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Abstract

Ongoing sea-level rise has brought renewed focus on terrestrial sediment supply to the coast
because of its strong influence on whether and how long beaches, marshes and other coastal
landforms may persist into the future. Here, we summarise findings of sediment discharge from
several coastal rivers, revealing that infrequent, large-magnitude events have disproportionate
influence on the morphodynamics of coastal landforms and littoral cells. These event-
dominated effects are most pronounced for small, steep mountainous rivers that supply beach
and wetland sediment along the world’s active tectonic margins, although infrequent events are
important drivers of sediment discharge for rivers worldwide. Additionally, extreme events
(recurrence intervals of decades to centuries) that follow wildfires, earthquakes, volcanic
eruptions, extreme precipitation or –most notably – combinations of these factors can redefine
coastal sediment budgets and morphology. Some of these extreme events (e.g., wildfires plus
rainfall) are increasing in magnitude and frequency under modern climate warming, with the
likely result of increasing sediment flux to affected coastlines. Climate change is also altering
watershed processes in both high latitudes and high altitudes, resulting in increased sediment
supply to downstream catchments. We conclude that sediment inputs to coastal systems are
highly variable with time, and that the variability and trends in sediment input are as important
to characterise as long-term averages.

Impact statement

The future of the world’s coasts will be influenced by ongoing sea-level rise and forthcoming
storms, which will combine to increase the likelihood for coastal flooding and erosion.
However, many coastal settings receive natural supplies of sediment from adjacent rivers and
landscapes, and these sediments can physically build up coastal landforms and reduce the
potential for erosion and flooding. It is very important to better understand sediment
delivery to the coast, as this is one of the key factors in assessing coastal climate change
impacts. The delivery of new sediment to the coast commonly has long intervals with very
little sediment discharged punctuated by brief events with tremendous sediment discharge.
These sediment input events are generally caused by disturbances in the landscape, which
can include wildfires, earthquakes, heavy rainfall, volcanic eruptions and human impacts.
Over decades to centuries, infrequent, high-magnitude sediment input events can be
responsible for most of the sediment that exists along the coast. Climate change has the
potential to increase sediment discharge to some coastal settings because of its imminent
effects on wildfire, heavy rainfall and the extent of frozen areas within high altitudes and in
polar regions. Because of this, there is an increased need to understand the amount of
sediment input to coastal regions both now and in the future. Teams of scientists will be
needed to monitor and predict future sediment inputs with an eye on better understanding
how the coast will respond to climate change.

Introduction

Coastal landforms and the human communities and natural resources located on these features
are increasingly vulnerable to flooding and erosion because of ongoing and accelerating
eustatic sea-level rise (FitzGerald et al., 2008; Syvitski et al., 2009; Vitousek et al., 2017;
Schuerch et al., 2018). Coastal landforms evolve over time in response to a combination of
oceanic, geologic, biologic and fluvial processes, and the relative importance of these processes
can vary considerably along the world’s coasts and over time (Inman and Nordstrom, 1971;
Wright and Short, 1984; Komar, 1998; Friedrichs and Perry, 2001; Murray et al., 2008;
Winterwerp et al., 2013; Splinter et al., 2017; Wright et al., 2019). Primary factors in the
evolution of many coastal landforms are the volume of sediment available to these systems and
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the physical processes that move sediment over time (Syvitski,
2005; Frihy et al., 2008; Anthony et al., 2014; Nienhuis et al., 2016;
Yang et al., 2017; Tessler et al., 2018; Besset et al., 2019; Warrick
et al., 2019).

Coastal landforms can be characterised by the amounts and
types of sediment available to them, and there are two end-
members with respect to terrestrial sediment supply: (1) coastal
landforms that receive no direct terrestrial sediment, such as
many atolls and barrier islands (Heron et al., 1984; FitzGerald
et al., 2008; Duvat, 2019), and (2) landforms that are derived
almost entirely from inputs of terrestrial sediment, such as deltas
of the world’s rivers and littoral cells along many of the world’s
active continental margins (Inman and Nordstrom, 1971; Hicks
and Inman, 1987; Ashton and Giosan, 2011; Nienhuis et al., 2013;
Giosan et al., 2014; Anthony, 2015). For coastal systems that are
derived from terrestrial sediment, changes in the volume or grain
size of sediment delivered to the coast can result in pronounced
changes in the morphology or morphodynamical trajectory
(Cooper, 2001; Nienhuis et al., 2013, 2020; Anthony et al., 2014;
Giosan et al., 2014; Bendixen et al., 2017; Luo et al., 2017; Warrick
et al., 2019; Hoitink et al., 2020; Yang et al., 2020; Syvitski et al.,
2022). Thus, to evaluate and predict coastal changes for systems
influenced by terrestrial sediment, it is essential to understand
several characteristics of the sediment supply, including the pro-
cesses that deliver sediment to the coast, the timing, volume and
characteristics, including grain size distributions, of these sedi-
ment contributions and the littoral processes that disperse sedi-
ment from the river mouth (Hicks and Inman, 1987; Orton and
Reading, 1993; Kao and Milliman, 2008; Romans et al., 2009;
Milliman and Farnsworth, 2013; Nienhuis et al., 2013; Anthony,
2015; Warrick, 2020).

The goal of this paper is to examine and summarise the
temporal variability in terrestrial sediment supply to the coast
over the decadal to century timescales important to coastal land
management. We focus on littoral systems that are derived from
terrestrial sources of sediment, which are generally found along
active continental margins of the world and have small, steep
coastal watersheds that are collectively the dominant supply of
sediment to the world’s coasts (Inman and Nordstrom, 1971;
Milliman and Syvitski, 1992; Milliman and Farnsworth, 2013).
Because of the efficient transfer of sediment through these small,
steep watersheds (Milliman and Farnsworth, 2013; Romans et al.,
2016), we will highlight how coastal supplies of sediment are
influenced by natural hazards, infrequent events and ongoing and
pending climate change. We acknowledge that the sediment
budgets of many coastal systems, such as barrier islands and
atolls, are not influenced by these watershed processes, owing
to negligible sediment contributions from terrestrial landscapes
to these coastal landforms (Meade, 1982; Woodroffe et al., 2007;
Perry et al., 2015). We also acknowledge that terrestrial supplies
of sediment may not be fully integrated into littoral cells, because
of offshore transport to the deep sea either during the river
discharge event or in the years, decades or centuries following
these events (Mulder et al., 2003; Khripounoff et al., 2009; Casal-
bore et al., 2011; Liu et al., 2016; Romans et al., 2016; Steel et al.,
2016; Warrick, 2020). As such, we are reminded that every river
and coastal setting is unique, and that care should be taken to
understand sediment sources, dispersal processes and timescales,
and sinks for each coastal system. In the synthesis below, we
summarise characteristic shoreline changes caused by time-
varying river sediment discharge and provide considerations

for future research andmonitoring in the light of ongoing climate
change and sea-level rise.

River sediment discharge to the coast

There are abundant examples of fluvial sediment discharge events
influencing coastal sediment budgets andmorphodynamics. One of
these examples is observed at the Rio Rimac of Peru (Figure 1),
which discharges exceptional amounts of sediment to the coast
during years of high precipitation (French and Mechler, 2017;
Guzman et al., 2020). During these wet years, the shoreline at the
river mouth progrades hundreds of metres seaward, resulting in a
river mouth delta with several distributary channels (Figure 1a–d).
Following progradation, the delta recedes because of decreases in
river sediment discharge and northward littoral sediment transport
from wave action (Figure 1e–j). The littoral transport causes beach
widening at least 7 km downdrift of the Rio Rimacmouth (Guzman
et al., 2020). Similar patterns of coastal progradation followed by
recession and sediment spreading are observed at river mouths
around the world as they respond to time-varying sediment inputs
(Inman and Nordstrom, 1971; Hicks and Inman, 1987; Cooper,
1993; Anthony and Blivi, 1999; Barnard and Warrick, 2010; Casal-
bore et al., 2011; Giosan et al., 2012; Milliman and Farnsworth,
2013; Anthony et al., 2014; Bendixen et al., 2017; Besset et al., 2017;
Luo et al., 2017; East et al., 2018; Warrick et al., 2019). Satellite
imagery can provide important observations of the spatial and
temporal response of shorelines to new contributions of river
sediment (Besset et al., 2016, 2019; Guzman et al., 2020; Warrick
et al., 2022), and example satellite records of themultitude of coastal
systemswith active river sediment supplies are provided in Figure 2.

Unusually large sediment discharge events can produce shore-
line changes that persist for decades or centuries, as evidenced by
coastal accretion and geomorphic changes caused by upland vol-
canic activity on sediment transport from the Santo Tomas River of
the Philippines and the Rio Salamá of Guatemala (Figure 3). Coastal
accretion at the mouths of both systems extended hundreds of
metres to several kilometres offshore of the pre-eruption shorelines,
and sediment inputs influenced shoreline positions for several to
tens of kilometres along the coast (Kuenzi et al., 1979; Siringan and
Ringor, 2007). The shoreline accretion from the eruption of Santa
Maria, Guatemala, continues to extend more than 1 km offshore of
the pre-eruption shoreline even though the volcanic event occurred
over 120 years ago, providing evidence for the longevity of coastal
impacts from rare, but massive, sediment discharge events (Kuenzi
et al., 1979; Figure 3b).

Detailed accounting of shoreline responses to river inputs can be
obtained where physical monitoring or remote sensing records are
adequately frequent (Hicks and Inman, 1987; Barnard and War-
rick, 2010; Besset et al., 2016, 2019; Vos et al., 2019a; Guzman et al.,
2020; Warrick et al., 2022). For example, the combination of
satellite-derived shoreline positions from Landsat and Sentinel-2
imagery using the CoastSat technique (Vos et al., 2019b) and
estimates of littoral-grade sediment discharge (Barnard and War-
rick, 2010) for the Santa Clara River, California, shows how the
shoreline responds differently in space and time to elevated river
sediment discharge (Figure 4). Sand discharge by the Santa Clara
River is punctuated by several wet years, including 1983, 1993,
1995, 1998 and 2005, which combined contributed almost 20 Mt,
or approximately 13 million cubic metres, of littoral-grade sand to
the coast (Figure 4a,b). The shoreline at the Santa Clara River
mouth accreted rapidly during these wet years, followed by
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multiple-year to decadal-scale shoreline recession towards previous
positions (Figure 4c,d). In contrast, shorelines greater than 1,000 m
downcoast from the river mouth had progressively lagged and
muted accretion responses (Figure 4e–g). Overall, the beach 2,000
m downcoast of the river mouth accreted approximately 60 m
between 1990 and 2020 as a result of sediment spreading from
the combined river sediment discharge events of the 1990s and
2005 (Figure 4e,f; Barnard and Warrick, 2010). Combined, these
river mouth systems show that sediment input signals can vary
greatly in time and that these signals may propagate across and
along the shoreline, as described in more detail by coastal obser-
vations and theory (Komar, 1973; Hicks and Inman, 1987; Inman

et al., 2005; Casalbore et al., 2011; Anthony, 2015; East et al., 2018;
Besset et al., 2019; Warrick, 2020).

Temporal variability in river sediment discharge

Infrequent river sediment discharge events that dramatically alter
coastal morphology and shoreline positions – such as the floods
on the Rio Rímac (Figure 1) and the Santa Clara River (Figure 4),
volcanic-related sediment discharge shown for the Santo Tomas
River and Rio Salamá (Figure 3) or profound accretion from
storm-induced debris-flow activity, as Casalbore et al. (2011)
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Figure 1. The influence of river sediment discharge on the coastal morphology and shoreline positions at themouth of Rio Rímac, Peru, from 2016 to 2021. As described by Guzman
et al. (2020), heavy flooding in early 2017 resulted in massive growth of the river mouth delta and spreading of this sediment northward in the subsequent years, similar to the
coastal morphodynamics following flooding in 1983 and 1998. Imagery from Google Earth.
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Figure 2. Examples of coastal changes at the mouths of small rivers of the world resulting from contributions of new sediment. Imagery from Google Earth.
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Figure 3.Decadal to century persistence of coastal accretion from increases in river sediment yield resulting from volcanic activity in coastal watersheds. (a) Themouth of the Santo
Tomas River 28 years after the eruption of Mount Pinatubo, Philippines. (b) The mouth of Rio Salamá almost 120 years after the eruption of Santa Maria, Guatemala. Additional
shorelines from before and immediately following the eruptions from publicly available Landsat imagery or interpretations of Kuenzi et al. (1979). Imagery from Google Earth.
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documented on the coast of Sicily – provide important examples
of how temporal variations in terrestrial sediment supply can
strongly influence littoral systems over spatial scales of kilometres

to tens of kilometres and temporal scales of years to over a century.
As such, we will explore a few examples of the temporal variability
of river sediment discharge, and especially the role of infrequent
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Figure 4. River sediment discharge and shoreline positions of the Santa Clara River, California, highlighting the effects of infrequent events on shoreline accretion and the spatial
and temporal variations of shoreline response to new sediment. (a) Annual rainfall at a National Weather Service station near the river. (b) Littoral-grade sand (>125 μm) discharge
from the Santa Clara River after Barnard and Warrick (2010); data from 2009 to 2021 were not estimated due to a lack of river gauging. (c–g) Shoreline positions from five transects
derived from CoastSat analyses of Vos et al. (2019b). Shoreline positions are normalised to the average position of each transect from 1990 to 1992 when the shoreline was
consistently narrow. (h) Satellite imagery of the Santa Clara River mouth following the 2005 sediment discharge events from Google Earth. Locations of the shoreline from a
September 2004 image and the CoastSat transects are shown.
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large discharge events, in the export of sediment from the land to
the sea.

To assist with this exploration, we have included a series of
sediment discharge records from watersheds ranging from a
small, steep river draining the rugged Big Sur coast of California
to the world’s largest river, the Amazon (Figure 5). Sediment
discharge records from these rivers reveal that the smaller water-
sheds are generallymore punctuated by infrequent high-discharge
events, whereas the massive Amazon River has relatively constant
sediment discharge from year to year. Additionally, the records
also highlight the effects of perturbations, such as wildfires, floods,
earthquakes, typhoons and human impacts, on year-to-year

variations in sediment discharge (Figure 5), which are described
more fully in original investigations of these and other rivers
(Dadson et al., 2004; Gran and Montgomery, 2005; Wang et al.,
2007; Hovius et al., 2011; Lee et al., 2015; Gray, 2018; Montanher
et al., 2018; Collins et al., 2020; Warrick et al., 2022). Sediment
discharge is especially elevated when a landscape perturbing
event, such as wildfire or an earthquake, is followed by heavy
precipitation, such as shown in the records from the Big Sur River
and Choshoi River watersheds (Figure 5a,b; Dadson et al., 2004;
Hovius et al., 2011; Warrick et al., 2022). Over larger watershed
scales of hundreds of thousands to millions of square kilometres,
events such as earthquakes or wildfires impact relatively small
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Figure 5. Annual sediment discharge measurements for four different rivers highlighting how temporal variations are influenced by perturbations such as wildfires, floods and
earthquakes and the size of the watershed. Time series shown in (a)–(d) have been transformed into ranked annual exceedance values in (e) using the cumulative sediment discharge
measured in each river. Recurrence intervals were estimated by the reciprocal of the annual exceedance probabilities. Data for (a)–(d) were derived fromWarrick et al. (2022), Lee et al.
(2015), Wang et al. (2007), and Montanher et al. (2018), respectively. Descriptive terms about the watershed sizes (right-hand side) are derived from discussion in Romans et al. (2016).
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areas compared to the river’s total drainage basin area and thus
contribute only marginally to the overall temporal variations in
sediment fluxes (Milliman and Farnsworth, 2013; Francis et al.,
2022). Thus, temporal variability in sediment discharge from the
large rivers of the world is often attributed to factors that influence
broader areas of these watersheds, such as widespread land use
change from agriculture development, dams on the mainstem
river or climate patterns influencing the hydrology of the broader
basin (Walling, 2006;Wang et al., 2007; Zheng et al., 2018; Syvitski
et al., 2022; Figure 5c).

For the four rivers used in our example, the cumulative sediment
discharge of the smaller rivers is more heavily dictated by infre-
quent events than the larger rivers. This is shown by the steepness of
the cumulative sediment discharge curves in Figure 5e, which
provides contrast between small rivers such as the Big Sur River
of California, for which sediment discharge during the two biggest
years represented roughly two-thirds the 50-yr sediment discharge
to the coast, and the Amazon River, for which the sediment
discharged every year is relatively constant. The high temporal
variability in the Big Sur River is largely related to the combined
effects of two wildfire and heavy precipitation events (labelled ‘Fire
þ Flood’; Figure 5a; Warrick et al., 2022), although sediment
discharge from this river is still strongly variable in time if these
events are not considered in the records (Figure 5e). The inverse
relationship between watershed size and temporal variability in
river sediment discharge shown in Figure 5 is consistent with
broader understanding of the erosion and sediment transport for
rivers throughout the world (Hicks et al., 2000; Dadson et al., 2004;
Kao and Milliman, 2008; Gonzalez-Hidalgo et al., 2010; Milliman
and Farnsworth, 2013; Gray, 2018). As such, small, steep water-
shedsmay be considered ‘reactive’with respect to perturbing effects
on sediment discharge, whereas large, continental-scale watersheds
may be consideredmore ‘buffered’ against these effects (cf. Romans
et al., 2016).

The accounting of sediment discharge to the coast – such as
shown in Figure 5 – is generally derived from sampling of river
sediment fluxes and applications of models derived from these data
(Walling and Fang, 2003; Milliman and Farnsworth, 2013; Syvitski
et al., 2022). Unfortunately, the length of river sampling records is
generally limited to intervals of years to several decades (Milliman
and Farnsworth, 2013; Warrick and Milliman, 2018). Although
monitoring records are essential for identifying rates and trends
in river sediment transport (Gray, 2018), the largest historical
events may not be captured by limited duration of sediment sam-
pling. In fact, the exclusion of the largest sediment discharge events
is a primary factor for why river sampling records may underesti-
mate long-term watershed sediment yields (Kirchner et al., 2001;
Covault et al., 2013). Combined, this suggests that long-term sedi-
ment discharge to the coast – especially from the globally important
small, steep rivers – is primarily related to the magnitude and
frequency of rare large events.

Climate change

Climate change is modifying the event frequency and intensity of
several watershed sediment yield factors discussed above, includ-
ing the amount and intensity of precipitation and the size, fre-
quency and intensity of wildfires (Westerling et al., 2006;
Pachauri et al., 2015; Sankey et al., 2017; Swain et al., 2018; Ball
et al., 2021; Touma et al., 2022). Additionally, rising temperatures
are changing the hydrology and sediment yields of both Arctic

and alpine landscapes (Bendixen et al., 2017; Li et al., 2021a;
Irrgang et al., 2022; Vergara et al., 2022). As such, there is a
growing understanding that climate change is causing funda-
mental changes to the rate of sediment delivery from many
landscapes to fluvial and coastal landforms. These effects are
most clearly evident in Arctic settings, where terrestrial sediment
inputs have increased at the same time that ice-free conditions in
the adjacent seas are getting longer (Bendixen et al., 2017; Irrgang
et al., 2022). Combined, this is resulting in the expansion of some
Artic deltas – such as those along the Greenland coast – and
accelerated erosion on many wave-exposed Arctic shorelines
(Bendixen et al., 2017; Irrgang et al., 2022). There is also growing
evidence for changes in fluvial sediment discharge in lower
latitudes, as wildfire and precipitation are actively changing with
climate (Lee et al., 2015; East and Sankey, 2020; Touma et al.,
2022). Climate-induced changes are expected to continue with
time, and they may dramatically alter sediment budgets of rivers
and their downstream coasts.

Conceptual model and future directions

As highlighted above, infrequent fluvial sediment discharge
events are a driving factor for many coastal littoral systems
worldwide. This time-dependent variability commonly results in
wet conditions delivering considerably more sediment than dry
conditions do, and when these wet conditions are combined with
increases in hillslope sediment supplies from wildfires, earth-
quakes or volcanic activity, sediment discharge can be excep-
tional. That is, infrequent events are generally responsible for
the majority of sediment transport to the coast (Milliman and
Farnsworth, 2013).

We have integrated these concepts into a conceptual model of
hypothetical watershed sediment yields and shoreline positions
for a small, steep watershed that efficiently conveys sediment
from source regions to the coast (cf. Romans et al., 2016) that will
be used to discuss historic and future trajectories of coastlines
(Figure 6). In this simple model, there are several perturbations
to watershed sediment yield: precipitation, which causes land-
scape erosion and downstream flooding; wildfire, which denudes
the landscape and increases the potential for soil erosion; earth-
quakes, which liberate regolith throughout the watershed and
volcanic activity, which introduces new sediment materials and
disrupts the watershed landscape (Figure 6). As highlighted
above, the effects of wildfires on watershed sediment yield are
enhanced when they are followed closely by heavy precipitation,
as denoted by three ‘fire þ flood’ events in the hypothetical
records (Figure 6). Additionally, the conceptual model includes
characteristic human impacts to sediment yields, including
increases from land use such as agriculture and road building
and decreases from the construction of dams (Kosmas et al.,
1997; Vörösmarty et al., 2003; Syvitski, 2005; Walling, 2006;
Anthony et al., 2014; Luo et al., 2017; Li et al., 2021b; Syvitski
et al., 2022).

The time-varying rate of sediment yield, driven in large part by
infrequent events and human impacts, has direct effects on the
shoreline position of the littoral cell near the rivermouth (Figure 6).
For our hypothetical system, small increases in sediment yield
result in short-lived changes in the shoreline position, much like
the coastal response to monitored events in the Santa Clara River
(cf. Figure 4). The five large sediment yield events (highlighted with
grey shading; Figure 6) cause fundamental changes in the shoreline
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position as shown by accretion events (arrows; Figure 6). These
large events are conceptually similar to the volcanic events high-
lighted above (cf. Figure 3). Lastly, human impacts may result in
coastal accretion or erosion trends, depending on the nature and
scale of these impacts (Figure 6).

A few additional items are emphasised in the conceptual
model. First, although the river sampling records (blue shading;
Figure 6) are shown to capture several decades of sediment
discharge including an era of human impacts, they do not include
some of the largest and most significant events of the past two
centuries. This is rather common for actual river records given
that they are commonly years to decades in length (Warrick and
Milliman, 2018). To properly understand century-scale or longer
sediment yields, river sampling records should be integrated with
either an understanding of the role, magnitude and frequency of
events that are not included in the sampling record, or with
broader geologic understanding of the discharge record from
measurements such as sediment cores or cosmogenic nuclides

(Walling, 1988; Lamoureux, 2000; Kirchner et al., 2001; von
Blanckenburg, 2005; Covault et al., 2013). Additionally, the lack
of exceptional events in most sampling records highlights the
importance of records that do include these unique events (e.g.,
Kuenzi et al., 1979; Gran and Montgomery, 2005; Korup, 2012;
Ritchie et al., 2018; Fan et al., 2019; Warrick et al., 2022), largely
because they allow for the new understanding to be transferred to
longer timescales and to other river systems. Second, in looking
towards a future with continued climate change (yellow shading;
Figure 6), the sustainability of coastal landforms such as the
littoral systems highlighted here will depend on whether sediment
contributions to the coast can balance the erosion caused by sea-
level rise and associated impacts (FitzGerald et al., 2008; Syvitski
et al., 2009; Giosan et al., 2014; Nienhuis et al., 2018; Reimann
et al., 2018; Schuerch et al., 2018; Hoitink et al., 2020). That is, the
future of the world’s shorelines will be determined not only by
global eustatic sea-level changes, but also by many local factors
such as the rate and variability of sediment supply and the
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conditions and processes that are responsible for transporting
sediment throughout the coastal zone (Casalbore et al., 2011;
Anthony, 2015; Nienhuis et al., 2016; Steel et al., 2016; Caldwell
et al., 2019; Warrick, 2020).

Summarising, the future of many coasts will be tied to terrestrial
sediment inputs (Anthony and Blivi, 1999; Syvitski et al., 2009;
Giosan et al., 2012, 2014; Anthony et al., 2014), so a better under-
standing of the magnitude, frequency and implications of sediment
supply rates is needed. This is especially true for infrequent events,
which as noted above can dominate long-term coastal sediment
budgets and can redefine coastal morphology. As coastal commu-
nities have multiple management options to confront the chal-
lenges of climate change, including actively nourishing landforms
with imported sediment (de Schipper et al., 2016; Ludka et al., 2018;
Armstrong and Lazarus, 2019), these will need to be balanced with
an understanding of the inherent coastal processes and morpho-
dynamics, including natural sediment supplies. In some cases,
watershed sediment supplies may be adequate to produce relatively
constant shoreline positions for decades or more; in other cases,
sediment discharge may be inadequate to keep up with sea-level
rise, and coastal erosion and land loss will ensue (Figure 6).

To build this understanding under the current and future con-
ditions of climate change requires collaborative communication
and research efforts across hydrologic, geomorphic and coastal
research groups. We encourage the continued development and
progress of cross-disciplinary studies of coastal landforms, espe-
cially with respect to the linkages between watershed processes and
coastal morphodynamics. Although this requires integration across
several discipline boundaries (hydrology, oceanography, geo-
morphology, ecology, meteorology and climate science), it is essen-
tial to build this cross-disciplinary understanding where terrestrial
and coastal systems are integrally linked. Additionally, because this
work will be highly relevant for coastal communities worldwide
that are actively confronting the effects of climate change through
land use and expenditure decisions, it is valuable to integrate
stakeholder collaboration and the challenges that coastal managers
face into research goals and methods (Lemos et al., 2018; Ulibarri
et al., 2020). Although the coming era will provide considerable
uncertainty for coastal communities and their natural resources, it
is crucial that coastal scientists continue to develop relevant infor-
mation and understanding about our changing coasts.
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