ON THE MATRIX WITH ELEMENTS $1 /(r+s-1)$

BY
W. W. SAWYER

A standard example of a matrix for which the computation of eigenvectors and eigenvalues is very awkward is the matrix A with $a_{r s}=1 /(r+s-1), 1 \leq r \leq n$, $1 \leq s \leq n$. It is therefore of interest that A commutes with a tridiagonal matrix.

In [2] it was shown that the integral operator, H, defined by

$$
H f(x)=\int_{1}^{n}(x+y)^{-1} f(y) d y,
$$

commutes with the differential operator $L=(d / d x) \cdot\left(x^{2}-1\right)\left(n^{2}-x^{2}\right) \cdot(d / d x)-2 x^{2}$. There is a finite analogue of this result, namely that $A B=B A$, where B is the $n \times n$ matrix with zero elements except for

$$
\begin{aligned}
b_{r, r} & =c(r-1)+c(r)+2 r(r-1) & & 1 \leq r \leq n \\
b_{r, r+1} & =b_{r+1, r}=-c(r) & & 1 \leq r \leq n-1
\end{aligned}
$$

where $c(r)=r^{2}\left(n^{2}-r^{2}\right)$.
This result can be verified by direct calculation. The matrix $B A$ is found to be symmetric. Hence $B A=(B A)^{T}=A^{T} B^{T}=A B$ as required.

The matrix A is totally positive, and hence is an oscillation matrix of exponent 1. Accordingly it has simple eigenvalues $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0$ and the eigenvector corresponding to λ_{k}, say u_{k}, has exactly $k-1$ sign changes in its coordinate sequence. (See [1], p. 100.)

The matrix B, in the terminology of [1], is a normal Jacobi matrix, and hence has simple eigenvalues $\mu_{1}<\mu_{2}<\cdots<\mu_{n}$, and the eigenvector, say v_{k}, corresponding to μ_{k}, has exactly $k-1$ sign changes in its coordinate sequence. (See [1], p. 80.)

As $A B=B A$, it follows that A and B have the same eigenvectors, and the sign change properties indicate that order is preserved, that is, $u_{k}=v_{k}$. It should be noted that the eigenvalues of B are arranged in increasing order of magnitude, while those of A are in decreasing order. We shall also have $A=P_{1}(B)$ and $B=P_{2}(A)$ for some polynomials, P_{1} and P_{2}, with corresponding relations between the eigenvalues.

I should like to thank Professor F. V. Atkinson for calling my attention to reference [1].

References

1. F. R. Gantmacher and M. G. Krein. Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme. Akademie-Verlag, Berlin, 1960.
2. W. W. Sawyer, Journal of the London Mathematical Society, 34 (1959), 451-453.

Department of Mathematics and Faculty of Education, University of Toronto, 28 May 1972.

