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Abstract

We prove that the p-completed Brown–Peterson spectrum is a retract of a product
of Morava E-theory spectra. As a consequence, we generalize results of Kashiwabara
and of Ravenel, Wilson and Yagita from spaces to spectra and deduce that the
notion of a good group is determined by Brown–Peterson cohomology. Furthermore,
we show that rational factorizations of the Morava E-theory of certain finite groups
hold integrally up to bounded torsion with height-independent exponent, thereby lifting
these factorizations to the rationalized Brown–Peterson cohomology of such groups.

1. Introduction

Many important cohomology theories E are constructed from complex cobordism MU or Brown–
Peterson cohomology BP via Landweber’s exact functor theorem. Viewing this process as a
simplification, one might wonder what kind of information about BP∗(X) is retained in E∗(X),
for X a space or a spectrum. Motivated by this question, the goal of this paper is two-fold: in the
first part, we show that many properties of the BP -cohomology of a spectrum are determined by
the collection of its Morava K-theories K(n)∗(X). In the second part, transchromatic character
theory is used to factor the rationalized BP -cohomology of classifying spaces of certain finite
groups by establishing height-independent bounds on the torsion in Morava E-theory. This
has the curious consequence that the BP -cohomology of finite groups behaves more algebro-
geometrically than one might expect.

Let En denote Morava E-theory of height n, which is a Landweber exact E∞-ring spectrum
with coefficients E∗n = W (κ)[[u1, . . . , un−1]][u±1]. The key observation of this paper is a natural
extension of a theorem due to Hovey [Hov95, Theorem 3.1], realizing BP as a summand in a
product of simpler cohomology theories.

Theorem. The p-completed Brown–Peterson spectrum BPp is a retract of
∏
n>0En, the

product over all Morava E-theories En.

The general idea is as follows: the behavior of Morava E-theory at height n is closely
connected to the behavior of Morava K-theory K(n) at the same height, and these cohomology
theories determine each other in many cases. Starting from knowledge about the Morava
K-theories K(n)∗(X) of a spectrum X, we can then deduce properties of E∗n(X), which
collectively control BP∗p (X) by the above splitting. Conversely, the BP -cohomology of spaces
determines their Morava K-theory.
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Brown–Peterson cohomology from Morava E-theory

The class of spectra amenable to such comparison results consists of those with evenly
concentrated Morava K-theory for all heights or, more generally, those with Landweber flat BP -
cohomology; examples abound. Using the previous theorem and certain base change formulas,
we then obtain generalizations of the main structural results of [RWY98, Wil99] to spectra.

Theorem. Let X be a spectrum. If K(n)∗X is even for all n > 0, then BP∗pX is even and
Landweber flat. Moreover, for a map f : X −→ Y between spectra with even Morava K-theories,
BP∗p (f) is injective or surjective if K(n)∗(f) is injective or surjective for all n.

Moreover, we give conditions on a spectrum X which imply that BP∗p (PX) is Landweber
flat, where PX denotes the free commutative algebra spectrum on X. Combining the retract
theorem with work of Rezk [Rez09] as well as work of the first author and Frankland [BF15], we
construct a functor

TBP : ModcBP∗p
−→ ModBP∗p .

For a large class of spaces, which includes spheres and higher Eilenberg–MacLane spaces, we
then show that BP∗p (PX) is functorially determined by BP∗p (X).

Theorem. There exists a functor TBP on the category ModcBP∗p
of (topological) BP∗p -modules

such that, for X a space with K(n)∗(X) even and degreewise finite for all n > 0, there is a
natural isomorphism

TBPBP∗p (X)
∼= // BP∗p (PX)

of BP∗p -modules.

Roughly speaking, this result says that the structure of the corresponding Künneth and
homotopy orbit spectral sequences for BP∗p (PX) is completely controlled by the topological
module BP∗p (X).

As another consequence of our results, we deduce that various notions of good groups coincide
and are controlled by the BP -cohomology of the group. This motivates the second part of
the paper, where we take the above ideas one step further. Transchromatic character theory
establishes a link between Morava E-theories of different heights, leading to the question of
which properties of E∗n(X) and BP∗(X) are detected by height 1 and height 0, i.e. by topological
K-theory and rational cohomology. It turns out that the connection is surprisingly strong, an
observation that has already been exploited in [SS15, BS16].

The second part of the paper focuses on the rationalization of the retract theorem. We apply
the resulting map to classifying spaces of finite groups. Algebro-geometrically, E∗n(BA) for a
finite abelian group A corepresents the scheme Hom(A∗,GEn) that parametrizes maps from the
Pontryagin dual of A to the formal group GEn associated to Morava E-theory. Rationally, there
is then a decomposition into schemes classifying level structures

Hom(A∗,GEn) ∼=Q
∐
H⊆A

Level(H∗,GEn),

where H runs through the subgroups of A; see [Str97]. Up to torsion, the scheme of level
structures Level(H∗,GEn) is corepresented by E∗n(BH)/I, where I is the transfer ideal, i.e. the
ideal generated by transfers from the maximal subgroups of H. We show that this statement
holds integrally up to bounded integral torsion, where the exponent of the torsion is in fact
independent of the height we work at. This uses a result about level structures proven by Jeremy
Hahn, which is presented in the appendix to this paper.
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Theorem. Let A be a finite abelian group; then the exponent of the torsion in the cokernel of
the natural map

E∗n(BA) −→
∏
H⊆A

E∗n(BH)/I

is bounded independently of the height n.

In order to prove this, we construct a variant of the transchromatic character maps of [Sta13,
BS16] from E-theory at height n to height 1, which enables tight control over the torsion. Since
products of torsion abelian groups with a common torsion exponent are torsion as well, it follows
that the natural map ∏

n

E∗n(BA) −→
∏
n

∏
H⊆A

E∗n(BH)/I

is a rational isomorphism. It is possible to apply the retract theorem to immediately deduce a
similar decomposition for the BP -cohomology of finite abelian groups.

Corollary. Let A be a finite abelian group and let I denote the transfer ideal; then the natural
map

BP∗p (BA) −→
∏
H⊆A

BP∗p (BH)/I

is a rational isomorphism.

Similarly, the scheme corepresented by E∗n(BΣm) decomposes rationally into a product of
subgroup schemes Γ Subλ`m(GEn), indexed by partitions λ ` m of m. Again, we prove that this
statement holds integrally up to globally bounded integral torsion.

Theorem. The exponent of the torsion in the cokernel of the natural map

E∗n(BΣm) −→
∏
λ`m

Γ Subλ`m(GEn)

is bounded independently of the height n. Consequently, there is a rational isomorphism

BP∗p (BΣm) −→
∏
λ`m

(BP∗p (BΣλ)/Iλ)Σa ,

where Iλ is a certain transfer ideal.

Finally, we give a further illustration of the methods of the paper by proving a well-known
version of Artin induction for the BP -cohomology of good groups.

1.1 Relation to the literature
The question of when and how E∗(X) can be computed algebraically from BP∗(X) or, conversely,
what kind of information about BP∗(X) is retained in E∗(X) has a long history. After the
pioneering work of Johnson and Wilson [JW73, JW75] and Landweber [Lan76], these problems
were studied systematically in a series of papers by Ravenel, Wilson and Yagita [RWY98, Wil99]
and Kashiwabara [Kas98, Kas01]. Their methods are based on a careful study of the associated
Atiyah–Hirzebruch spectral sequences. As a consequence, the results contained in these papers
are unstable, i.e. they are valid only for spaces rather than for arbitrary spectra.

The results of our paper generalize the main structural theorems of [RWY98, Wil99] from
spaces to spectra, by replacing the Atiyah–Hirzebruch spectral sequence arguments with the
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above retract result. This is remarkable, as such extensions had previously seemed impossible;
see the remark following Theorem 1.8 in [RWY98, p. 2]. Furthermore, the retract result has the
pleasant side effect of simplifying many of the proofs, at the cost of losing control over any explicit
generators and relations descriptions. In particular, we are unable to recover the computations
for spheres, Eilenberg–MacLane spaces, and other spaces appearing in certain Ω-spectra given
in the aforementioned papers.

In contrast to this, passing from BP∗(X) to K(n)∗(X) is more subtle, due to the existence
of counterexamples to the generalizations of certain base change formulas to arbitrary spectra.
Here, our results do not improve upon the results in [RWY98, Wil99].

In [Kas01], Kashiwabara studied the following question: when X is a space, to what extent
does BP∗p (X) control BP∗p (QX)? He showed that BP∗p (QX) inherits Landweber flatness from
BP∗p (X) and constructed a functor D such that

DBP∗p (X)
∼= // BP∗p (Ω∞X)

is an isomorphism under certain algebraic conditions onX. Our description of BP∗p (PX) is related
to Kashiwabara’s result via the Snaith splitting; the precise relation between Kashiwabara’s
theorem and ours is, however, not completely clear at the moment. It should nevertheless be
noted that his functor allows for explicit calculations, whereas TBP involves the idempotent
given by the retract and is thus much less computable.

1.2 Outline
We begin in § 2 by recalling the cohomology theories and basic concepts that will be used in
this paper. These theories are related to each other by various base change formulas, most of
which are collected from the literature. The first goal of § 3 is to prove the result which the rest
of our paper is based on, namely that BPp is a retract of a product of Morava E-theories. We
then deduce our main theorems about the structure of the BP -cohomology of spectra with even
Morava K-theory. Moreover, we discuss the BP -cohomology of free commutative algebras and
show that various notions of good groups are equivalent.

The second part of the paper starts in § 4 with a toy example, obtaining the existence of
a height-independent torsion exponent in the case of finite cyclic groups and Σp by an explicit
calculation. A number of auxiliary commutative algebra results are proven before introducing
a variant of the transchromatic character map. The rest of the section contains the proofs of
the main theorems for Morava E-theory and their consequences for the rational BP -cohomology
of abelian and symmetric groups. A key result for the case of abelian groups is deferred to an
appendix, written by Jeremy Hahn.

1.3 Notation and conventions
Throughout this paper we fix a prime p and work in the category Sp of p-local spectra. By space
we shall always mean a CW complex of finite type viewed as a suspension spectrum. The results
in the first part of the paper are formulated and proven more generally for the theories P (m),
but the reader not familiar with these might want to specialize to P (0) = BPp. We will also
always write Qp/Znp for (Qp/Zp)n.

2. The Brown–Peterson spectrum and related cohomology theories

After introducing the complex oriented ring spectra that will be used throughout the paper, we
recall the notion of Landweber flatness relative to the theory P (m) and prove that Landweber flat
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modules are closed under products. We then give base change formulas relating these cohomology

theories. Although most of these results are well known, we hope the reader will find it helpful

to see them collected in one place.

2.1 Preliminaries

We recall some basic terminology and facts that will be used in this paper; for more details,

see for example [RWY98]. Let BP be the Brown–Peterson spectrum with coefficients BP∗ =

Z(p)[v1, v2, . . .], where the vi are Hazewinkel generators of degree |vi| = −2(pi − 1) with v0 = p;

as usual, none of the constructions or results in this paper depend on this choice of generators.

By [Lan73], the invariant prime ideals in BP∗ are given by In = (p, v1, . . . , vn−1) for n > 0.

Recall that P (m) denotes the BP -module spectrum with coefficients

P (m)∗ = BP∗/Im,

which can be constructed using the Baas–Sullivan theory of singularities or the methods of

[EKMM97]. We set P (0) = BPp, the p-completion of BP . The ideals Im,n = (vm, . . . , vn−1) for

n > m are then precisely the invariant prime ideals of P (m)∗.

The Landweber filtration theorem [Lan76] for BP∗BP -comodules that are finitely presented

as BP∗-modules admits the following generalization to P (m), due independently to Yagita and

Yoshimura.

Theorem 2.1 [Yag76, Yos76]. Suppose that M is a P (m)∗P (m)-module which is finitely

presented as a P (m)∗-module. Then there exists a finite filtration of M by P (m)∗P (m)-modules,

0 = M0 ⊆M1 ⊆ · · · ⊆Ms = M,

with filtration quotients Mi+1/Mi
∼= P (m)∗/Im,ni up to a shift and for some ni > m.

Remark 2.2. The classical Landweber filtration theorem is usually stated for BP , not for

P (0) = BPp. However, this will not affect any of the arguments or statements appearing later in

this paper.

From P (m) we can construct, for n > m, spectra E(m,n) by taking the quotient by the

ideals (vn+1, vn+2, . . .) and then inverting vn; that is,

E(m,n)∗ =

{
Zp[v1, . . . , vn][v−1

n ] if m = 0,

Fp[vm, . . . , vn][v−1
n ] if m > 0.

In particular, if m = n, then E(m,m) = K(m) is Morava K-theory; and if m = 0, then

E(0, n) = E(n) is p-complete Johnson–Wilson theory. Moreover, we define Ê(m,n) to be the

K(n)-localization of E(m,n),

Ê(m,n) = LK(n)E(m,n),

where LK(n) denotes Bousfield localization with respect to K(n). Finally, we let En denote height

n Morava E-theory, which is a 2-periodic finite free extension of Ê(0, n) given by adjoining an

element u of degree 2 with u1−pn = vn and extending coefficients to the ring W (κ) of Witt vectors

over a perfect field κ of characteristic p.
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2.2 Landweber flatness
Recall the following definition from [RWY98, Wil99].

Definition 2.3. A module M ∈ModP (m)∗ is said to be Landweber flat if it is a flat module for
the category of P (m)∗P (m)-modules which are finitely presented as P (m)∗-modules, i.e. if the
functor

−⊗P (m)∗ M : Modfp
P (m)∗P (m)

//ModP (m)∗

is exact.

The Landweber filtration theorem for P (m) easily implies the following characterization of
Landweber flatness; see for example [RWY98, Theorem 3.9].

Proposition 2.4. A P (m)∗-module M is Landweber flat if and only if

vn : P (n)∗ ⊗P (m)∗ M −→ P (n)∗ ⊗P (m)∗ M

is injective for all n > m.

In the next section, we need a closure property for the collection of Landweber flat modules.
Since we do not know of a published reference for this fact, we include the proof.

Lemma 2.5. The collection of Landweber flat P (m)∗-modules is closed under products.

Proof. Suppose that (Mi)i is a collection of Landweber flat BP∗-modules and let n > m. By
Proposition 2.4, it suffices to show that the top map in the commutative diagram

(
∏
iMi)⊗P (m)∗ P (m)∗/Im,n

vn //

εm

��

(
∏
iMi)⊗P (m)∗ P (m)∗/Im,n

εm

��∏
i(Mi ⊗P (m)∗ P (m)∗/Im,n) vn

//
∏
i(Mi ⊗P (m)∗ P (m)∗/Im,n)

is injective. Since P (m)∗/Im,n is a finitely presented P (m)∗-module, the vertical maps εm are
isomorphisms. But, by assumption, the bottom map is injective, hence so is the top map. 2

Remark 2.6. This result should be compared to a theorem of Chase: for R a (not necessarily
commutative) ring, the collection of flat R-modules is closed under arbitrary products if and
only if R is left coherent. For a discussion of products of flat modules and a proof of Chase’s
theorem, see [Lam99].

2.3 Base change formulas
This section collects a number of base change formulas for the cohomology theories we use in
this paper. While most of the results are well known, it is not always easy to locate references
in the published literature.

Lemma 2.7. Suppose n > m and let X be a spectrum such that Ê(m,n)∗(X) is evenly
concentrated and flat as an Ê(m,n)∗-module. Then

K(n)∗(X) ∼= Ê(m,n)∗(X)⊗Ê(m,n)∗ K(n)∗,

which is even as well. Conversely, if K(n)∗(X) is even, then Ê(m,n)∗(X) is even and flat as an
Ê(m,n)∗-module.
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Proof. We give the proof for m = 0 and Morava E-theory En; the argument and referenced
results generalize easily to the m > 0 case. First note that E∗n(X) is automatically complete with
respect to the maximal ideal of E∗n, because the function spectrum F (X,En) is K(n)-local. By
[BF15, Proposition A.15], this means that E∗n(X) is flat as an E∗n-module if and only if it is
pro-free, i.e. if it is the completion of some free E∗n-module. This reduces the claim to [HS99b,
Proposition 2.5]. 2

In order to relate E(m,n)-cohomology to P (m)-cohomology, we need to recall the
construction of the completed tensor product; see for example [KY93].

Definition 2.8. Let k be a cohomology theory and consider two complete topological algebras
A and B over k∗, with filtrations given by systems of opens {Ar} and {Br}, respectively. The
completed tensor product of A and B over k∗ is then defined as

A ⊗̂k∗ B = lim
r

(A⊗k∗ B)/Jr,

where Jr is the ideal spanned by Ar ⊗k∗ B +A⊗k∗ Br.
If X is space with skeletal filtration {skrX}, then its cohomology k∗(X) can be topologized

using the system of fundamental neighborhoods of 0 given by Fr(X) = ker(k∗(X)→ k∗(skrX)).
In the following, we will always consider this topology when working with completed tensor
products.

Remark 2.9. In particular, note that the completed tensor product of even cohomology groups
is also concentrated in even degrees.

The next result is known as Morava’s little structure theorem; a proof in the generality we
need is given in [Wil99, Proposition 1.9]; see also [Str99].

Proposition 2.10. If X is a space, then

E(m,n)∗(X) ∼= P (m)∗(X) ⊗̂P (m)∗ E(m,n)∗

for all n > m > 0 or for m = 0 and all n > 0, and similarly for the completed theories Ê(m,n).
Moreover, if P (m)∗(X) is Landweber flat, then Ê(m,n)∗(X) is flat over Ê(m,n)∗ for all
n > m > 0.

Proof. The base change formula for both E(m,n) and Ê(m,n) is contained in the aforementioned
references; see for example [Str99, Corollary 8.24]. To show the second part of the claim, observe
that, by [Wil99, Proposition 2.1], the assumption implies that the ideal Im,n acts regularly on

Ê(m,n)∗(X). Then the obvious extension of [HS99b, Theorem A.9] from En to arbitrary Ê(m,n)
gives flatness. 2

Example 2.11. This result does not hold for arbitrary spectra instead of spaces. As a
counterexample, consider the connective Morava K-theory spectrum k(n). While K(n)∗k(n) 6= 0,
it can be shown [RWY98, Remark 4.9] that P (n)∗k(n) = 0; hence the result fails for m = n.

Lemma 2.12. For any spectrum X with P (m)∗(X) Landweber flat and n >m, there is a natural
isomorphism

P (n)∗(X) ∼= P (n)∗ ⊗P (m)∗ P (m)∗(X).
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Proof. We prove this by induction on n > m, the statement for n = m being trivial. Now let
n > m and recall that Proposition 2.4 shows that P (m)∗(X) being Landweber flat implies that

vn : P (n)∗ ⊗P (m)∗ P (m)∗(X) −→ P (n)∗ ⊗P (m)∗ P (m)∗(X)

is injective for all n > m. By construction of P (n+ 1), there is an exact triangle

P (n)∗(X)
ρn // P (n+ 1)∗(X)

vv
P (n)∗(X),

vn

gg
(2.1)

where the dashed arrow is the connecting homomorphism of degree 1. Since P (n)∗(X) ∼=
P (n)∗⊗P (m) P (m)∗(X) by the induction hypothesis, our assumption combined with (2.1) shows
that ρn is surjective and that

P (n+ 1)∗(X) ∼= coker(vn : P (n)∗(X)→ P (n)∗(X))
∼= coker(vn : P (n)∗ ⊗P (m)∗ P (m)∗(X)→ P (n)∗ ⊗P (m)∗ P (m)∗(X))
∼= P (n+ 1)∗ ⊗P (m)∗ P (m)∗(X),

thereby proving the claim. 2

Corollary 2.13. If X is a space with Landweber flat P (m)-cohomology, then

K(n)∗(X) ∼= K(n)∗ ⊗̂P (n)∗ (P (n)∗ ⊗P (m)∗ P (m)∗(X))

for all n > m > 0 or for m = 0 and all n > 0. In particular, under the same assumptions, if
P (m)∗(X) is even, then K(n)∗(X) is even as well.

Proof. Let X be a space such that P (m)∗(X) is Landweber flat. From the previous lemma we
get

P (n)∗(X) ∼= P (n)∗ ⊗P (m)∗ P (m)∗(X) (2.3)

for all n > m. But Proposition 2.10 with m = n shows that

K(n)∗(X) ∼= K(n)∗ ⊗̂P (n)∗ P (n)∗(X),

which together with (2.3) yields the claim. 2

Remark 2.14. In [KY93, equation (1.8)], Kono and Yagita showed that K(n)∗(X) is isomorphic
to K(n)∗ ⊗̂P (m)∗ P (m)∗(X) for a space X with BP∗(X) Landweber flat. We do not know whether

their methods generalize to imply that K(n)∗(X) ∼= K(n)∗ ⊗̂P (m)∗ P (m)∗(X) in the situation of
Corollary 2.13.

3. The splitting and some consequences

In this section, we first prove that P (m) is a retract of an infinite product of E-theories, following
closely the argument given in [Hov95, Theorem 3.1]. Combined with the base change results of
the previous section, this allows us to generalize the main structural results of [RWY98, Wil99]
from spaces to spectra. Since we do not require any analysis of the Atiyah–Hirzebruch spectral
sequence for this, our arguments are rather short in comparison. In § 3.3, we construct an analogue
of Rezk’s algebraic approximation functor TEn for BPp. These functors are then used to prove
a version of Kashiwabara’s main result [Kas01] about the BPp-cohomology of free commutative
algebras. Finally, we give several equivalent characterizations of good groups, thereby showing
that this notion is really a global one.
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3.1 BP as a retract of a product of Morava E-theories
Let I : Sp→ Sp denote Brown–Comenetz duality, which is a lift of Pontryagin duality for abelian
groups to the category of spectra. To be precise, if X is a spectrum, then I represents the functor

X 7→ Hom(π0X,Q/Z(p))

and we set IX = F (X, I). In [Mar83, Proposition 5.2], Margolis proves a non-existence result
for f -phantom maps with target of the form IX; recall that a map Y → X of spectra is said to
be f -phantom if Z −→ Y −→ X is null for all finite spectra Z.

Lemma 3.1 (Margolis). Any f -phantom map with target IX must be null.

The next result is a natural generalization of [Hov95, Theorem 3.1].

Theorem 3.2. Suppose that D is a p-complete Landweber flat P (m)-module spectrum. If there
is a morphism f : P (m) −→ D such that the induced maps

P (m)∗/Im,n // D∗/Im,n

are injective for all n > m, then f is a split inclusion of spectra.

Proof. We will prove the result for m = 0 using the classical Landweber filtration theorem. The
argument in the m > 0 case uses Theorem 2.1, but is easier as P (m) is already p-complete. Let
F be the fiber of the map BPp→ D and let

F ′ = fib(BP −→ D);

we need to check that F −→ BPp is null. Since BP has degreewise finitely generated homotopy
groups, BPp = I2BP . In order to show the claim, it thus suffices by Lemma 3.1 to check that
F −→ BPp is f -phantom. There is a commutative diagram

F ′ //

��

BP //

��

D

'
��

F //

��

BPp //

��

D

��
C1

// C2
// C3

with all rows and columns being cofiber sequences. Since D is p-complete, we get C3 = 0 and
hence that the top row in the diagram

F ′ //

��

F //

��

cof(BP −→ BPp) ' C1

vv
BP // BPp

is a cofiber sequence. If we can show that F ′ −→ BP is f -phantom, then the composite
F ′ −→ BP −→ BPp is also f -phantom, and hence is null by Lemma 3.1, so the indicated
factorization in the right triangle exists. Because cof(BP −→ BPp) is acyclic with respect to the
mod-p Moore spectrum M(p) and BPp is M(p)-local, the dashed map must be null; hence so is
F −→ BPp.
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Therefore, Spanier–Whitehead duality reduces the claim to proving that if X is a finite
spectrum, the induced map

BP∗(X) // D∗(X)

is injective. By the Landweber filtration theorem, the BP∗BP -comodule BP∗(X) admits a finite
filtration by comodules Fi with filtration quotients Fi+1/Fi ∼= BP∗/Ini (up to suspensions). Since
BP∗/Ini −→ D∗/Ini is injective by assumption, Landweber exactness of D and the snake lemma
applied to the commutative diagram

0 // Fi //

��

Fi+1
//

��

BP∗/Ini
//

��

0

0 // Fi ⊗BP∗ D∗ // Fi+1 ⊗BP∗ D∗ // BP∗/Ini ⊗BP∗ D∗ // 0

gives the claim inductively. 2

Remark 3.3. Note that the splitting constructed above is only additive, and is not a map of ring
spectra.

Corollary 3.4. The natural diagonal map

P (m) //
∏
n∈I

Ê(m,n)

is a split inclusion for any infinite set I of integers greater than m. In particular, BPp is a retract
of
∏
n>0En.

Proof. It suffices to check that DI =
∏
n∈I Ê(m,n) satisfies the conditions of Theorem 3.2. The

spectra Ê(m,n) are Landweber exact and K(n)-local, hence p-complete. By Lemma 2.5, DI is
also Landweber flat, and because products of local objects are local, it is also p-complete. Since
the standard maps P (m) −→ Ê(m,n) clearly make

P (m)∗/Im,k // D∗/Im,k =
∏
n∈I

(Ê(m,n)∗/Im,k)

injective for all k > m, the claim follows. 2

Remark 3.5. The infinite product in Corollary 3.4 cannot be replaced by a coproduct. In fact,
every map

f :
∨
n∈I

En // P (m)

is null, for any m > 0. To see this, note that P (m) is HFp-local, while En is HFp-acyclic for all
n because the Morava K-theories are; hence f must be null.

Remark 3.6. Combining [Hov95, Theorem 3.1] with [HS99a, Theorem B] yields a splitting similar
to Corollary 3.4: the map

BPp
� � //

∏
n>0

LK(n)

 ∨
r∈S(n)

ΣrLK(n)E(n)

 (3.1)
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is a split inclusion, where the S(n) are explicit indexing sets of even integers. The spectrum
on the right-hand side is, however, much bigger than

∏
n>0En and less convenient for taking

cohomology due to the infinite wedge. In some sense, our splitting is as small as possible when
using these techniques, but structural properties of BPp could also be deduced from the spectrum
in (3.1).

Furthermore, since MU splits p-locally into a wedge of even suspensions of BP , there are
similar results for MU (p).

3.2 Brown–Peterson cohomology and Morava K-theory
In this section, we draw some inferences from Corollary 3.4 on the kind of information that the
Morava K-theories detect about the P (m)-cohomology of spectra. These results generalize the
main structural theorems of [RWY98] from spaces to spectra.

Remark 3.7. While the authors remark in [RWY98, p. 2] that their results are strictly unstable,
their counterexample refers to Example 2.11 and hence only affects Proposition 2.10, which is
not needed in our approach.

We start with a lemma that allows us to pass between ordinary and p-complete Brown–
Peterson cohomology.

Lemma 3.8. Suppose that X is a spectrum of finite type which is bounded below and such that
either:

(i) X is a suspension spectrum which is rationally equivalent to S0; or

(ii) X is a spectrum which is rationally acyclic;

then BP∗(X) is even and Landweber flat if and only if BP∗p (X) is.

Proof. Since BP is connective, BPp is the Bousfield localization of BP with respect to the mod-p
Moore spectrum M(p), and we get a fiber sequence

CM(p)BP // BP // LM(p)BP ' BPp, (3.2)

where CM(p)BP is rational and concentrated in odd degrees. On the one hand, if X is a rationally
acyclic spectrum, then CM(p)BP∗(X) = 0. On the other hand, if X is a space that is rationally
equivalent to the sphere, then CM(p)BP∗(X) ∼= CM(p)BP∗(S0) is concentrated in odd degrees.
Moreover, the connecting homomorphism δ fitting in the commutative diagram

BP∗p (X)
δ //

����

CM(p)BP ∗+1(X)

∼=
��

BP∗p (S0) // // CM(p)BP ∗+1(S0)

is surjective. Therefore, in either case the long exact sequence associated to (3.2) yields
isomorphisms

BP odd(X)
∼= // BP odd

p (X)

and a short exact sequence

0 // BP even(X) // BP even
p (X) // CM(p)BP odd(X) // 0.
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This implies the claim about evenness. To see that BP∗(X) is Landweber flat if and only
if BP∗p(X) is Landweber flat, note that the finite type condition together with the Atiyah–
Hirzebruch spectral sequence show that BP∗(X) is finitely generated in each degree. By [Bou79,
Proposition 2.5], we thus get an isomorphism

BP∗(X)⊗ Zp
∼= // BP∗p (X),

so the claim follows from Proposition 2.4 by using flatness of Zp and naturality. 2

In particular, this applies to finite spectra of type at least 1 and classifying spaces of finite
groups. It will be used implicitly from now on, so whenever the assumptions are satisfied, BP
refers to the p-complete Brown–Peterson spectrum BPp. The following theorem was proven for
spaces in [RWY98, Theorems 1.8 and 1.9].

Theorem 3.9. Let X be a spectrum. If K(n)∗(X) is even for infinitely many n, then P (m)∗(X)
is even and Landweber flat for all m. In particular, (2.1) gives short exact sequences

0 // P (m)∗(X)
vm // P (m)∗(X) // P (m+ 1)∗(X) // 0.

Proof. Let I be the infinite set of natural numbers n such that K(n)∗(X) is even and n > m.
By Lemma 2.7, the assumption implies that Ê(m,n)∗(X) is even and flat over Ê(m,n)∗. Since
the P (m)∗-module Ê(m,n)∗ is Landweber flat, so is Ê(m,n)∗(X) for all n ∈ I. It follows from
Lemma 2.5 that

∏
n∈I Ê(m,n)∗(X) is Landweber flat as well. Since Landweber flat modules are

clearly closed under retracts, the claim now follows from Corollary 3.4. 2

Remark 3.10. More generally, the same proof shows that any spectrum X with K(n)∗(X)
concentrated in degrees divisible by a fixed integer d for infinitely many n has P (m)∗X also
concentrated in degrees divisible by d for all m. Similar observations apply to the next corollary;
this should be compared to [Min02].

As an immediate consequence, we recover [RWY98, Theorem 1.2], which complements
Theorem 3.9 for spaces. By Example 2.11, this result does not generalize to arbitrary spectra.

Corollary 3.11. If X is a space with K(n)∗(X) even for infinitely many n, then K(m)∗(X) is
even for all m > 0.

Proof. By Theorem 3.9 with m = 0, P (0)∗(X) is even, and hence so is K(m)∗(X) for all m > 0
by Corollary 2.13. 2

Example 3.12. The spectrum ΣHQ has trivial Morava K-theory for all heights n > 0,
but K(0)1ΣHQ 6= 0. For a more interesting example, let X = K(Z, 3); then the rational
cohomology K(0)∗(X) ∼= Q[x]/x2 with x in degree 3, but K(n)∗(X) is even and non-trivial
for all n > 2 by [RW80]. Therefore, the conclusion of the corollary cannot be extended to m = 0.

Corollary 3.13. If X is a space such that P (m)∗(X) is even for some m > 0, then K(n)∗(X)
is even for all n > 0.

Proof. If P (m)∗(X) is even, then it is also Landweber flat as the connecting homomorphism in
(2.1) must be zero for degree reasons. Therefore, Corollary 2.13 shows that K(n)∗(X) is even
for all n > m+ 1, so Corollary 3.11 applies. 2
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We will need the following lemma about maps of complete modules; a proof in the case of
m = n can be found in Hovey’s unpublished notes [Hov04b] or [BF15], and it requires only minor
modifications for the general case.

Lemma 3.14. Suppose that M and N are flat Ê(m,n)∗-modules which are complete with respect
to the maximal ideal Im,n of Ê(m,n)∗. A map f : M −→ N is injective or surjective if and only
if f ⊗Ê(m,n)∗ K(n)∗ is injective or surjective, respectively.

The next theorem generalizes [RWY98, Theorems 1.17 and 1.18] to all spectra.

Theorem 3.15. Let f : X −→ Y be a map of spectra such that both K(n)∗(X) and K(n)∗(Y )
are even for n ∈ I with I ⊂ N infinite.

(i) If f∗ : K(n)∗(Y ) −→ K(n)∗(X) is injective (surjective) for all n ∈ I, then so is

f∗ : P (m)∗(Y ) −→ P (m)∗(X)

for all m.

(ii) Suppose that g : Y −→ Z is another map with K(n)∗(Z) even for all n ∈ I and such that
g ◦ f ' 0. If

K(n)∗(Z)
g∗ // K(n)∗(Y )

f∗ // K(n)∗(X) // 0

is an exact sequence for all n ∈ I, then so is

P (m)∗(Z)
g∗ // P (m)∗(Y )

f∗ // P (m)∗(X) // 0

for all m > 0.

Proof. Fix some integer m > 0. We will prove the surjectivity statement; the argument for
injectivity is analogous. By assumption and Lemma 2.7, there is a commutative diagram

K(n)∗(Y )
K(n)∗f //

∼=
��

K(n)∗(X)

∼=
��

Ê(m,n)∗(Y )⊗Ê(m,n)∗ K(n)∗
f∗⊗Ê(m,n)∗K(n)∗

// Ê(m,n)∗(X)⊗Ê(m,n)∗ K(n)∗.

Since K(n)∗f is surjective, Lemma 3.14 implies that Ê(m,n)∗f is surjective for n ∈ I as well.
Products in the category of modules are exact, so the bottom map in the commutative square
is also surjective:

P (m)∗(Y )
f∗ //

��

P (m)∗(X)

��∏
n∈I Ê(m,n)∗(Y )

f∗
// //
∏
n∈I Ê(m,n)∗(X).

Retracts of surjective maps are surjective, hence Corollary 3.4 yields the claim.
Assertion (ii) follows formally from (i) as in the proof of [RWY98, Theorem 1.18]. 2
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3.3 Applications to the cohomology of free commutative algebras
In [Kas98, Kas01], Kashiwabara studied the question of when and how BP∗p (Ω∞X) is determined
by BP∗p (X) for X a space or spectrum. In particular, he considered two variants K′0BP and
M′BP of the category of augmented unstable BP -cohomology algebras and the category of stable
BPp-cohomology algebras, respectively, and showed that there is a left adjoint

D :M′BP
// K′

0BP : Ioo

to the augmention ideal functor I. This adjunction should be thought of as being analogous
to the adjunction (Σ∞ a Ω∞) between spaces and spectra. Kashiwabara then showed in
[Kas01, Theorem 0.11] that if X is a space, BP∗p (QX) inherits Landweber flatness from
BP∗p (X). Furthermore, if X is a connected space satisfying certain conditions, there is a natural
isomorphism

DBP∗p (X)
∼= // BP∗p (QX);

see [Kas01, Theorem 0.12].
In this section, we will prove some extensions and variants of Kashiwabara’s results. To this

end, recall that if X is a connected space, the Snaith splitting provides an equivalence

Σ∞QX ' PΣ∞+ X,

where PY denotes the free commutative algebra on a spectrum Y . Thus our results, which are
formulated in terms of P, are readily translated and compared to Kashiwabara’s.

Fix a height n and recall the completed algebraic approximation functor of [Rez09, BF15]:
this is an endofunctor TEn on the category of complete E∗n-modules together with a natural
comparison map

αn(M) : TEnπ∗LK(n)M −→ π∗LK(n)PEnM,

where M is an En-module and PEn denotes the free commutative En-algebra functor. By
[Rez09, Proposition 4.9], αn(M) is an isomorphism whenever M∗ is flat over E∗n. By [BF15,
Propositions 3.9 and A.15], TEn preserves the category of flat E∗n-modules, and it also preserves
evenness; see [Rez12, 3.2(7)]. Moreover, there is natural decomposition of functors

TEn ∼=
∨
d>0

TEn
d ,

corresponding to the analogous decomposition of PEn .
We are now in a position to prove a generalization of [Kas01, Theorem 0.11] to spectra.

Note, however, that Kashiwabara assumes that BP∗p (X) is Landweber flat (without evenness)
to deduce that BP∗p (PX) is also Landweber flat, so our result is only a partial generalization.

Proposition 3.16. If X is a spectrum with even Morava K-theory for infinitely many n, then
BP∗p (PX) is even and Landweber flat.

Proof. Let n > 0 be such that K(n)∗(X) is even. Recall that the completed E-homology of X
is defined as E∨n,∗(X) = π∗LK(n)(En ∧ X). The assumption on X implies that E∨n,∗(X) is flat
and even by the homological version of Lemma 2.7 (see [HS99b, Proposition 8.4(f)]), and so the
previous discussion gives an isomorphism

αn(En ∧X) : TEnE∨n,∗(X)
∼= // E∨n,∗(PX)
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of flat and evenly concentrated E∗n-modules, using the equivalence En ∧ PX ' PEn(En ∧ X).
It follows from Lemma 2.7 that K(n)∗(PX) is even as well, so Theorem 3.9 finishes the proof. 2

Denote by

ε :
∏
n>0

En→
∏
n>0

En

the idempotent given by Corollary 3.4; note that ε is not necessarily unique, but we will fix a
particular one throughout this section.

Definition 3.17. The BP -based algebraic approximation functor TBP
d of degree d > 0 is

constructed as the functor

TBP
d := ε

∏
n>0

TEn
d (E∗n ⊗̂BP∗p −) : ModcBP∗p

−→ ModBP∗p

on the category of BP∗p -modules equipped with a complete topology as in Definition 2.8. We

then define the total algebraic approximation functor as TBP =
∏
d>0 TBP

d .

This allows us to prove an analogue of Kashiwabara’s result [Kas01, Theorem 0.12] exhibiting
a class of spaces X for which the BP∗p -cohomology of PX is functorially determined by the
topological module BP∗p (X).

Theorem 3.18. Let X be a space with K(n)∗(X) even and degreewise finite for infinitely many
n; then there exists a natural isomorphism

TBPBP∗p (X)
∼= // BP∗p (PX)

of BP∗p -modules.

Proof. Let S be the set of natural numbers n such that K(n)∗(X) is even and degreewise finite.
The free commutative algebra functor decomposes into its degree-d constituents,

P(−) '
∨
d>0

Pd(−) '
∨
d>0

(−)∧dhΣd
,

so we obtain a natural commutative diagram

BP∗p (PX)
∼= //

��

∏
d BP∗p (PdX)

��∏
n∈S E

∗
n(PX) ∼=

//
∏
d

∏
n∈S E

∗
n(PdX)

for any spectrum X. Since TBP is compatible with this decomposition, we can reduce to a fixed
degree d > 0.

There are natural isomorphisms

TBP
d BP∗p (X) = ε

∏
n∈S

TEn
d (E∗n ⊗̂BP∗p BP∗p (X))

∼= ε
∏
n∈S

TEn
d (E∗n(X)) by Proposition 2.10
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∼= ε
∏
n∈S

TEn
d π∗E

X
n

∼= ε
∏
n∈S

π∗LK(n)PEn
d EXn via

∏
n∈S

αn(EXn ),

so it is enough to understand π∗LK(n)PEn
d EXn in terms of E∗n(PdX). By [HS99b, Theorem 8.6],

a spectrum X has degreewise finite K(n)∗(X) if and only if X is dualizable in the K(n)-local
category; we write DK(n) for K(n)-local duality. Therefore, we obtain

π∗LK(n)PEn
d EXn

∼= π∗LK(n)PEn
d (En ∧DK(n)X)

∼= π∗LK(n)(En ∧ PdDK(n)X)
∼= π∗LK(n)(En ∧DK(n)PdX)

∼= π∗LK(n)E
PdX
n

∼= E∗n(PdX).

Here, the third isomorphism uses the fact [GS96] that homotopy orbits agree with homotopy

fixed points with respect to a finite group G in the K(n)-local category, i.e. YhG
'−→ Y hG K(n)-

locally. Moreover, the fourth isomorphism can be understood as follows: because X is dualizable,
K(n)∗(X) is degreewise finite, and hence so is K(n)∗(PdX) as K(n)∗(BΣd) is degreewise finite;
using [HS99b, Theorem 8.6] again, we see that PdX is also K(n)-locally dualizable, giving the
fourth isomorphism above.

Putting the pieces together, we obtain

TBP
d BP∗p (X) ∼= ε

∏
n∈S

π∗LK(n)PEn
d EXn

∼= ε
∏
n∈S

E∗n(PdX)

∼= BP∗p (PdX),

hence the claim. 2

Note that having degreewise finite Morava K-theory is less restrictive than one might think.
For example, all finite CW complexes satisfy this condition. For a different class of examples that
includes classifying spaces of finite groups and Eilenberg–MacLane spaces K(Z/p, l), recall that
a π-finite space is a space with only finitely many non-zero homotopy groups which are all finite.
By [HS99b, Corollary 8.8], π-finite spaces are K(n)-locally dualizable and hence have degreewise
finite Morava K-theory as well. Finite CW complexes with even cells and many π-finite spaces
satisfy the evenness condition as well.

We should, however, mention that we do not know the precise relation between our condition
and Kashiwabara’s assumption of well-generated BPp-cohomology. In fact, Kashiwabara’s result
is somewhat sharper, in that his functor D is computable in an entirely algebraic fashion, as
demonstrated in [Kas01].

Remark 3.19. The hypotheses in Theorem 3.18 can be weakened if one is willing to work with
a version of TBP that incorporates a continuous dual. To be more precise, Hovey [Hov04a,
Theorem 5.1] showed that for spectra X with flat completed En-homology E∨∗,n(X), there is a
natural isomorphism

E∗n(X)
∼= // HomE∗n(E∨n,∗(X), E∗n).
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Passing from cohomology to homology is more subtle, however, and requires that we take into

account the topology on E∗n(X) coming from the skeletal filtration on a CW spectrum X. In

[Str, § 7], Strickland proved that

E∨n,∗(X)
∼= // Homc

E∗n
(E∗n(X), E∗n)

when X is a CW spectrum with free E∗(X), where Homc denotes the module of continuous

homomorphisms. Together, these two isomorphisms can be used to translate the statement

into one about completed homology, to which the algebraic approximation functor TEn applies

directly.

We end this section by giving a different criterion for when P (m)∗(X) is even and Landweber

flat. Let Φn : Top −→ Sp be the Bousfield–Kuhn functor, which was constructed in [Bou87] for

n = 1 and in [Kuh89] for arbitrary n by using the periodicity theorem [DHS88, HS98]. This

functor gives a factorization

LK(n)X ' ΦnΩ∞X

for any spectrum X; in fact, this can be improved so as to factor the telescopic localization in an

analogous way, but we will not need this here. For X ∈ Sp, Kuhn [Kuh06] used Φn to produce

a (weak) map

sn(X) : LK(n)PX −→ LK(n)Σ
∞
+ Ω∞X

which induces a natural monomorphism

sn(X)∗ : K(n)∗(PX) −→ K(n)∗(Ω
∞X).

As an easy consequence, we get the following result.

Proposition 3.20. Let X be a spectrum such that K(n)∗Ω
∞X is even for infinitely many n;

then P (m)∗(PX) is even and Landweber flat for all m.

Proof. By assumption, Kuhn’s map sn(X)∗ shows that K(n)∗(PX) is even, so Theorem 3.9

applies. 2

3.4 Equivalent characterizations of good groups

Now let G be a finite group. For the purposes of this paper, a group G is said to be good

if the Morava K-theories K(n)∗(BG) are even for all n > 0. Note that this notion of good is

a priori weaker than the one given in [HKR00], but is conjectured to be equivalent. The following

definition first appeared in [SY01] for m = 0.

Definition 3.21. A finite group G is said to be P (m)-good if the P (m)-cohomology of its

classifying space BG is concentrated in even degrees and Landweber flat.

Note that it follows from Lemma 3.8 that a group is P (0)-good if and only if BP∗(BG) is

even and Landweber flat. We now see that the various notions of good groups coincide, thereby

revealing the global nature of goodness for finite groups.
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Proposition 3.22. For a finite group G, the following conditions are equivalent:

(i) G is good;

(ii) K(n)∗(BG) is even for infinitely many n > 0;

(iii) G is BPp-good;

(iv) G is P (m)-good for some m > 0.

Proof. The implications (1) =⇒ (2) and (3) =⇒ (4) are trivial. Theorem 3.9 gives (2) =⇒ (3),
while (4) =⇒ (1) follows from Corollary 3.13. 2

This result generalizes work of Kono and Yagita in [KY93] for finite groups.

4. Bounded torsion results for the Morava E-cohomology of finite groups

In this section we study the rationalization of the BP -cohomology of certain finite groups by
working with the rationalization of the split inclusion of Corollary 3.4:

Q⊗ BP∗p (X) −→ Q⊗
∏
n

E∗n(X).

There is a close analogy to number theory. The right-hand side is a kind of p-local adeles in the
stable homotopy category. Just as in number theory, we use these p-local adeles to study more
global phenomena (the left-hand side). The purpose of this section is to produce a factorization
of Q ⊗ BP∗p (X) when X = BA or X = BΣm by lifting a factorization of Q ⊗

∏
nE
∗
n(X). For

instance, in the case where X = BA, we factor Q⊗
∏
nE
∗
n(BA) by proving that the cokernel of

the canonical map ∏
n

E∗n(BA) −→
∏
n

∏
H⊆A

E∗n(BH)/I

has bounded torsion, where I is the image of a transfer map. In this section, we will always
work with the p-complete version of the Brown–Peterson spectrum; for simplicity we shall write
BP = BPp for this spectrum.

4.1 Cyclic groups and Σp: a toy case
In this subsection we present some elementary observations that provide evidence for general
bounded torsion results. Therefore, this subsection works backwards from the subsections that
follow it. It uses BP -cohomology to give bounded torsion results for Morava E-theory.

Recall that, after choosing a coordinate, there is an isomorphism

BP∗(BZ/pk) ∼= BP∗[[x]]/[pk](x), (4.1)

where [pk](x) is the pk-series for the formal group law associated to BP .
For any formal group law, it is standard to set

〈pk〉(x) = [pk](x)/[pk−1](x) = 〈p〉([pk−1](x))

so that
BP∗(BZ/pk)/I ∼= BP∗[[x]]/〈pk〉(x),

where I ⊂ BP∗(BZ/pk) is the image of the transfer along Z/pk−1 ⊂ Z/pk. This fact is a
consequence of Quillen’s result in [Qui71, Proposition 4.2]. There is a canonical map

BP∗(BZ/pk) −→
∏

06j6k

BP∗(BZ/pj)/I

given by sending 1 to (1, . . . , 1) and x to (0, x, x, . . . , x).
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The following proposition is well known.

Proposition 4.1. There is an isomorphism

Q⊗ BP∗(BZ/pk)
∼=−→ Q⊗

∏
06j6k

BP∗(BZ/pj)/I.

Proof. For any formal group law there is a factorization

[pk](x) =
∏

06j6k

〈pj〉(x).

We will show that the factors are coprime in the rationalization; the Chinese remainder theorem
will then imply the claim. We may write 〈p〉(x) = p + f(x) for some power series f(x) with
x|f(x). This implies that

[pj ](x) = [pj−1](x)(p+ f([pj−1](x)))

and hence
〈pj〉(x) = p+ f([pj−1](x)). (4.2)

But now if t < j, we have 〈pt〉(x)|[pj−1](x) by definition, so that

〈pt〉(x)|f([pj−1](x)),

and using (4.2) then gives

p = 〈pj〉(x)− 〈pt〉(x)
f([pj−1](x))

〈pt〉(x)
. 2

The Morava E-cohomology of BZ/pk satisfies an isomorphism as in (4.1). Let GEn be the
formal group associated to En. Given a coordinate x on GEn , there is an isomorphism

E∗n(BZ/pk) ∼= E∗n[[x]]/[pk](x),

where [pk](x) is the pk-series for the formal group law x +GEn
y induced by the coordinate.

It is worth noting that the Weierstrass preparation theorem implies that this ring is a free
E∗n-module of rank pkn. This is very different from BP∗(BZ/pk), which is infinitely generated as
a BP∗-module.

Corollary 4.2. There is an isomorphism

Q⊗
∏
n>0

E∗n(BZ/pk)
∼=−→ Q⊗

∏
n>0

∏
06j6k

E∗n[[x]]/〈pj〉(x).

Proof. We will prove the easiest case for clarity. Fix a height n and let k = 1; then with a
coordinate this is the map

E∗n[[x]]/[p](x) −→ E∗n × E∗n[[x]]/〈p〉(x)

sending x 7→ (0, x) and where [p](x) now indicates the p-series for the formal group law associated
to En. We may write down a basis for each side. For the left-hand side we have the basis
{1, x, . . . , xpn−1}, and for the right-hand side we can take the basis

{(1, 1), (0, 1), (0, x), . . . , (0, xp
n−2)}.
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It is clear that the basis elements {(1, 1), (0, x), . . . , (0, xp
n−2)} are hit under this map. Dividing

by a power of p is required to hit the basis element (0, 1). But BP provides a global element that
hits (0, 1) at each height n. It is the element (using the notation of the proof of the previous
proposition)

−f(x)/p.

Thus we see that we only need to divide by p once in order to establish an isomorphism for all
n. For k > 1 the proof is similar, but we need to divide by pk. For instance, when k = 2,

−f([p](x)) 7→ (0, 0, p),

−f(x) 7→ (0, p, g(x)),

where g(x) is some polynomial. This implies that

−f(x)

p
+
f([p](x))g(x)

p2
7→ (0, 1, 0).

Finally, we see that the cokernel of the map∏
n>0

E∗n(BZ/pk) −→
∏
n>0

∏
06j6k

E∗n[[x]]/〈pj〉(x)

is all pk-torsion independently of the height. Thus the map is a rational isomorphism. 2

To prove a similar result for Σp, we need to recall a few basic facts regarding E∗n(BΣp). Let
I ⊂ E∗n(BΣp) be the image of the transfer along e ⊂ Σp. For each n ∈ N, the natural map

E∗n(BΣp) −→ E∗n × E∗n(BΣp)/I

is injective and induces an isomorphism

Q⊗ E∗n(BΣp)
∼=−→ Q⊗ (E∗n × E∗n(BΣp)/I).

Injectivity can be seen by considering Rezk’s pullback square [Rez09, Proposition 10.5]

E∗n(BΣp) //

��

E∗n(BΣp)/I

��
E∗n // E∗n/p

and the isomorphism follows by applying Q⊗− to the pullback square above using the fact that
Q is a flat Z-module.

By considering the homotopy pullback of Be ⊂ BΣp along BZ/p→ BΣp (the key point is
that |Σp/(Z/p)| is coprime to p), one can see that there is a canonical map

E∗n(BΣp)/I → E∗n(BZ/p)/I.

Lemma 4.3. There is an isomorphism

Q⊗
∏
n

E∗n(BΣp)
∼=−→ Q⊗

∏
n

E∗n × E∗n(BΣp)/I,

where I is the ideal generated by the transfer from the trivial group.
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Proof. Let CokEn(Σp) be the cokernel

0 // E∗n(BΣp) // E∗n × E∗n(BΣp)/I // CokEn(Σp) // 0.

We will show that CokEn(Σp) is all p-torsion with exponent 1, i.e. that it is annihilated by
multiplication by p.

There is a stable splitting
Σ∞+ BZ/p ' Σ∞+ BΣp × Y

where Y is some spectrum. Applying E-theory to this yields a commutative diagram

E∗n(BΣp)
� � //

� _

i
��

E∗n × E∗n(BΣp)/I // //
� _

��

CokEn(Σp)

��
E∗nBZ/p �

� // E∗n × E∗n(BZ/p)/I // // CokEn(Z/p)

in which the first vertical map i is split injective (by the stable splitting above). Since E∗nBZ/p is
free, the cokernel of i is projective and hence p-torsion free. Since Q⊗CokEn(Σp) = 0, the kernel
of the map CokEn(Σp)→ CokEn(Z/p) must be torsion. Therefore the snake lemma implies that
the kernel of the right vertical map CokEn(Σp)→ CokEn(Z/p) must be a torsion subgroup of a
torsion-free module and hence is zero. Thus CokEn(Σp) is a subgroup of CokEn(Z/p). The claim
now follows from Corollary 4.2. 2

4.2 Commutative algebra
In this subsection we prove some basic facts about integer torsion in modules.

The following lemma is part of a well-known collection of facts that go under the title ‘fracture
squares’.

Lemma 4.4. Let R = LK(t)E
0
n
∼= W (κ)[[u1, . . . , un−1]][u−1

t ]∧It for t > 0 and let S be a subset of
R− (p); then there is a pullback square of commutative rings

R //

��

(S−1R)∧p

��
Q⊗R // Q⊗ (S−1R)∧p .

Moreover, for any finitely generated free R-module M there is a similar square given by tensoring
the pullback square with M .

Proof. The square in the proposition is the composite of two squares:

R //

��

S−1R //

��

(S−1R)∧p

��
Q⊗R // Q⊗ S−1R // Q⊗ (S−1R)∧p .

The right-hand square is an ‘arithmetic square’. It is a pullback square by applying [DG02, 4.12
and 4.13]. In [DG02] it is shown that the derived functors of localization and completion fit
into a homotopy pullback square. The result we want is recovered by noticing that S−1R is free
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as an S−1R-module so that H0(S−1R) = S−1R, and that the derived completion and ordinary
completion agree because S−1R is Noetherian.

The left-hand square is a pullback by direct computation. Let r/sk ∈ S−1R and r′/pl ∈ Q⊗R
such that

r

sk
=
r′

pl
∈ Q⊗ S−1R

where r, r′ ∈ R. Thus skr′ = plr and

r 7→ skr′

pl
∈ Q⊗R.

But this implies that skr′/pl ∈ R, since the map is an inclusion. Since R is an integral domain
and s is, by definition, not in the ideal generated by p, we have

pl|r′ ∈ R.

Now r′/pl is the pullback. 2

Lemma 4.5. Let M
f−→ N be an injective map of finitely generated free R-modules. If x ∈ N

has the property that plx ∈ im f and skx ∈ im f for s ∈ S, then x ∈ im f .

Proof. It suffices to set k = l = 1. We will use Lemma 4.4. There are m1,m2 ∈ M such that
m1/s ∈ S−1M∧p maps to x and m2/p ∈ p−1M maps to x. Now consider the commutative cube

M

f

{{

��

// S−1M∧p

vv

��

N

��

// S−1N∧p

��

p−1M

{{

// p−1(S−1M∧p )

vv
p−1N // p−1(S−1N∧p ).

The front and back faces are pullback squares. The elements m1/s and m2/p must agree in
p−1(S−1M∧p ), and thus there is an element m ∈M that maps to both of these. By commutativity
we must have f(m) = x. 2

By the torsion of an R-module M we will always mean the set of elements x ∈M such that
nx = 0 for some non-zero n ∈ N.

Definition 4.6. For an abelian group M let e(M) be the exponent of the torsion in M . That
is, let K be the kernel of M −→ Q⊗M , and then e(M) is the minimum number n ∈ N ∪ {∞}
such that nK = 0.

Proposition 4.7. Let R be a Noetherian ring and M a finitely generated R-module. Then the
torsion in M is bounded.
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Proof. Let K be the kernel

0 −→ K −→M −→ Q⊗M = (Q⊗R)⊗RM.

The R-module K is finitely generated since R is Noetherian and M is finitely generated. Choose
generators k1, . . . , km of K; then there exists an n such that nki = 0 for all i. Now any element
of K is of the form

∑
riki, and this is also killed by n. 2

Proposition 4.8. Let R be a torsion-free Noetherian ring. Let f : N ↪→ M be an injection of
finitely generated free R-modules and let ∆ : M ↪→M ×M be the diagonal. Then e(Cok(f)) =
e(Cok(∆f)).

Proof. Consider the map of short exact sequences

N
f //

=

��

M //

∆
��

Cok(f)

g

��
N //M ×M // Cok(∆f).

The diagonal ∆ is a section of the projection onto a factor and the left vertical arrow is an
equality, so g is an injection. Thus there is an induced map Cok(∆f)

r−→ Cok(f) such that
rg = 1. Since integer torsion is sent to integer torsion, this implies that the map induced by g on
integer torsion is a split injection. It is an isomorphism since a torsion element must be of the
form (m,m) ∈M ×M with (nm, nm) ∈ ∆fN , and so the kernel of r is trivial. 2

Proposition 4.9. Let R be Noetherian and torsion free. For a flat R-algebra T and a finitely
generated R-module M , e(M) > e(T ⊗R M). If T is a faithfully flat R-algebra, then equality
holds, i.e. e(M) = e(T ⊗RM).

Proof. Assume that e(M) = n and let [n] : M −→M be the multiplication-by-n map. Consider
the exact sequence

0 −→ K −→M
[n]
−→ im[n] −→ 0,

where K is the torsion in M . Base change to T gives a short exact sequence and T ⊗R im[n] is
necessarily torsion free; thus

e(T ⊗R K) = e(T ⊗RM) 6 n.

If T is faithfully flat, then K −→ T ⊗R K is injective [Lam99, 4.74 and 4.83], so e(T ⊗RM) =
e(M). 2

Corollary 4.10. Let R be as in Lemma 4.4, let T be a faithfully flat (S−1R)∧p -algebra, and let

M
f−→ N be a map of finitely generated free R-modules; then

e(N/im f) = e(T ⊗R (N/im f)).

Proof. By Lemma 4.5, the torsion in N/im f is contained in the torsion of (S−1R)∧p ⊗R N/im f ,
so

e(N/im f) 6 e((S−1R)∧p ⊗R N/im f).

Also, (S−1R)∧p is a flat extension of R, and this gives the reverse inequality. Since T is faithfully
flat, base change to T is injective. Thus we have have equalities

e(N/im f) = e((S−1R)∧p ⊗R N/im f) = e(T ⊗R (N/im f))

by Proposition 4.9. 2
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4.3 A few hand-crafted cohomology theories
In order to prove the bounded torsion results for E-theory we make use of several En-algebras. In
this section we construct the En-algebras that we need and prove or recall some basic properties
of them. We rely heavily on ideas from [BS16].

Let L1 = LK(1)En (it does depend on n) and recall from [Hov97, Corollary 1.5.5] that

π0L1 = W (κ)[[u1, . . . , un−1]][u−1
1 ]∧p .

This is a flat E0
n-algebra. Recall that we may localize an E∞-ring spectrum R at a prime ideal

p ⊆ π0R by inverting every element in π0R − p; we write Rp for the localized ring spectrum.
Define

F1 = LK(1)((En)(p))

by inverting all of the elements away from p = (p) and then K(1)-localizing the resulting
spectrum. Note that this inverts u1, . . . , un−1. The ring spectrum F1 is an even-periodic
Landweber-exact E∞-ring such that

π0F1 = F 0
1 = ((E0

n)(p))
∧
p .

Since F1 is K(1)-local, there is a canonical map

L1 −→ F1

inducing the obvious map on coefficients. This suggests another construction of F1. It is clear
that

((L1)(p))
∧
p

∼=−→ F1,

by considering the quotient of this ring by powers of p. This allows Corollary 4.10 to be used
with (R,S) = (E∗n, E

∗
n − (p)) or (R,S) = (L∗1, L

∗
1 − (p)).

Now let G be a finite group.

Proposition 4.11. The canonical map

F1 ∧L1 L
BG
1

'−→ FBG1

is an equivalence that is natural in G.

Proof. The proof follows the proof of Proposition 6.2 in [BS16]. It is clear that the map is natural.
To prove that it is an equivalence, the main idea is to note that the smash product on the left
is K(1)-local and then use the K(1)-local self-duality of classifying spaces of finite groups. 2

Following ideas in [BS16] based on work of Hopkins in [Hop], we further define

F̄1 = LK(1)(F1 ∧Kp),

where Kp is p-adic K-theory. We do not have much control over the coefficients of this ring
spectrum. However, following [BS16, Proposition 5.8], F̄1 does have a very desirable property as
follows.

Proposition 4.12. The ring of coefficients of F̄1 is faithfully flat as a K∗p -module and as an
F ∗1 -module.
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Proof. This follows from the proof of Proposition 5.8 in [BS16], which relies on the important (and

somewhat surprising) Proposition 3.13 that extends an argument of Hovey’s in [Hov04b]. Both

module structures are faithfully flat because K∗p and F ∗1 are both complete local Noetherian. 2

Proposition 4.13. For a finite group G, there are natural equivalences

F̄1 ∧F1 F
BG
1

'−→ F̄BG1
'
←− F̄1 ∧Kp K

BG
p .

Proof. This also follows the proof of Proposition 6.2 in [BS16], using Proposition 4.12 above. 2

Now let H ⊂ G so that we have a transfer map EBH
Tr−→ EBG for any cohomology theory E.

Proposition 4.14. Let E and F be E∞-rings and let F be an E-algebra. There is a commutative

square

F ∧E EBH //

F∧ETr
��

FBH

Tr
��

F ∧E EBG // FBG.

Proof. The map of E∞-rings E −→ F and the transfer map Σ∞+ BH −→ Σ∞+ BG induce a

commutative square of function spectra

EBH //

Tr
��

FBH

Tr
��

EBG // FBG

and we can now base change the left-hand side to F over E. 2

Let E be any cohomology theory, let H1, . . . ,Hm ⊂ G, and let I ⊂ E∗(BG) be the ideal

generated by the image of the transfers E∗(BH i)
Tr−→ E∗(BG). This is the image of the map⊕

i

E∗(BH i)
⊕Tr−→ E∗(BG).

Proposition 4.15. Let E = Kp, L1, F1 or F̄1, let H1, . . . ,Hm ⊂ G, and let I ⊂ E∗(BG) be the

associated transfer ideal. There are isomorphisms

F ∗1 ⊗L∗1 L
∗
1(BG)/I

∼=−→ F ∗1 (BG)/I

and

F̄ ∗1 ⊗F ∗1 F
∗
1 (BG)/I

∼=−→ F̄ ∗1 (BG)/I
∼=
←− F̄ ∗1 ⊗K∗p K

∗
p(BG)/I.

Proof. The first isomorphism follows from the previous proposition and Proposition 4.11, and

the second isomorphism follows from the previous proposition and Proposition 4.13. 2
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In the next section we will make use of character theory for Morava E-theory. This will involve

two more En-algebras. The first was introduced in [HKR00] and the second was introduced

in [Sta13].

Let Λk,n = (Z/pk)n. The En-algebra C0 is constructed in [HKR00, § 6.2]. It is a p−1En-algebra

and may be constructed as an En-algebra as a localization of the colimit

colim
k

E
BΛk,n
n .

The commutative ring C∗0 is faithfully flat as a Q ⊗ E∗n-algebra. The point of the construction

(and this is [HKR00, Theorem C]) is that for any finite group G, there is a canonical equivalence

C0 ∧En E
BG
n

∼−→ C0 ∧p−1En
(p−1En)L

nBG,

where L(−) = hom(BZp,−) is the p-adic free loop space functor. Since p−1En is rational and

C∗0 is faithfully flat as a p−1E∗n-algebra, the target is equivalent to∏
π0LnBG

C0.

The En-algebra C1 is constructed (as a commutative ring) in [Sta13] and as an En-algebra

in [BS16]. It is a K(1)-local L1-algebra which is given as the p-completion of a localization of

the colimit

colim
k

L1 ∧En E
BΛk,n−1
n .

The point of the construction (and this is a special case of the main theorem of [Sta13]) is that

there is an equivalence

C1 ∧En E
BG
n

∼−→ C1 ∧L1 L
Ln−1BG
1 .

Since C∗1 is flat as an E∗n-algebra and faithfully flat as an L∗1-algebra, applying π∗ to this

equivalence gives the isomorphism

C∗1 ⊗E∗n E
∗
n(BG)

∼=−→ C∗1 ⊗L∗1 L
∗
1(Ln−1BG). (4.3)

The iterated p-adic free loop space of BG is a disjoint union of classifying spaces of certain

centralizer subgroups of G, and this is how the codomain is most easily understood explicitly.

Let

hom(Zlp, G)/∼

be conjugacy classes of continuous maps from Zlp to G; then

C∗1 ⊗L∗1 L
∗
1(Ln−1BG) ∼=

∏
[α]∈hom(Zn−1

p ,G)/∼

C∗1 ⊗L∗1 L
∗
1(Ln−1BC(imα)),

where C(imα) is the centralizer of the image of a choice α ∈ [α].

The equivalences above behave well with respect to transfers. Formulas can be found in

[HKR00, Theorem D] and [Sta15, Theorems 2.18 and 3.11].
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4.4 Bounded torsion in E-theory
In this subsection we prove that rational factorizations of the Morava E-cohomology of finite
abelian groups and symmetric groups hold integrally up to a torsion cokernel with a height-
independent bounded exponent. We do this by putting together the tools developed in the
preceding two subsections.

When we write I ⊂ E∗(BA) for an abelian group A we will always mean the ideal generated
by the image of the transfer along proper subgroups of A. When we write I ⊂ E∗(BΣm) we
will always mean the ideal generated by the image of the transfer along the proper partition
subgroups Σi × Σj −→ Σm, where i+ j = m with i, j > 0.

We will begin with symmetric groups. First we will set up the algebro-geometric objects that
witness the rational factorization.

Let λ ` m be a partition of m. We write

λ = a1λ1 + a2λ2 + · · ·+ akλk,

where λi < λj when i < j, ai ∈ N, and the value of the sum is m. To simplify the notation, we
write Σλ = Σ×a1λ1

× · · · × Σ×akλk
and Σa = Σa1 × · · · × Σak . Furthermore, let Iλ be the ideal in

E∗n(BΣλ) generated by the individual transfer ideals I ⊂ E∗n(BΣλi); that is, Iλ has the property
that

E∗n(BΣλ)/Iλ ∼=
⊗
i

(E∗n(BΣλi)/I)⊗ai .

Furthermore, there is an action of Σai on the tensor power

(E∗n(BΣλi)/I)⊗ai .

For each tensor factor, we will take the fixed points by this action and denote the result by

(E∗n(BΣλ)/Iλ)Σa =
⊗
i

((E∗n(BΣλi)/I)⊗ai)Σai .

This commutative ring can be understood algebro-geometrically by a theorem of Strickland’s.
In [Str97], Strickland proved that E∗n(BΣm)/I is a finitely generated free E∗n-module and
produces a canonical isomorphism

Spf(E∗n(BΣm)/I) ∼= Subm(GEn),

where Subm(GEn) is the scheme classifying subgroup schemes of order m in GEn . It is worth
noting that this is the empty scheme if m is coprime to p. The scheme associated to the ring
that we are interested in is built out of Subm(GEn). Thus we may define

Subλ`m(GEn) = Spec((E∗n(BΣλ)/Iλ)Σa)

∼=
∏
i

Spec(((E∗n(BΣλi)/I)⊗ai)Σai ).

The point of the notation Subλ`m(GEn) is that this scheme represents unordered sets of
∑

i ai
subgroups of GEn in which ai of the subgroups have order λi. This scheme-theoretic description
is not essential to the proof of the result. However, one of the goals of decomposing BP∗(BΣm)
rationally is to suggest that it may have a tractable algebro-geometric description.

Let Γ(−) be the functor that takes a scheme to the ring of functions on the scheme. There
is a canonical map

E∗n(BΣm) −→ Γ Subλ`m(GEn)
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induced by restriction. The only part to check here is that it actually lands in the fixed points,
but this is clear as there is an inner automorphism of Σm that permutes the ai groups of the
form Σλi sitting inside Σm.

Proposition 4.16. The canonical map

E∗n(BΣm) −→
∏
λ`m

Γ Subλ`m(GEn)

is injective and a rational isomorphism.

Proof. This is a basic application of HKR-character theory [HKR00]. It is clear that the map is
an isomorphism after base change to C∗0 . The resulting ring is the ring of C∗0 -valued functions
on the set

Summ(Qp/Znp ) =
∐
λ`m

Subλ`m(Qp/Znp ).

But C∗0 is a faithfully flat p−1E∗n-algebra, so the map is a rational isomorphism. 2

Most of the results in §§ 4.2 and 4.3 will go into the proof of the next theorem. We will
use the method of the proof twice more in Theorem 4.18 and Proposition 4.24. The idea of the
proof is the following. We begin with a short exact sequence with a torsion cokernel. We will
apply character theory to height 1 and use faithful flatness to get a short exact sequence in
L1-cohomology. In this case, the cokernel will be a product of cokernels of maps. The sorts of
maps that can occur are bounded by the number of centralizers of tuples of commuting elements
in Σm. However, F1 depends on n, so we do not have complete control over the cokernel as n
varies. We will extend to F̄1 and then use faithful flatness to change the product of maps to a
product of maps in Kp-cohomology. Now we are in a situation that is height independent, the
number of maps that can appear in the product is bounded, and the cokernel of each map is
bounded torsion.

Theorem 4.17. The cokernel of the map

E∗n(BΣm) −→
∏
λ`m

Γ Subλ`m(GEn)

is torsion with exponent bounded independently of the height n.

Proof. Note that both the source and the target are finitely generated free E∗n-modules and the
map is an injection. The cokernel CokEn(Σm) is a torsion E∗n-module. We will repeatedly base
change the short exact sequence

0 −→ E∗n(BΣm) −→
∏
λ`m

Γ Subλ`m(GEn) −→ CokEn(Σm) −→ 0

to prove the result. Base change to C∗1 (a flat E∗n-algebra) and (4.3) give the short exact sequence∏
[β]∈Hom(Zn−1

p ,Σm)/∼

C∗1 ⊗L∗1 L
∗
1(BC(imβ)) −→

∏
λ`m

Γ Subλ`m(GC1 ⊕Qp/Zn−1
p )

−→ C∗1 ⊗L∗1 L
∗
1 ⊗E∗n CokEn(Σm).
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Here we have used the fact that the scheme classifying subgroups behaves well under base change
([Sta15, Theorem 3.11] is particularly relevant). Corollary 4.10 implies that the exponent of the
torsion cannot have changed. By faithful flatness (Proposition 4.9), we may remove the C∗1
without changing the exponent of the torsion. Thus we arrive at the short exact sequence∏

[β]

L∗1(BC(imβ)) −→
∏
λ`m

Γ Subλ`m(GL1 ⊕Qp/Zn−1
p ) −→ L∗1 ⊗E∗n CokEn(Σm). (4.4)

Because the first and second terms are finitely generated and free, we may apply Corollary 4.10
to base change (4.4) to F ∗1 without changing the exponent of L∗1 ⊗E∗n CokEn(A). We may then
further base change to F̄ ∗1 (which is faithfully flat over F ∗1 by Proposition 4.12), obtaining∏

[β]

F̄ ∗1 (BC(imβ)) −→
∏
λ`m

Γ Subλ`m(GF̄1
⊕Qp/Zn−1

p ) −→ F̄ ∗1 ⊗E∗n CokEn(Σm).

Now Proposition 4.13 gives the short exact sequence∏
[β]

F̄ ∗1 ⊗K∗p K
∗
p(BC(imβ)) −→

∏
λ`m

Γ Subλ`m(GF̄1
⊕Qp/Zn−1

p ) −→ F̄ ∗1 ⊗E∗n CokEn(Σm).

By the naturality of the equivalence, the first map in the sequence is induced by restriction maps.
Let

MA,n = Cok

(∏
[β]

K∗p(BC(imβ)) −→
∏
λ`m

Γ Subλ`m(Gm ⊕Qp/Zn−1
p )

)
;

then
F̄ ∗1 ⊗K∗p MA,n

∼= F̄ ∗1 ⊗E∗n CokEn(Σm).

By Proposition 4.9, it suffices to show that the torsion in MA,n is independent of n. The map∏
[β]

K∗p(BC(imβ)) −→
∏
λ`m

Γ Subλ`m(Gm ⊕Qp/Zn−1
p )

is the ring of functions on the canonical map∐
λ`m

Subλ`m(Gm ⊕Qp/Zn−1
p )

f−→ Spec(K∗p(Ln−1BΣm)).

There is a commutative triangle∐
λ`m

Subλ`m(Gm ⊕Qp/Zn−1
p ) //

**

Spec(K∗p(Ln−1BΣm))

��
Sum6m(Qp/Zn−1

p ),

where

Sum6m(Qp/Zn−1
p ) =

{⊕
i

Hi

∣∣∣∣ Hi ⊂ Qp/Zn−1
p and

∑
i

|Hi| 6 m
}

is the set of formal sums of subgroups in Qp/Zn−1
p with order no greater than m. For each element

α ∈ Sum6m(Qp/Zn−1
p ), the map that lives over α is a rational isomorphism (and an injection

after applying Γ(−)). Thus it suffices to prove that, regardless of the choice of n, there are only
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finitely many different maps that can appear as fibers. This is essentially a consequence of the
fact that there are only finitely many groups that are centralizers of Σm.

To make this precise, note that there is an action of Aut(Qp/Zn−1
p ) on the triangle. This

action must send the map over α ∈ Sum6m(Qp/Zn−1
p ) to a map with the same exponent of

the torsion in the cokernel. The action of Aut(Qp/Zn−1
p ) is compatible with the inclusion of

triangles induced by the inclusion of Qp/Zn−1
p −→ Qp/Znp as the first n − 1 summands. For n

large enough, any sum of subgroups of size less than or equal to m in Qp/Znp is isomorphic to a
sum of subgroups in Qp/Zn−1

p under this action, and this finishes the proof. 2

It is worth noting that this could probably be factored further using Strickland’s schemes
called Type and [Str97, Theorem 12.4].

Now we turn our attention to an analogous theorem for level structures. The theory of level
structures for a formal group is developed in [Str97]. We make use of it now because there is a
close relationship between E∗n(BH)/I and ΓLevel(H∗,GEn), where H∗ is the Pontryagin dual
of H. In [AHS04], it is proved that the image of E∗n(BH)/I in Q ⊗ E∗n(BH)/I is canonically
isomorphic to ΓLevel(H∗,GEn).

Theorem 4.18. For A a finite abelian group, the cokernel of the map

E∗n(BA) −→
∏
H⊆A

ΓLevel(H∗,GEn)

is torsion with exponent bounded independently of the height n.

Proof. Since the argument is similar to the proof of Theorem 4.17, we only point out the
differences. We can again reduce to showing that the torsion in

MA,n = Cok

(∏
β

K∗p(BA) −→
∏
H⊆A

ΓLevel(H∗,Gm ⊕Qp/Zn−1
p )

)
has exponent independent of n. To this end, note that the map∏

β

K∗p(BA) −→
∏
H⊆A

ΓLevel(H∗,Gm ⊕Qp/Zn−1
p )

is obtained by taking global sections of the canonical map∐
H⊂A

Level(H∗,Gm ⊕Qp/Zn−1
p )

f−→ Hom(A∗,Gm ⊕Qp/Zn−1
p ).

It is a product of ring maps since we have the commutative triangle∐
H⊂A

Level(H∗,Gm ⊕Qp/Zn−1
p ) //

**

Hom(A∗,Gm ⊕Qp/Zn−1
p )

��
Hom(A∗,Qp/Zn−1

p )

and Hom(A∗,Qp/Zn−1
p ) ∼= Hom(Zn−1

p , A) is a set and thus disconnects the horizontal map. The
diagonal arrow sends a level structure H∗ ↪→ Gm ⊕Qp/Zn−1

p to the composite

A∗ � H∗ ↪→ Gm ⊕Qp/Zn−1
p � Qp/Zn−1

p .
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Let fβ be the fiber over β. It is a map of schemes. It is clear that there is an action of

Aut(Qp/Zn−1
p ) on the triangle above. This implies that the fibers over maps β, β′ ∈ Hom(Zn−1

p , A)

with imβ = imβ′ are isomorphic. Hence the exponent of the cokernel of Γ(fβ) equals the exponent

of the cokernel of Γ(fβ′). Adding another Qp/Zp to the constant étale part does not affect this

in the sense that the induced inclusion

Hom(A∗,Qp/Zn−1
p ) −→ Hom(A∗,Qp/Znp )

lifts to an inclusion of triangles. As n increases above the number of generators of A, e(MA,n)

remains constant. The fibers over all of the maps in Hom(A∗,Qp/Znp ) are isomorphic to the fibers

over maps that were already there in Hom(A∗,Qp/Zn−1
p ). Thus the exponent of the torsion in

MA,n is bounded independently of n. 2

The proof of the following result, due to Jeremy Hahn, is given in the appendix.

Proposition 4.19. Let H be a finite abelian group. The exponent of the torsion in

E∗n(BH)/I

is bounded independently of the height n.

Corollary 4.20. If A is a finite abelian group, then the map∏
n

E∗n(BA) −→
∏
n

∏
H⊆A

E∗n(BH)/I

is a rational isomorphism.

Proof. Consider the composite∏
n

E∗n(BA) −→
∏
n

∏
H⊆A

E∗n(BH)/I −→
∏
n

∏
H⊆A

ΓLevel(H∗,GEn).

By Proposition 4.19 the second map is a rational isomorphism, and by Theorem 4.18 the

composite is a rational isomorphism. Thus the first map is a rational isomorphism. 2

4.5 BP-cohomology of abelian and symmetric groups

We show that the rational decomposition of Theorem 4.17 extends to a rational decomposition

of BP -cohomology.

Lemma 4.21. Let G be a finite group and let H1, . . . ,Hm ⊂ G be subgroups. Let I be the

ideal generated by the image of the transfer maps along the inclusions Hi ⊂ G. There is a split

inclusion

BP∗(BG)/I //
∏
n>0

E∗n(BG)/I

which is compatible with the map of Corollary 3.4.
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Proof. Let H1, . . . ,Hm ⊆ G be subgroups and consider the commutative diagram⊕
i

BP∗(BH i)
tr //

��

BP∗(BG) //

��

BP∗(BG)/I //

��

0

∏
n>0

⊕
i
E∗n(BH i) tr

//

LL

∏
n>0E

∗
n(BG) //

JJ

∏
n>0E

∗
n(BG)/I //

JJ

0,

where I denotes the transfer ideal generated by H1, . . . ,Hm. The dashed arrows are the retracts

which exist by Corollary 3.4, and the transfers make the left square commute by naturality

and the fact that the splitting exists on the level of spectra. Therefore, the maps between the

quotients exist and the resulting retract is compatible with the rest of the diagram. 2

Consequently, for any symmetric group Σm, we have a commutative diagram

Q⊗ BP∗(BΣm) �
� //

��

Q⊗
∏
λ`m

⊗
i

((BP∗(BΣλi)/I)⊗ai)Σai

��
Q⊗

∏
n>0

E∗n(BΣm) �
� //

� _

��

JJ

Q⊗
∏
n>0

∏
λ`m

⊗
i

((E∗n(BΣλi)/I)⊗ai)Σai

��

LL

∏
n>0

Q⊗ E∗n(BΣm)
∼= //

∏
n>0

Q⊗
∏
λ`m

⊗
i

((E∗n(BΣλi)/I)⊗ai)Σai .

In Theorem 4.17 we showed that the middle horizontal map is an isomorphism. Now it is an easy

consequence that the top map is an isomorphism, stated in the next corollary.

Corollary 4.22. There is a rational isomorphism

BP∗(BΣm) −→
∏
λ`m

(BP∗(BΣλ)/Iλ)Σa .

Corollary 4.23. There is a rational isomorphism

BP∗(BA) −→
∏
H⊆A

BP∗(BH)/I.

Proof. The argument is similar to the proof of Corollary 4.22. 2

4.6 Artin induction for BP
It is not hard to use the methods of the previous subsections to prove an Artin induction theorem

for BP . We do this by transferring the result for En (due to [HKR00]) to BP . Stronger results

than this have been known for some time (e.g. [HKR00, Theorem A] applies to all complex

oriented theories).

Let A(G) be the full subcategory of the orbit category of G consisting of quotients of the

form G/A, where A is an abelian p-group.

811

https://doi.org/10.1112/S0010437X16008241 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008241


T. Barthel and N. Stapleton

Proposition 4.24. If G is a good group, the canonical map

BP∗(BG) −→ lim
A∈A(G)

BP∗(BA)

is a rational isomorphism.

Proof. Because G is good there is no integral torsion in BP∗(BG). This follows immediately

from the injection

BP∗(BG) ↪→
∏
n

E∗n(BG).

Character theory for good groups [HKR00] implies that the natural map∏
n

E∗n(BG) −→
∏
n>0

lim
A∈A(G)

E∗n(BA)

is injective and, since limits of split injections are split injections, the canonical map

lim
A∈A(G)

BP∗(BA) −→
∏
n>0

lim
A∈A(G)

E∗n(BA)

is injective.

We are interested in the commutative diagram

BP∗(BG) //

��

limA∈A(G) BP∗(BA) //

��

CBP
//

��

0

0 //
∏
n>0E

∗
n(BG) //

JJ

∏
n>0 limA∈A(G)E

∗
n(BA) //

JJ

∏
n
CEn

II

// 0.

Since the left vertical arrow is injective and the second horizontal arrow on the bottom is

injective, the natural map

BP∗(BG) −→ lim
A∈A(G)

BP∗(BA)

is injective. This implies that the top sequence of maps is short exact. Therefore it suffices to

prove that CBP is torsion.

This means that it suffices to show that CEn has exponent bounded independently of the

height n. By [HKR00, Theorem A], the abelian group CEn is torsion.

Note the map of short exact sequences

E∗n(BG) //

=

��

limA∈A(G)E
∗
n(BA) //

��

CEn

��
E∗n(BG) //

∏
A⊂G

E∗n(BA) // DEn ,
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where DEn is the cokernel. The first two vertical arrows are injections (the first is an equality),

so the right vertical arrow is an injection. Therefore it suffices to show that the exponent of the

torsion in DEn is bounded independently of n.

To bound the torsion, we apply character theory to height 1. Since C∗1 is a flat E∗n-module,

we get a short exact sequence

C∗1 ⊗E∗n E
∗
n(BG) ↪→

∏
A⊂G

C∗1 ⊗E∗n E
∗
n(BA) −→ C∗1 ⊗E∗n DEn .

Now we can follow the argument in Theorem 4.18 to reduce to p-adic K-theory. This leads to

considering the cokernel of the injection∏
[α]

K∗p(BC(imα)) ↪→
∏
A⊂G

∏
β

K∗p(BA).

If we fix a conjugacy class [α : Zn−1
p → G], then there is a map K∗p(BC(imα)) −→ K∗p(BA)

when the composite

Zn−1
p

β−→ A ⊂ G

is conjugate to α. In that case A ⊂ C(imα). Let iH : A ⊂ G be the inclusion. The map out of

the factor corresponding to [α] is

K∗p(BC(imα)) −→
∏
A⊂G

( ∏
{β|[iHβ]=[α]}

K∗p(BA)

)
.

This map is an injection, although it may not be the case that every abelian subgroup of

C(imα) is represented in the codomain. Abelian subgroups of G that are conjugate to abelian

subgroups of C(imα) may appear as well. Also, subgroups may appear multiple times. However,

Proposition 4.8 implies that repeat subgroups do not contribute to the exponent of the torsion

in the cokernel. Finally, since there are only a finite number of abelian subgroups of C(imα) (or

abelian subgroups of G that may be conjugated into C(imα)), the exponent of the torsion in

the cokernel must be bounded by the maximal exponent of this finite number of options. 2

This subsection is not just an exercise. Artin induction for En can be proved independently of

[HKR00, Theorem A] by using character theory. The retract theorem now allows us to bootstrap

to BP . It is not hard to imagine moving from there to any Landweber flat (or perhaps complex

oriented) theory. One might hope that this could provide an independent proof of [HKR00,

Theorem A], at least when G is good and X = ∗.
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Appendix. A Proof of Proposition 4.19

Jeremy Hahn

We recall our notational conventions. Let H be a finite abelian group, n a positive integer, and
En a height n Morava E-theory at the prime p. We use H∗ to denote the Pontryagin dual group
Hom(H,S1). In the ring E∗n(BH), denote by I the ideal generated by the images of transfers
from proper subgroups of H. We let Rn denote the quotient ring E∗n(BH)/I.

Algebro-geometrically, E∗n(BH) may be interpreted as global sections of the affine formal
scheme Hom(H∗,GEn). The closed subscheme with global sections Rn = E∗n(BH)/I is not as
well behaved as one might hope. In particular, for almost no values of H and n is Rn an integral
domain. Let Tn denote the ideal of p-power torsion in Rn (i.e. x ∈ Tn if and only if pax = 0
for some positive integer a). In [AHS04], Ando et al. identified the further quotient Rn/Tn with
an object of algebro-geometric significance, namely the global sections of the formal scheme of
Drinfeld level structures Level(H∗,GEn). In [Dri74], Drinfeld proved that ΓLevel(H∗,GEn) is a
regular local ring, so Rn/Tn is in fact very well behaved.

The Ando–Hopkins–Strickland result allows one to identify Q ⊗ E∗n(BH)/I with Q ⊗
ΓLevel(H∗,GEn). In this appendix, our goal is to extend this to an isomorphism

Q⊗
∏
n>0

E∗n(BH)/I ∼= Q⊗
∏
n>0

ΓLevel(H∗,GEn).

The isomorphism follows immediately from the following proposition, whose proof occupies
the remainder of the appendix.

Proposition A.1. There is a positive integer k, depending on H but not depending on n, such
that pkTn = 0 ⊂ Rn.

In other words, we claim that the exponent of the p-power torsion in E∗n(BH)/In may be
bounded independently of the height n.

We can make two immediate reductions. First, note that H may be written as a direct sum
of a p-group and a group of order prime to p, the prime-to-p part having no contribution to
E-theory. Furthermore, since E∗n(BH) is Noetherian, the exponent of the p-power torsion in Rn
is bounded for any fixed n. In light of these facts, for the remainder of the appendix we assume
that H is a p-group and study E∗n(BH) for n larger than the p-rank of H.

Since E∗n(BH) ∼= ΓHom(H∗,GEn), there is a natural inclusion of H∗ into E∗n(BH). This
is the map that takes a character χ : H → S1 to the first Chern class of the induced map
BH → BS1. Composing with the projection E∗n(BH)→ Rn, we obtain a map φ : H∗→ Rn.

Lemma A.2. For each non-zero χ ∈ H∗, φ(χ) divides p in Rn.

Proof. Suppose that χ : H → S1 has kernel A ⊂ H. The quotient H/A is isomorphic to a
non-trivial subgroup of S1. Assume that H/A is cyclic of order pk. It follows that the kernel of
pk−1χ is an index-p subgroup A′ of H containing A. The composite of the transfer and projection

E∗n(BA′)→ E∗n(BH)→ Rn

then sends 1 to

〈pk〉(φ(χ)) =
[pk](φ(χ))

[pk−1](φ(χ))
,
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by the corresponding formula for the transfer e⊂ Z/p and the naturality of transfer. In particular,
〈pk〉(φ(χ)) = 0 in Rn. But 〈pk〉(φ(χ)) is a power series in φ(χ) with constant term p, so it follows
that φ(χ) divides p. 2

Suppose now that

H ∼= Z/pm1Z× Z/pm2Z× · · · × Z/pm`Z,

where m1 > m2 > · · · > m`. We proceed to prove Proposition A.1 by induction on `.
If ` = 1, then H ∼= Z/pm1Z. This case is covered in § 4.1 of this paper, but see also [AHS04,

Example 9.22].
For ` > 1, consider

H ′ ∼= Z/pm1Z× Z/pm2Z× · · · × Z/pm`−1Z

equipped with the natural inclusion H ′ ⊂ H. Let R′n denote E∗n(BH ′) modulo its ideal of
transfers, and let T ′n denote the ideal of p-power torsion in R′n. Finally, we use the notation
φ′ : (H ′)∗→ R′n to denote the obvious analogue of φ.

The power series ring (R′n)[[z]] is an E∗n-algebra, so one may consider the element [pm` ](z),
which we denote by q(z). We use q̄(z) to denote projection of q(z) to (R′n/T

′
n)[[z]]. For each

χ ∈ (H ′)∗ of order at most pm` , one has that [pm` ](φ′(χ)) = 0. Since R′n/T
′
n is a regular local

ring, and since n is larger than the rank of H, it follows that q̄(z) is divisible by∏
χ

(z − φ′(χ)),

where the product runs across all χ ∈ (H ′)∗ of order at most pm` . The quotient of q̄(z) by
this product may, by the Weierstrass preparation theorem, be written as a unit times a monic
polynomial g(z).

The following key lemma was proved by Drinfeld [Dri74, proof of Proposition 4.3] and was
realized in topology by Strickland (see [Str, § 26] and [Str97, § 7]).

Lemma A.3 (Drinfeld). There is an isomorphism Rn/Tn ∼= (R′n/T
′
n)[z]/g(z).

The coefficients of g(z) lie in R′n/T
′
n and may be lifted arbitrarily to elements of R′n.

This defines a non-canonical lift g̃(z) ∈ R′n[z] of g(z). Lemma A.3 then implies that Rn/Tn
is isomorphic to the quotient of R′n[z] by the ideal (g̃(z), T ′n) generated by g̃(z) and the elements
of T ′n. Note that Rn is already a quotient of R′n[z] by the Künneth isomorphism applied to
E∗n(BH) ∼= E∗n(BH ′ ×BZ/pm`Z) and elementary properties of transfers.

Example A.4. Suppose that H is the group Z/2 × Z/2 × Z/2. Then, for sufficiently large n,
Lemma A.3 implies that

Rn/Tn ∼= E∗n[[x, y, z]]/(g̃1, g̃2, g̃3),

where:

– g̃1 = [2](x)/x is an element defined in E∗n[[x]];

– g̃2 = [2](y)/(y(y − x)) is a lift of an element uniquely defined in E∗n[[x, y]]/g̃1; and

– g̃3 = [2](z)/(z(z − x)(z − y)(z − (x+ Gy))) is a lift of an element defined in E∗n[[x, y, z]]/
(g̃1, g̃2).
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It follows that if w ∈ Tn, then w = a1g̃1 +a2g̃2 +a3g̃3 for some a1, a2, a3 ∈ Rn. The arguments
below will show that, regardless of the height n, 16g̃1 = 16g̃2 = 16g̃3 = 0, and so 16w = 0.

Remark A.5. The reader familiar with [AHS04] should be wary of a small typo in the statement
of Proposition 9.15. The correct statement appears at the end of the proof of Proposition 9.15
on p. 29 of that paper. The difference between the stated and proved versions of [AHS04,
Proposition 9.15] is elucidated by the existence of elements such as g̃2 in the above example,
which annihilates y −GEn

x in E∗(BH)/(ann(x), ann(y)) but is not defined in E∗n(BH) itself.

By the inductive assumption, there is an integer k′ such that pk
′
T ′n = 0 ⊂ R′n. As a corollary

of the comments preceding Example A.4, we see that the complete proof of Proposition A.1 rests
only on the following lemma.

Lemma A.6. Let h denote the image of g̃(z) under the projection π : R′n[z]→ Rn. Then there
is a positive integer r, independent of n, such that prh = 0.

Proof. Let χ : H ′→ S1 denote any element of (H ′)∗. We first claim that π(z − φ′(χ)) divides p
in Rn.

– Let χ1 : H → S1 denote the composite of the projection H → Z/pm` with the inclusion
Z/pm` → S1. Note that φ(χ1) = π(z).

– Let χ2 : H → S1 denote the composite of the projection H → H ′ with χ. Note that
φ(χ2) = π(φ′(χ)).

Now (z − φ′(χ)) is a unit times z −GEn
φ′(χ). Furthermore,

π(z −GEn
φ′(χ)) = φ(χ1)−GEnφ(χ2) = φ(χ1 − χ2),

and by Lemma A.2 the claim follows.
Turning to the proof of the lemma, recall that by definition g̃(z)

∏
χ(z−φ′(χ)) has coefficients

in T ′n, where the product ranges over all χ : H ′→ S1 of order at most pm` . It follows that

π

(
pk
′
g̃(z)

∏
χ

(z − φ′(χ))

)
= 0

in Rn. Then, by the claim,

π

(
pk
′
g̃(z)

∏
χ

p

)
= 0,

and so we may take r to be the sum of k′ and the number of χ appearing in the product. 2
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