -1, $C(m,m-1) = (-1)^m m!$ and $C(m,0) = (-1)^m 1.3.5 \cdots (2m-1)$, and

(4)
$$D(m,k) = \sum_{j=m+1}^{2m-k+1} (-1)^{k+j} {2m-k \choose j} S(j,j-m)$$

where D(m,k) = 0 for k > m-1, D(1,0) = D(m,m-1) = 1, and $D(m,0) = 1.3.5 \cdots (2m-1)$.

As indicated by Jordan [3], the numbers C(m,k) and D(m,k) satisfy the following partial difference equations:

(5)
$$C(m+1,k) = -(2m-k+1)[C(m,k-1)+C(m,k)]$$

and

(6)
$$D(m+1,k) = (m-k+1)D(m,k-1) + (2m-k+1)D(m,k).$$

145

J. C. Ahuja

Harper [2] has proved the unimodality conjecture for the numbers S(n,k), while Lieb [4] has shown that the Stirling numbers s(n,k) and S(n,k) are both strong logarithmic concave (SLC) functions of k for fixed n, that is, they satisfy the inequalities:

(7)
$$[s(n,k)]^2 > s(n,k+1)s(n,k-1)$$

and

(8)
$$[S(n,k)]^2 > S(n,k+1)S(n,k-1)$$

for $k = 2, 3, \dots, n-1$. To prove the *SLC* property of s(n, k) and S(n, k), Lieb [4] used the following result of Newton's inequality given in Hardy, Littlewood, and Polya ([1], p. 52): If the polynomial $P(x) = \sum_{k=1}^{n} c_k x^k$ has only real roots, then

(9)
$$c_k^2 > c_{k+1} c_{k-1}$$

for $k = 2, 3, \dots, n - 1$.

The purpose of this paper is to show that the numbers C(m,k) and D(m,k) defined above are also SLC function of k for fixed m. To do this, we need the following two lemmas:

LEMMA 1. If $P_{m-1}(x) = \sum_{k=0}^{m-1} C(m,k) x^k$, then the (m-1) roots of $P_{m-1}(x)$ are real, negative, and distinct for all $m = 1, 2, \cdots$.

PROOF. It can be easily verified that $P_{m-1}(x)$, using (5), may be written in the form

$$P_{m-1}(x) = \sum_{k=0}^{m-1} C(m,k) x^{k}$$

= $-\sum_{k=0}^{m-1} (2m-k-1) [C(m-1,k-1) + C(m-1,k)] x^{k}$
= $- [(2m-2)x + (2m-1)] P_{m-2}(x) + x(x+1) dP_{m-2}(x) / dx.$

By induction $P_0(x) = -1$, $P_1(x) = 2x + 3$, and $P_2(x) = -(6x^2 + 20x + 15)$, so that the statement is true for m = 1, 2, and 3. For m > 3, assume that $P_{m-2}(x)$ has m-2 real, negative, and distinct roots.

If we define

(11)
$$Q_m(x) = [(x+1)/x^{2m+1}]P_{m-1}(x)$$

then the roots of $P_{m-1}(x)$ are among those of $Q_m(x)$, and the identity (10) for $P_{m-1}(x)$ gives

(12)
$$Q_m(x) = [(x+1)/x] dQ_{m-1}(x)/dx.$$

Stirling numbers

Using (10), it can be easily verified that $P_{m-1}(-1) = (-1)^m$, which shows that $Q_{m-1}(x)$ has m-1 real, negative, and distinct roots. $Q_{m-1}(x)$ also has $-\infty$ as a root, and by Rolle's theorem between any two roots of $Q_{m-1}(x)$, $dQ_{m-1}(x)/dx$ will have a root. This proves the result by induction.

LEMMA 2. If $H_{m-1}(x) = \sum_{k=0}^{m-1} D(m,k)x^k$, then the (m-1) roots of $H_{m-1}(x)$ are real, negative, and distinct for all $m = 1, 2, \cdots$.

PROOF. The proof is similar to that of Lemma 1 except that, in this case, we can write $H_{m-1}(x)$, using (6), in the form

(13)
$$H_{m-1}(x) = \left[(m-1)x + (2m-1) \right] H_{m-2}(x) - x(x+1) dH_{m-2}(x) / dx$$

and if we define

(14)
$$T_m(x) = [(x+1)^{m+1}/x^{2m+1}]H_{m-1}(x),$$

then the identity (13) for $H_{m-1}(x)$ becomes

(15)
$$T_m(x) = \left[-(x+1)^2/x\right] dT_{m-1}(x)/dx.$$

As before, using (13), we find that $H_{m-1}(-1) = m!$. The rest of the argument is the same as in Lemma 1.

It is now easily seen that Lemma 1 and Lemma 2 together with the inequality (9) provide us the following SLC property of the numbers C(m, k) and D(m, k):

THEOREM. For $m \ge 3$, and $k = 1, 2, \dots, m-2$, the numbers C(m, k) and D(m, k) defined by (3) and (4) satisfy the inequalities

(i)
$$[C(m,k)]^2 > C(m,k+1)C(m,k-1)$$

ar.d

(ii)
$$[D(m,k)]^2 > D(m,k+1)D(m,k-1)$$

respectively.

References

- G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities* (University Press, Cambridge, 1952).
- [2] L. H. Harper, 'Stirling behavior is asymptotically normal', Ann. Math. Statist. 38 (1967), 410-414.
- [3] C. Jordan, Calculus of Finite Differences (Chelsea, New York, 1950).
- [4] E. H. Lieb, 'Concavity properties and a generating function for Stirling numbers'. J. Combinatorial Theory 5 (1968), 203-206.
- [5] J. Riordan, An Introduction to Combinatorial Analysis (Wiley, New York, 1958).

Portland State University Portland, Oregon, U. S. A.