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Abstract

We investigate the problem of using a Riemannian sum with random subintervals to
approximate the iterated Itô integral

∫
w dw—or, equivalently, solving the corresponding

stochastic differential equation by Euler’s method with variable step sizes. In the past this
task has been used as a counterexample to illustrate that variable step sizes must be used
with extreme caution in stochastic numerical analysis. This article establishes a class of
variable step size schemes which do work.
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1. Introduction

It is well known that an Itô integral can be approximated by a suitably chosen Riemannian-
type sum. Namely, if we select a series of partitions

τn = {t (n)
i , i = 0, . . . , N(n)},

where 0 = t
(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
N(n) = t , of the interval [0, t] such that the

maximum step lengths in the partitions decrease to 0 as n increases then, for any suitably
bounded integrand Y ,

∫ t

0
Y (t) dw(t) = lim

n→∞

N(n)−1∑
j=0

Y (t
(n)
j )(w(t

(n)
j+1) − w(t

(n)
j )),

where the convergence is almost surely. (This can be proved using Burkholder’s inequality.
See, for instance, [2, p. 269 and subsequent calculations].) (Here and subsequently, w is
a one-dimensional Brownian motion defined in a suitable probabilistic setting; see [10] for
the theory of stochastic Itô integrals.) For this approximation to work, the partitions must be
deterministic, or they can be random times provided that they depend on the Brownian motion in
a nonanticipating way: they have to be stopping times with respect to the underlying Brownian
filtration Ft = σ(ws, s ≤ t). In other words, the division points must either be chosen in
advance, or at least may not look into the future behaviour of the Brownian path w(·, ω). For
partitions not chosen according to these guide lines, the Riemannian sum may not converge, or
might converge to an incorrect value.
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552 E. RAPOO

This limitation in the choice of subdivisions follows from the definition of the Itô integral,
which relies on the correct combination of a filtration Ft , a Brownian motion w, and a
nonanticipating integrand Y . In particular, the construction of the Itô integral needs the results

E[wT − wS | FS] = 0,

E[(wT − wS)2 | FS] = T − S,

for subdivision points S < T . These do hold for deterministic S and T , and, according to the
optional stopping theorem for martingales, also if S and T are bounded Ft -stopping times (in
which case FS is interpreted as the filtration of the stopping time S—see, for instance [10]).
However, these results are not necessarily true if T is allowed to depend on future values of
the Brownian path. Indeed, starting from a particular path of a Brownian motion process, it is
possible to create a series of subdivision partitions with maximum step length decreasing to 0,
which give a wrong value for the quadratic variation of the Brownian path.

These limitations in the choice of discretisation when approximating Itô integrals by Rieman-
nian sums have their counterpart in the numerical analysis of stochastic differential equations
(SDEs), where they appear as restrictions in the use of variable step size methods.

In the numerical analysis of ordinary differential equations, adjusting step sizes has long been
used to improve the performance of numerical solution methods. An adjustable-step solution
method would usually aim to use, at any part of the solution, the longest possible step length
which still guarantees a requested accuracy. Since this means that longer step sizes can be
used when the solution seems to go well, and shorter step sizes can be reserved for parts of the
solution where they are really needed, a variable step size method should be able to give better
accuracy with the same effort (or the same accuracy with less effort) compared to a fixed-step
scheme.

The most common way to implement a variable step size method is as follows: first, we
attempt a step with the current step length; the step is then either accepted or rejected based on
the results of the attempted step. If the step size is rejected then a new attempt is made using a
shorter step. The decision of whether to accept or reject a step can be simply based on whether
the step taken seems to lead to a too large increment of the solution, or on whether an error
estimate based on the step taken (such as the ones provided by some Runge–Kutta methods)
is within a required tolerance. Sometimes an error estimate can also be used to calculate an
optimal step size for the new attempt if the original step was rejected, or the next step if it was
accepted.

Using this type of scheme for SDEs would be expected to run into difficulties since one
would in effect need to select the discretisation points after gaining information about the
future behaviour of the Brownian path. Traditional stochastic analysis can only guarantee
convergence of methods of variable step sizes if the random discretisation times are stopping
times. This includes, but is not restricted to, the condition that, for any n and i, t

(n)
i+1 must

be F (t
(n)
i )-adapted (which requires that the length of each interval would need to be fully

determined by the starting time of that step), described in [11, p. 321]. Indeed, there are variable
step size numerical schemes for SDEs which implement nonrandom step size selection (see,
for instance, [18]) or nonanticipating random-step selection (see, for instance, [8] or [9]). More
generally, we may use spatial discretisation schemes such as given in [1] or [16], since first
hitting times for a continuous diffusion process are stopping times. However, a method which
backtracks and tries again if things go badly cannot be implemented using only stopping times
or deterministic times.
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The theory of rough paths can be used to get around this problem, as explained in [7].
The results in that article (formulated for Stratonovich SDEs) state that the convergence of
a variable step size scheme is guaranteed for quite general discretisation steps (deterministic
or random, even nonanticipating), but only if one ensures that the one-step method used in
the scheme agrees sufficiently well with a second-order Taylor expansion of the solution over
each interval; thus, getting right not only the increments of the Brownian motion but also its
second-order iterated integrals. In the case of a noncommuting SDE with a driving Brownian
motion of dimension two or higher, this means that the numerical scheme must utilise the area
integrals of the Brownian motion. In the one-dimensional or commuting cases, the second-
order iterated integrals can all be expressed in terms of the Brownian increments but for general
random subdivision points; it is still nontrivial to require that the numerical method must get
the second-order terms right.

In particular, the ruling in [7] implies that the humble Euler–Maruyama scheme for solving
Itô differential equations cannot be expected to work for all possible selections of subdivisions
as it is a first-order scheme that pays no attention to the second-order integrals. The example
given there as an illustration is an attempt to solve the differential equation

dxt = wt dwt, w0 = 0, (1)

over the time interval [0, 1] using the Euler method and a variable step size scheme. The
variable step size scheme uses only two step sizes, h and h/2: normally the step size is h, but
two steps of length h/2 are taken instead whenever

|�w| > λh,

that is, when the Brownian increment is considered to be ‘too large’. If now h → 0 (a series of
dyadic subdivisions is used), it turns out that the scheme converges to the true solution of (1)
only when λ = 0 or λ = 1, cases which are really fixed-step schemes. For all other values of
λ, this particular variable step size scheme gives wrong results: the method does converge, but
towards a wrong solution.

Many high-order numerical methods and corresponding variable-step strategies have by now
been derived for solving SDEs. (See, for instance, [7], or [4], [5], and [14], which are based on
embedded pairs of stochastic Runge–Kutta schemes.) However, the implementation of such
schemes is often complicated, especially in the high-dimensional case, since these schemes need
to be supplied with various iterated path integrals of the Brownian path—or at least reasonable
approximations of these. What makes things particularly difficult for the variable step size
schemes is the fact that, for a strong solution, we must ensure that the iterated path integrals and
the path increment do come from one and the same Brownian path, and, therefore, we might
need to generate, for instance, the conditional area of a Brownian motion over the two halves
of an interval, conditional on knowing its area over the whole integral. (See, for instance, [3]
and [6] for an account of the difficulties.) For Brownian increments alone, this can of course
be done quite easily, using Paul Lévy’s construction of Brownian motion.

These practical difficulties in implementing higher-order methods are the reason why the
Euler–Maruyama method is still popular: it is the simplest method available, and needs neither
derivatives of the coefficient function nor further information about the Brownian path, beyond
the path increments. For noncommuting systems of SDEs, it remains the highest-order scheme
with easily simulated random variables (see [13], [15], and [20]), and often an Euler method
with very small step sizes is used to provide a ‘true’ solution to compare other numerical
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methods to. This popularity is despite its low order of convergence (the L2-norm of the global
error is of the order h0.5) and its instability problems. Of course, the low order means that this
method in particular could really do with an adjustable-step implementation!

Most existing attempts to implement the Euler method with a variable step size control
strategy do not attempt step size adaptation based on the Brownian path; for instance, Lamba
et al. [12] only adapted the steps to the drift component, and Römisch and Winkler [18] used a
nonrandom-step selection. See also the weak adaptive time-step approximation in [19].

The aim of this article is to attempt to answer the following question: if we do wish to use
the Euler method to solve the differential equation (1), is there any kind of genuinely random
variable step size strategies that will work (that is, will improve on the performance of the Euler
scheme and also converge to the correct solution)? Since solving (1) using Euler’s method
is equivalent to approximating the Itô integral

∫
w dw by a Riemannian-type sum along the

subdivision steps used in the Euler scheme, this is equivalent to asking which kinds of random
subdivision points could be used in the Riemannian sum to ensure convergence towards the
correct Itô integral, while using fewer terms that need to be summed.

Of course, the exact value of the iterated integral
∫

w dw over any interval is easy to calculate:
according to the Itô formula we have 2

∫ t

0 ws dws = w2
t − t , which incidentally also makes error

analysis in this case very easy. But the case of this simple integral is very illustrative and will
give us some valuable information on how to use variable step sizes in conjunction with the
Euler–Maruyama method. Also, according to the Itô–Taylor expansion, solutions to general
SDEs can be expressed in terms of this and higher-order iterated integrals, and, therefore, the
results in this article give an indication of what the minimum requirements would be for a
correctly functioning variable step size Euler method for solving more general SDEs in one or
higher dimensions.

We will start by describing, in Section 2, the adjusted step size mechanism we will adopt.
A brief investigation of the local (one-step) and global errors follows in Section 3. In Section 4
we investigate the bias (L1-norm) of the global errors, which leads us to introduce several
categories of unbiased subdivision criteria whose performance we will compare in the rest
of the article. In Section 5 we compare the mean-square error of the unbiased subdivision
schemes, and in Section 6 we give a final cost-versus-improvement analysis of the variable step
size methods. Finally, in Section 7 we present our conclusions.

2. The variable step size strategy

We wish to use the Euler method, implemented with a simple adjustable step size mechanism
which follows the counterexample in [7], to solve the two-dimensional Itô SDE

dxt = 2yt dwt, dyt = dwt, (2)

with initial values x0 = 0 and y0 = 0 over the interval [0, 1]. Here, wt is a one-dimensional
Brownian motion. Of course, this means that yt = wt and xt is given by

xt = 2
∫ t

0
ws dws. (3)

In our variable step size numerical scheme the interval [0, 1] is divided into equispaced
intervals of length h, but at each interval we have the option of taking two steps of length h/2
instead of one step of length h. The decision of whether to take one longer or two shorter steps
is made based on the increment of the Brownian motion over the interval in question.
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Euler’s method applied to solve (2) over a subdivision 0 = t0 < t1 < · · · < tN = 1 of the
interval [0, 1] uses the one-step iteration formula

Yi+1 = Yi + �wi, Xi+1 = Xi + 2Yi�wi,

where X0 = 0, Y0 = 0, Xi = X(ti), Yi = Y (ti), wi = w(ti), and �wi = w(ti+1) − w(ti).
(Note that throughout this article the upper-case letters X and Y will be used for the numerical
solutions, and the lower-case letters x and y will be used for the true solutions.) This will give
us the approximate solution X, where

Xi+1 − Xi = 2wi�wi

and

Xk = 2
k−1∑
i=0

w(ti)�wi, k = 1, . . . , N. (4)

We see that the Euler discretisation scheme is identical to approximating the Itô integral in (3)
by the corresponding Riemannian sum along the given subdivision steps.

The approximate solution function X(t), t ∈ [0, 1], to the SDE can then be constructed by
taking X(tk) = Xk for k = 0, . . . , N and using, for instance, linear interpolation between the
subdivision points. However, in this article we will only consider the errors at the final point
t = 1.

In the next two subsections we will discuss the error in the Euler scheme for general
subdivision schemes, before returning to our simple full-or-half step scheme.

A subdivision scheme is defined here as a collection {τn, n = 1, 2, . . .} of partitions of [0, 1].
Namely, we define τn = {t (n)

i , i = 0, . . . , N(n)}, where 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
N(n) = 1

gives a partition of the interval [0, 1]. The lengths of the subdivision intervals are denoted
by h

(n)
i = t

(n)
i+1 − t

(n)
i , and δ(τn) denotes the maximum step length of partition τn:

δ(τn) = max{h(n)
i , i = 0, . . . , N(n) − 1}.

For all subdivision schemes, we assume that δ(τn) ↓ 0 as n → ∞.
The subdivision scheme τn can be deterministic or random, in which case it will be deter-

mined from the Brownian path, possibly in a nonadaptive way.

2.1. The deterministic subdivision case

If the subdivision scheme τn is deterministic, that is, the set of division points 0 = t
(n)
0 <

t
(n)
1 < · · · < t

(n)
N(n) = 1 of the interval [0, 1] are predetermined (but not necessarily equispaced)

for each n, then we know that the Euler scheme converges towards the true solution and,
identically, the Riemannian sum converges towards the corresponding Itô integral as n increases:
the series of Euler/Riemannian sum approximations X(n)(1) based on the subdivision scheme
τn, that is,

X(n)(1) = 2
N(n)−1∑

i=0

w(t
(n)
i )�wi, (5)

converges towards the correct solution x(1) almost surely. In fact, we can use the independence
of the increments of the Brownian motion over disjoint deterministic intervals to calculate the
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error as

E[x(1) − X(n)(1)]2 = 4
N(n)−1∑

i=0

E

[∫ ti+1

ti

(w(s) − w(t
(n)
i )) dws

]2

= 2
N(n)−1∑

i=0

(h
(n)
i )2.

2.2. General subdivisions

For an error estimate valid over random subdivision schemes τn, we can use the fact that,
for all tk ≤ tk+1,

2
∫ tk+1

tk

(wu − wtk ) dwu = (wtk+1 − wtk )
2 − (tk+1 − tk)

= �w2
k − hk. (6)

This gives an expression for the one-step (local) error in the Euler scheme, or, equivalently,
the one-term error in the Riemannian sum expression, (5). We see that the total error in the
Riemannian sum, or the global error of the Euler method, when a subdivision scheme τn is
used, is given by

x(1) − X(n)(1) =
N(n)−1∑

i=0

(�w2
k − h

(n)
k )

=
(N(n)−1∑

i=0

�w2
k

)
− 1.

It follows that the Euler method converges towards the correct solution, or, equivalently,
the series of Riemannian sums converges towards the correct Itô integral, if and only if the
subdivision scheme τn is such that

N(n)−1∑
i=0

�w2
k → 1

almost surely as n increases—that is, if the subdivision scheme gives the right value for the
quadratic variation of the Brownian motion. (This is in agreement with the results in [7].
According to Corollary 4.4 there, the Euler method (4) converges towards the correct solution
along a subdivision scheme τn if, for all k, hk and (�wk)

2 agree up to a term which is of order
o(δ(τn)).) This does hold for any predetermined (nonrandom) subdivision scheme, as well
as for τn consisting of stopping times, but not if the subdivision points can be selected using
information about the Brownian path.

2.3. The full-or-half step variable step size strategy

We will now return to the simple adjusted step size scheme we will base our calculations
on. We will use dyadic subdivisions, so that, for any given value of n, the interval [0, 1] will be
divided into N(n) = 2n intervals of length h = 2−n. This gives us the preliminary subdivision
points τn = {k2−n, k = 0, . . . , 2n}. Over each of these intervals of length h = 2−n, the step
length is either accepted as it is, or else it is rejected and two steps of length h/2 = 2−(n+1) are
taken instead. The decision of whether to accept or reject a step will be based on the size of
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the Brownian increment over the interval. More precisely, a step of length h will be rejected
if �w ∈ Ah, where, for each h > 0, Ah is a predetermined set. The natural scaling of �w

suggests that Ah = {√hx : x ∈ A1} for all h > 0, where A1 is a fixed set (that is, reject a step
if �w/

√
h ∈ A1). However, we might also wish to consider other types of scaling.

The final subdivision scheme τ̂n will be a random one with τn ⊆ τ̂n ⊆ τn+1—more precisely,

τ̂n = τn ∪
( ⋃

k : �wk∈A2−n

(tk + 2−(n+1))

)
,

so the numerical approximation is

X(n)(1) =
∑
ti∈τ̂n

2w(ti)�wi.

This can also be written as
X(n)(1) =

∑
ti∈τn

�X̂i, (7)

where �X̂i , the increment of the solution over the ith step in τn, is adjusted according to
the variable-step scheme: �X̂i = 2w(ti)�wi if �wi ∈ AC

h (the complement of the set Ah)
and �X̂i = 2w(ti)�1wi + 2w(ti + h/2)�2wi if �wi ∈ Ah. Here, h = 2−n, and �1wi and
�2wi are the increments of the Brownian motion over the two half-steps of length h/2, that is,
�1wi = w(ti +h/2)−w(ti) and �2wi = w(ti+1)−w(ti +h/2) (and �wi = �1wi +�2wi).
If Ah = ∅ then this reverts to an ordinary Euler scheme with fixed-step length h; if Ah = R, we
get an Euler scheme with the fixed-step length h/2. For any other types of sets Ah, we will get
different types of variable step size schemes, and the question is which is the optimal choice of
the sets Ah. To answer this, first we need to find the errors made in each such scheme, and then
we need to compare the improvement in accuracy with the increased cost of the calculations.

3. Error calculations

Since the decision of whether to subdivide an interval [ti , ti+1] and take two steps instead
of one is based only on the Brownian increment over that interval, even after applying our
nonadapted variable step size method, it is true that the local errors of method (7) over different
intervals in τn are independent. Also, we need not worry about error propagation as the global
error for our differential equation/Riemannian sum is simply the sum of the local errors. We
will now proceed to analyse the local and global errors of our variable step size method.

Using (7), we see that the global error Ê(n) = x(1) − X(n)(1) can be written as

Ê(n) =
∑
ti∈τn

êi ,

where êi is the error of the adjustable step size Euler method over the τn-interval [ti , ti+1]
of length h = 2−n. All the êis are independent, identically distributed random variables, so
in the following we will drop the index i and consider a time interval [t0, t1] of length h.
The time midpoint, t1/2 = (t0 + t1)/2, divides this interval into two subintervals of length
h/2. The increment of the Brownian motion over [t0, t1] is denoted by �w, and we have
�w = �1w + �2w, where �1w and �2w are the increments of the Brownian motion over
[t0, t1/2] and [t1/2, t1], respectively.
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Now, if we were always to take a full step of length h (if Ah = ∅ in our variable step size
scheme) then the one-step error over the interval [t0, t1] would be, as given in (6),

efull = (�w)2 − h;
similarly, if Ah = R so that two half-steps are always taken, the one-step error over the interval
[t0, t1] will be

ehalf = (�1w)2 − h

2
+ (�2w)2 − h

2
= (�1w)2 + (�2w)2 − h.

Clearly, both ehalf and efull are always bounded below by −h. We also have E[ehalf ] = 0 =
E[efull], and var(efull) = 2h2 and var(ehalf) = h2.

For general Ah, we have

ê = 1AC
h
(�w)efull + 1Ah

(�w)ehalf .

The first step in analysing this is to consider the conditional values of efull and ehalf , given
the value of �w. Of course, if �w = x is known then efull = x2 − h is fully determined.
The law of ehalf given �w = x is easy to find: the conditional distribution of ehalf is that
of x2/2 − h + 2y2, where y is a normal random variable, independent of �w, with mean 0
and variance h/4. (A standard Brownian bridge argument is used to find the distribution of
w(t1/2) = w(t0) + x/2 + y. See, for instance, [17, p. 35].) In particular,

E[ehalf | �w = x] = 1
2 (x2 − h),

var(ehalf | �w = x) = 1
2h2,

E[e2
half | �w = x] = 1

2h2 + 1
4 (x2 − h)2,

and the distribution function of ehalf , given that �w = x, over the interval of length h is given
by

Fh,x(x) ≡ P(ehalf ≤ x | �w = x)

= 1 − 2�

(
−

√
2(x + h − x2/2)

h

)
,

where � is the standard normal distribution function.
Conditioning on the value of �w, we can then find the distribution of ê = ei , the one-step

error when our adjustable-step Euler method is used. For our purposes, we need only the first
two moments of êi . Using the conditional distributions derived above, we obtain

E[êi] = −
∫

Ah

1

2
(x2 − h)p(h, x) dx,

and, similarly,

E[ê2
i ] = 2h2 +

∫
Ah

(
1

2
h2 − 3

4
(x2 − h)2

)
p(h, x) dx,

where p(t, x) is the transition probability density function of the standard Brownian motion:

p(t, x) = 1√
2πt

exp

(
−x2

2t

)
.
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Theorem 1. In the scheme ‘subdivide if �w ∈ Ah’, as defined in (7), for the global error
Ê = x(1) − X(n)(1), we have

E[Ê] = −
∫

Ah

1

2

(x2 − h)

h
p(h, x) dx

and

E[Ê2] = 2h +
∫

Ah

(
h

2
− 3

4

(x2 − h)2

h

)
p(h, x) dx − h E[Ê]2 + E[Ê]2.

Proof. Since Ê = ∑
ti∈τn

êi , where the êi are independent, identically distributed random
variables, we have

E[Ê] =
∑
ti∈τn

E[êi] = 1

h
E[êi] = −

∫
Ah

1

2

(x2 − h)

h
p(h, x) dx,

var(Ê) = 1

h
var(êi) = 1

h
(E[ê2

i ] − E[êi]2) = 1

h
E[ê2

i ] − h E[Ê]2.

Using
E[Ê2] = var(Ê) + E[Ê]2,

completes the proof.

The first two moments of the global error Ê in our variable step size Euler scheme were
expressed above in terms of the basic step length h and the ‘rejection sets’Ah. We are interested
in which selections Ah satisfy the following criteria.

• Which selections give unbiased methods, that is, methods for which E[Ê] = 0 for all h?

• Which selections give convergent methods, in that E[Ê2] ↓ 0 as h → 0 (or as n → ∞
in the dyadic subdivision scheme)?

• Which methods improve on a fixed-step Euler method by giving better accuracy at the
same cost, or the same accuracy at less cost?

4. Bias and how to avoid it

By an unbiased method we mean one for which, for all h, the expected value of the global
error vanishes. From Theorem 1 we see that our variable step size scheme is unbiased if, for
each h, Ah is such that

E[Ê] = −
∫

Ah

1

2

(x2 − h)

h
p(h, x) dx = 0.

We will write

E[Ê] =
∫

Ah

Gh(x) dx,

where

Gh(x) = −1

2

(
x2 − h

h

)
1√

2πh
exp

(
− x2

2h

)
.
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Figure 1: Plots of the functions G1 and C1.

The function Gh(x) scales with respect to h as

G1(x) = √
hGh(x

√
h).

A graph of G1 is given in Figure 1. Note that Gh(x) = 0 at x = ±√
h.

The cumulative integral of Gh(y), which we will denote by Ch(x), can be calculated in
closed form:

Ch(x) =
∫ x

−∞
Gh(y) dy = 1

2
√

2π

x√
h

exp

(
− x2

2h

)
.

This cumulative function scales as follows:

C1(x) = Ch(x
√

h).

A graph of C1 is given in Figure 1. Note that, for each value of h, the absolute maximum and
minimum values (reached at ±√

h) have the same value, i.e.

max{Ch(x), x ∈ R} = 1

2
√

2π
exp

(
−1

2

)
≈ 0.1209,

min{Ch(x), x ∈ R} = − 1

2
√

2π
exp

(
−1

2

)
≈ −0.1209.

The value of the cumulative function equals the bias for a method in which Ah = (−∞, x]
is chosen for each h. The choices x = −∞ or x = +∞ lead to Ah = R and Ah = ∅ (fixed
step size methods with step lengths h/2 and h, respectively), which are therefore seen to be
unbiased methods. Another unbiased method is obtained with x = 0, that is, if we subdivide
whenever the Brownian increment is negative.

This choice of Ah = (−∞, x] already hints at things to come, since clearly there the bias
for a fixed x will not necessarily decrease with h. However, this is not a rational choice for a
rejection criterion. Firstly, since the Brownian increments are symmetric about the origin, the
set Ah should also be symmetric. Secondly, �w does scale with

√
h and, therefore, upper and

lower limits defining Ah should presumably also have
√

h as a coefficient. These considerations
are also reflected in the symmetry and scaling of the function Gh. Note that when we adopt
this kind of scaling for the set Ah (that is, if Ah = {√hx : x ∈ A1}), the resultant bias will not

https://doi.org/10.1239/jap/1214950367 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950367


A variable step size Riemannian sum for an Itô integral 561

depend on h but will always be equal to

E[Ê] =
∫

A1

G1(x) dx.

In [7] the following choice was made: a step is rejected if the Brownian increment is too
large, in the sense that |�w|/√h > λ, where λ is a positive parameter. In our terminology this
means taking

AC
h = [−λ

√
h, λ

√
h],

which gives a bias, depending only on λ, of

bias(λ) = − 1√
2π

λ exp

(
−λ2

2

)
.

This is equal to 0 for λ = 0 (always subdivide) or for λ = ∞ (never subdivide), but, for any
other value of λ, it has a strictly negative value, where the largest bias with value

− 1√
2π

e−1/2 ≈ −0.241 971

is reached at λ = 1.
It is clear from the graph of G1 why this choice for Ah is not good: we will always integrate

over a section of G1 which is strictly negative, and, for λ = 1, we will integrate over all the
negative parts of G1.

Similarly, we will easily see that the strategy of subdividing if

|(�w)2 − h|
h

> λ

(which might seem natural: subdivide if the one-step error is too large) will also have a negative
bias.

An investigation of G1 suggests what kind of choice of Ah would give zero bias. This leads
to the following result.

Theorem 2. We have E[Ê] = 0 for the following choices of sets Ah:

(a) Ah = R− or Ah = R+,

(b) Ah = {x : |x| ≤ K
√

h or |x| ≥ L
√

h}, where L ≥ 1 and

K =
√

−W(−L2 exp(_L2)),

(c) Ah = {x : K
√

h < |x| < L
√

h}, where L and K are as above.

Here W(x) is the ‘product logarithm’ function: z = W(x) is the (real) solution to z exp(z)

= x.

Remark 1. Note that if L > 1 then we will get 0 < K < 1. If L = 1 then K = 1, so
Theorem 2(b) also covers the case in which Ah = R and Theorem 2(c) also covers the case in
which Ah = ∅.
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Proof of Theorem 2. Case (a) we have already dealt with.
(b) The bias for A1 = {x : |x| ≤ K or |x| ≥ L} can be evaluated as

E[Ê] =
∫

A1

G1(x) dx

= 1√
2π

(
K exp

(
−K2

2

)
− L exp

(
−L2

2

))
;

thus, for a fixed L ≥ 1, the values of K for which E[Ê] = 0 are either K = L or K =√−W(−L2 exp(_L2)). The result for general h in (b) follows by scaling, and the result in (c)
from (b), completing the proof.

To summarise, we have identified the following three basic types of unbiased subdivision
method.

• Method A: Subdivide for positive �w only or for negative �w only. (The decision of
whether to subdivide is therefore taken according to the sign of �w, but independently
of its size.)

• Method B: Subdivide when |�w|/√h is either too small (less than or equal to K) or
too large (greater than or equal to L), with cutoff points L ≥ 1 and K, 0 < K ≤ 1,
determined from L.

• Method C: The complement of method B (accept a step without subdivision when
|�w|/√h is too small or too large).

Note that of course there are infinitely many other choices leading to no bias, built from
various combinations of the sets above.

Remark 2. In methods B and C, the variable L can be used as a parameter to regulate the
frequency of rejected steps. Figure 2 shows the cutoff points which lead to an unbiased method
for each choice of L: the upper cutoff point L (dashed line) and the corresponding lower cutoff
point K (solid line).

1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

L

Figure 2: The upper cutoff point L (dashed line) and the lower cutoff point K(L) (solid line) for unbiased
methods for varying L.
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5. Convergence matters

In the previous section we explained why the subdivision criteria suggested in [7] is biased,
and specified three different types of subdivision criteria which do give an unbiased method,
that is, for which the expected error is 0 for each and every value of h. But of course we also
want the methods to converge.

As a measure of convergence, we will use here the mean square of the global error.
According to Theorem 1, the mean square of the global error Ê for an unbiased method is

given by

E[Ê2] = 2h +
∫

Ah

(
h

2
− 3

4

(x2 − h)2

h

)
p(h, x) dx.

If Ah = {√hx : x ∈ A1} holds then again, for all h,

E[Ê2] = h

(
2 +

∫
A1

(
1

2
− 3

4
(x2 − 1)2

)
p(1, x) dx

)
,

meaning that, for any choice of A1, our variable step size modification of the Euler scheme
does converge with an error of order h in the mean-square sense. While we therefore cannot
expect a better order of error, we can still hope to decrease the size of the error.

For A1 = ∅ (never subdivide), we obtain E[Ê2] = 2h and, for A1 = R (always subdivide),
E[Ê2] = h. (These are the mean-square global errors of the Euler method with fixed step size
h and step size h/2, respectively.)

Of our three unbiased categories of method, method A (subdivide for positive values only
or negative values only) has the mean-square error E[Ê2] = 3h/2 (in that method we use each
of the step sizes h and h/2 half of the time on average).

For method B, the mean-square error cannot be calculated in closed form. A plot of the
mean-square error as a function of the upper cutoff point L is given in Figure 3(a). The smallest
possible mean-square norm, with value 0.8698h for method B occurs with L ≈ 1.441 15, which
means accepting the step for 0.617 213 < |�w|/√h < 1.441 15. Note that this gives better
convergence, in the mean-square sense, than always subdividing, despite using fewer steps.

In method C, which is the complement of method B, the mean-square error is 2h minus the
error for method B with the same value of L.
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Figure 3: (a) Mean-square global error of the variable-step method (h = 1); and (b) the probability of
subdivision, as a function of the cutoff point L.

https://doi.org/10.1239/jap/1214950367 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950367


564 E. RAPOO

6. Efficiency comparisons

We have proved that with due care, it is possible to implement the Euler method for solving (2)
with a variable-step algorithm that converges to the correct answer in the mean-square sense.
We still need to establish which of these methods actually improve on the fixed-step Euler
method, and what is the best choice for the cutoff set Ah.

As always in variable-step methods, the improvement in accuracy will need to be weighted
against increased cost in the sense of computational effort. To be preferable, the variable step
size method must provide the same accuracy with less cost, or better accuracy at the same cost,
compared to the corresponding fixed-step scheme.

In [7] and [14] the variable step size scheme was implemented such that a step with the
current step size is attempted, and then accepted or rejected based on the results. The cost of
calculations is then taken to be indicated by the number of attempted steps. Here the situation
is different in that the decision of whether to accept the step or to subdivide is based simply on
the size of the Brownian increment �w over the suggested step interval.

To come up with a cost measure for our case, we note that, for the fixed-step method, the
computational effort over one step consists of generating the Brownian increment �w and
calculating the Euler increment. In the variable-step method, on the other hand, there is the
added cost of determining whether �w ∈ Ah (i.e. whether the step should be accepted or
rejected). If the step is rejected, so that two steps are taken instead of one, then the increments
�1w and �2w must be established. However, the cost of generating the original step and
generating the midpoint for the subdivided step can be assumed to be roughly the same (namely,
the cost of generating one normal random variable), and far larger than the cost of making the
decision of whether to subdivide or not. Based on this, we will measure the cost by the total
number of steps taken.

For the fixed-step scheme, we take 1/h steps, while, for the variable-step scheme, the number
of steps taken will vary from 1/h to 2/h, depending on the choice of the set Ah and on the
particular Brownian path. Of course, the average number of steps taken in all cases is easy to
find.

As a first comparison of the performance of our variable-step methods, we will simply
compare the mean-square errors for a given variable-step method and for the fixed-step method
using as its step length the average step length of the variable-step method.

For method A (subdivide for positive �w only or for negative �w only), we subdivide on
average half of the original steps and therefore with the basic step length h, the average step
length is 3h/4. The mean-square error 3h/2 of the variable step size method is identical to that
of the fixed-step method with step length 3h/4.

For method B (subdivide when |�w| is too large or too small; accept steps K
√

h ≤ |�w| ≤
L

√
h), the probability of subdividing a step depends on the product logarithm function and

cannot be given in closed form. A graph of the probability of subdivision as a function of the
upper cutoff point L is shown in Figure 3(b). From the subdivision probabilities we can find the
average step sizes. Figure 4(a) shows, for h = 1 and varying values of L, a comparison of the
mean-square errors of the variable step size method B and the corresponding fixed-step scheme
using the same average number of steps. We see that, for all values of L > 1, the variable
step size method is more efficient than the corresponding fixed-step method. Figure 4(b) shows
the ratio of the mean-square errors, variable/fixed steps, again as a function of L. The best
performance is given by selecting L = 1.702 04, for which the mean-square global error of the
variable step size is 66.032 7% of that of the fixed step size. This means accepting steps with
0.440 622 ≤ | � w|/√h ≤ 1.702 04; about 43% of steps will be subdivided.
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Figure 4: (a) Mean-square global errors of the variable-step method (dashed line) and the corresponding
fixed-step method (solid line). (b) Ratio of the mean-square errors of the variable versus the fixed step

size methods, where both errors are a function of the cutoff point L.

Remark 3. Note that, more generally, the following holds. Let us fix the number of steps N to
be used by the numerical methods. Firstly, apply a fixed-step method using N steps over [0, 1],
and, secondly, apply the variable step size method B with parameter L such that the average
number of steps over [0, 1] is N . To apply the variable-step method, we need to first calculate
the base step size which depends on N and L; applying the method itself will also depend on L.
However, the ratio of the mean-square errors of the fixed versus the variable step size methods
for any given N do not depend on N but only on L, as shown in Figure 4(b).

For method C, not surprisingly, we find that the mean-square error is always larger than for
the corresponding fixed-step method.

Remark 4. The use of the number of steps to measure the cost of the computations above was
justified in the case where the Brownian increments are generated as the calculations progress,
one step at the time. If the Brownian motion increments are instead retrieved, for instance, from
a previously generated Brownian tree, then the reasoning still holds if the h and h/2 increments
of it are already available. If only h steps of the Brownian motion are available, while h/2
steps need to be generated, then it is also necessary to compare the cost of generation versus
retrieval.

Above we compared just the average performance of the variable versus fixed-step meth-
ods; however, since we are implementing a strong step size adjustment method here, which
hopefully intervenes to improve accuracy for particularly ‘bad’ paths, a strong (pathwise)
comparison of the two methods may be more relevant. To this end, 50 000 Brownian paths
were generated. For each path, firstly, the variable step size method B was applied, and
then the fixed-step method using the same number of steps—note that now the number of
steps varies for each path. The end results of the two methods were compared, and to
measure the performance of the variable-step method in cases where the fixed-size method
fares badly, the results were sorted according to the error in the fixed-step method. Figure 5
shows, for different cutoff levels L, the ratio of the absolute errors of the two methods for
the p% worst fixed-step errors. It can be seen, for instance, that with all choices of L,
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Figure 5: Ratio of global errors (variable versus fixed step size methods) in the p% worst fixed-step cases
for different cutoff points L.

the error can be halved in the 10% worst paths. Note that again L = 1.7 gives the best
performance.

7. Conclusion

We have demonstrated that the reason the variable step size algorithm used as a counter-
example in [7] failed was simply because the wrong kind of criteria was used in determining
when �w, the increment of the Brownian motion on an interval, was ‘bad’: A more successful
method can be based on subdividing if |�w| is too big or too small, so that the step is accepted
for K ≤ |�w| ≤ L. The values of L and K have to be chosen suitably, to remove the bias
noted in the counterexample of [7]. The resulting variable-step scheme, implemented here in
a very simple subdivide-or-not way, can then improve the performance of the Euler method.
Further improvement can be obtained, for instance, by repeated subdivision.

Although we considered here only the very special differential equation (2), which in effect
amounts to finding which variable step choices do not distort the value of the sum approximation
of the Itô integral

∫
w dw, or, equivalently which give the correct quadratic variation to the

Brownian motion, it is hoped that the result here can be utilised in developing variable step
variations of the Euler–Maruyama scheme applied to more general differential equations. The
integral

∫
w dw is a key second-order iterated integral in the stochastic Taylor expansion and,

therefore, a variable step size method which introduces bias to that integral cannot be expected
to converge towards the correct solution.
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