
SOME SEMIGROUPS HAVING QUASI-FROBENIUS 
ALGEBRAS. II 

R. WENGER* 

The investigation of finite semigroups S with quasi-Frobenius (q.-F.) 
algebras F(S) over a field F was begun in (7; 8). The problem for commutative 
semigroups was reduced (7, Theorem 3) to the study of semigroups of the 
form S = G U 5i, where G is a group and Si is either the null set or is a 
nilpotent ideal in 5 (i.e., Sin = {0} for some positive integer n). Such semi
groups were called "of type C". The question is "When does a semigroup of 
type C have a q.-F. algebra over a field?" (7, Theorem 4) shows that no 
distinction need be made between the properties q.-F. and Frobenius for 
commutative algebras. 

In § 1, the /-class semigroup T is assigned to the commutative semigroup S 
under the homomorphism which assigns to each element of 5 its /-class. 
Theorem 1 concludes that F(T) is q.-F. if F(S) is q.-F. Theorem 2 provides a 
necessary and sufficient condition for a /-class semigroup (or a semigroup of 
type Cr) to have a q.-F. algebra. 

Theorems 3 and 4 in § 2 give necessary conditions for a semigroup of 
type C to have a q.-F. algebra. These conditions also describe the relationship 
between the principal indecomposable modules of F(S) and those of F{G). 
The last section provides a method by which some semigroups of type C can 
be constructed from semigroups of type C and subgroups of an arbitrary 
finite abelian group. Theorem 6 gives a characterization of semigroups con
structed in this way which have q.-F. algebras. 

The terminology is the same as that in (1; 7; 8). If 5 is of type C, then S 
has an identity (4) and S may be assumed to be a subsemigroup of F(S). 

1. Semigroups of type C and C and their algebras. Throughout this 
discussion, 5 = S0 D Si D .. O Sr+i will always denote a principal series for a 
semigroup S of type C. As a group ring over a field is always q.-F., Si 9e 0 
will be assumed so that Sr+i = {0}. The sets Jt = S{ — Si+i (the set com
plement of Si+i in Si), i = 0, 1, . . . , r, are called the /-classes of S. If st is a 
fixed element of Ju then Jt = {s £ S: sS = stS}. The identity of the group 
G of 5 is also the identity for 5; therefore, G = S — Si. 
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LEMMA 1. (i) If a, b G Ju 0 ^ i ^ r + 1, and s G S such that a = sb, then 
s(zGora = b = 0. 

(ii) 5 ,5 , C 5 m # 1 ^ i g j < r + 1. 

Proof, (i) Let a, b £ Jt. Then Sa = Sb; hence, there are 5, s' G 5 such that 
a = sb and / a = b. Then a = sb = (ssf)a; thus, a = (ss')*a for each positive 
integer k. If either 5 or s' is in Si, then ss' G Si; therefore, a = 6 = 0 as Si 
is nilpotent. This implies that s, sf G G or a = b = 0. 

(ii) Let a ^ Si, b ^ Sj, r ^ j ^ i ^ 1. Then a& G Sj as S, is an ideal of S. 
If & or ab is in S^+i, then the result is true. If b, ab G Jj, then Sab = Sb; thus, 
there exists an s G S such that s(afr) = b. Then (sa)6 = & and by the first 
part, either sa G G or b = 0, neither of which is true. Thus, either b or a& is 
in S ;+i, and the lemma follows. 

The way in which the elements of G act on the elements of S is described in 
the next lemma. If X is a set, let \X\ denote its cardinality. 

LEMMA 2. Let g G G. Then 
(i) ga = gb in S if and only if a = b; 

(ii) gJi = J if or each i = 0, 1, . . . , r + 1; 
(iii) If a, b G Ju then ga = a implies gb = b; 
(iv) G is transitive as a permutation group on the set Ju i = 0, 1, . . . , r + 1; 
(v) If Gt = {g G G: ga = a, a G / * } , then 

\G\ = \Gt\ \Jl i = 0, 1, . . . ,r + 1; 

(vi) If a G J*, b G J,, a?zd afr G A, tffeew G^Gj £ Gk. 

Proof, (i) is clear since the identity of G is the identity of S. 
(ii) If a G J % and ga G S*+i, then a G g-1S*+i ÇZ S*+i, a contradiction. 

Thus ga G J\. Then (i) implies gJt = Jt since /* is finite. 
(iii) If a, & G Ju then sa = b for some 5 G S. If ga = a, then gft = g (sa) = 

s(ga) = sa = b. 
(iv) G is a permutation group on the set Jt by (i) and (ii). If a, b G Ju 

then there is an 5 G S such that sa = b. Then 5 G G by Lemma 1, hence G 
is transitive on J\. 

(v) This follows from (iv) and a well-known theorem for permutation 
groups (9, p. 5, Theorem 3.2). 

The subgroup Gt of G will be called the fixing group for the /-class 
Ju i = 0, 1, . . . , r + 1. Note that Go = {e} if e is the identity of G, and 
Gr+i = G since Sr+i = {0}. As S is commutative, the equivalence relation p, 
defined by apb if, and only if, a and & are in the same /-class, is a congruence. 
Then S/p = {/*: i = 0, 1, . . . , r + 1} is a semigroup of type C with precisely 
one element in each /-class and with principal series of the same length as 
those of S (1, p. 16). A semigroup of type C with one element in each /-class 
will be called of type C . It is convenient to construct a semigroup T — 
{to, t\, . . . , tr+\) isomorphic to S/p by defining tttj = tk if JtJj = Jk in S. Then 
(j)f (a) = ti for a G Ju i = 0> 1» • • • , r + 1, is an epimorphism of S to T. 

https://doi.org/10.4153/CJM-1969-070-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-070-9


SEMIGROUPS. II 617 

Extend <t>' linearly to the algebra homomorphism #: F(S) —> F(T). The 
mapping <f> will be called the J-homomorphism of F(S). The kernel of 0 is 

K = ) ^ <V: 2 a« = 0, i = 0, 1, . . . , r f . 

If X C F(5), then F[X] denotes the linear subspace of F(S) which is spanned 
byX,A(X) = {y e F(S):xy = 0 for each x G X], and A'(X) = { ^ 5: xs = 0 
for each x £ X}. The characteristic of a "generic field" F will be represented 
by cor c(F) for emphasis. Let Et = XI sçji s and let E = E0 = E^e? g through
out this article. Note that if g G G and s G J*, then gEt = E* and £5 = IG^E^ 
by Lemma 2. Theorem 1 will show that if F(S) is q.-F., then c\ \Gt\, k = 
1, . . . , r, and F(T) is q.-F. This will be done as follows. Refine the ideal 
series 5 D A'(E) to a principal series (1): 5 = 50 D Si D . . . Z) »Sr+i for 5 
with -4'(E) = 5p+i, say. Let this be the series on which all the notation 
depends; i.e., Jk, Gk, Ekf etc. Lemma 4 will establish that A(EP) = A(Er). 
If F(S) is q.-F., then A(EP) = A(Er) implies that F(S)EP = A(A(EP)) = 
A(A(ET)) = F(S)Er; thus, p = r by Lemma 2 (ii). However, p = r implies 
that 4 ' ( E ) = {0}. As Es* = \Gk\Ek, Af(E) = {0} implies that c \ \Gk\ for 
each k = 1, 2, . . . , r. In this case, Lemma 3 implies that A(K) = F(S)E; 
thus F(S)/K9^ F(T) is q.-F. (5, Theorem 9). Thus, the lemmas which 
follow yield the proof of Theorem 1. 

LEMMA 3. The ideal A (K) = E U F[Et]. If (c, \Gt\) = 1, i = 1, 2, . . . , r, 
Jftew 4̂ (X) is principal and A (K) = F(S)E. 

Proof. The same calculation as for groups, together with Lemma 2 (iv), 
shows that K is spanned by all elements of the form {g — e)s, g G G, s G S. 
Thus, y G A (K) if, and only if, (g — e)y = 0 for each g G G. Let 3> = E U y*, 
3^ G E[ / J . Suppose that «5, a G E, is a non-zero summand in the unique 
expression for ^ as an E-linear combination of the elements of Jt. As gy = y 
for each g G G, gyt = yt for each g G G by Lemma 2 (ii). Let /3s', s' G /*, 
£ G E, be another summand of yt (/3 ?̂  0 is not assumed). As Gs = /*, there 
is a g G G such that gs = s'. Then g (as) = as'; thus, the coefficient of sf in 
gy* is a. The coefficient of s' in yt is /3 and as gyt = yu one has a = /3. Thus, 
y* = aEz- for some a £ F and 4̂ (X) = E U F[Et]. 

As E^i = |Gf|Ei for each i = 0, 1, . . . , r, if (c, |G*|) = 1 for each i, then 
Ei = iGih^iE G E(5)E; therefore 4 (20 = E(S)E. 

If c\ |G|, then the radical of F(G) is EO? ~~ g)F(G), where the sum is taken 
over all elements g 9e e in the c-Sylow subgroup of G (2, p. 435). Then, as 
gEt = Et for each i and for each g G G, Ez- annihilates the radical of E(G). 
As E r also annihilates Si and rad E(5) = F(Si) + rad E(G) (7, Lemma 5), 
E r annihilates rad F(S). 

LEMMA 4. i / £ is as above, then Ep G A (rad F{S)). Moreover, A (Ep) = A (E r). 

Proof. By the remarks above, it is sufficient to prove that EPS\ = {0}. 

https://doi.org/10.4153/CJM-1969-070-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-070-9


618 R. WENGER 

As Es = \Gp\Ep 9e {0} for 5 G Jp, one has (c, |GP|) = 1. Then £ p = |Gp|_ 1s£. 
If £ > 0 and s G Jp, then £„5 i = I G ^ - ^ A = {0} as sSi Q A''(E) = Sp+1. 
If p = 0, then i 4 ' ( £ ) = Si and £ p S i = EA'(E) = {0} also. Thus , 

Ep G A(radF(S)). 

For each jfe, ^ ( £ , ) = ( 4 (E*) H F(G)) + ( 4 (£*) H F ( 5 i ) ) . T h e n ^ ( £ , ) = 
(A(EV) C\ F(G)) + F(S1) <mdA(Er) = ( 4 ( £ r ) H F (G)) + F (Si). However, 
* = L ^ € G « ^ € -4(£*) if, and only if, xEk = (Y,geGocg)Ek = 0; i.e., if, and 
only if, Zçeodç = 0. Thus , A (Ev) Pi F(G) = ,4 ( £ r ) Pi F(G) ; hence ^ (£ p ) = 
A(Er). 

Lemmas 3 and 4 together with preceding remarks yield the following 
theorem. 

T H E O R E M 1. If F(S) is q.-F., and T is the J-class semigroup for S, then 
c \ \Gk\ for each k = 0, 1, . . . , r, and F(T) is q.-F. 

Note t h a t if (c, \G\) = 1, the elements n~l Eu i = 0, 1, . . . , r + 1, nt the 
index of Gt in G, are ^- independent and a simple calculation shows t h a t 
they form a mult iplicative semigroup which is isomorphic with T{n~xEi —> tt 

for each i). T h e n F(S)E = F(T); hence, F(T) is actual ly isomorphic to a 
direct summand of F(S). 

Character izat ions of semigroups T of type C which have q.-F. algebras 
are thus of interest . A general result abou t commuta t ive q.-F. rings is needed. 
Kupisch (3) has proved t h a t a commuta t ive ring R with min imum condition 
is q.-F. if, and only if, each ideal Rf, with / a primit ive idempotent , has a 
simple socle; i.e., a unique simple i?-submodule. If T is of type C , then a 
principal series for T is of the form T = T0 D T± D . . . Z) TT+iy where 
Tt — Ti+i = {tt}, i = 0, 1, . . . , r + 1, 7%+i = {0}, J0 is the ident i ty of T, 
and Ti is ni lpotent . Th is nota t ion will be used in wha t follows. No te t h a t 
T&Q {tr,0}. 

LEMMA 5. If T is of type C , then F(T) is q.-F. if, and only if, x divides tr 

for each non-zero x G F(T). 

Proof. T h e only non-zero idempotent of F(T) is t0 (7, L e m m a 5 ) ; thus , t0 

is the only primitive idempotent of F(T) and F(T)t0 = F(T). As F(T)tT is 
simple, F(T) is q . -F. if, and only if, F(T)x 2 F(T)tT for each non-zero 
x G F(T), by the result of Kupisch. Th is completes the proof. 

A more useful characterizat ion can be obtained by using the remarks in 
(7, § 4 ; 5, § 2 ) . Suppose t h a t S = {s0y su . . . , sr+1\ is an a rb i t ra ry finite 
semigroup with sT+i = 0 if 0 G S (if 0 G S, let 5 = {s0, Si, . . . , sr\). Only 
the case wTith 0 G S will be t reated, as the remaining case is similar. Le t 
Xo, Xi, . . . Xr+i be parameters representing elements of F with X r + i = 0. Le t 
A = [an] be the ( r + l ) X ( r + l ) matr ix with atj = Xk if stSj = sk. Then 
F(S) is Frobenius if, and only if, the parameters \k can be chosen so t h a t the 
corresponding ' ' in ter twining" matr ix A is non-singular. T h e next theorem 
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uses the matr ix A which corresponds to a semigroup T of type O . This theorem 
will give a constructive and intrinsic method for deciding whether a semigroup 
of type C has a q.-F. algebra wi thout considering the algebra itself. As 
before, let T = T0 Z) Ti D . . . D Tr+i = {0} be a principal series for T with 
Tt - Tt+1 = { / < } . Then 2 \ / r 2 {tr, 0}. 

T H E O R E M 2. If T is of type C , then F(T) is q.-F. if, and only if, the matrix A 
of parameters for T is non-singular when Xr = 1 and \k = 0 if k ^ r. 

Proof. If such a matr ix exists, then F(T) is Frobenius (hence, q.-F.) by the 
remarks above. Thus , suppose t ha t F(T) is q.-F. (hence, Frobenius, as F{T) 
is commuta t ive (7, Theorem 4 ) ) . Let A = [ a 0 ] be the ( r + l ) X ( r + l ) 
matr ix described in the theorem. Note t h a t A is symmetr ic by the commuta-
t ivi ty of T. Suppose tha t the rows Rk of A are dependent , say XlLo fti^- is a 
zero row vector. As t0tk = tr if, and only if, k = r, aki0 = ao,k = 0 if k ^ r 
and ar,0 = a0fr = 1- Thus , /30 = /3r = 0. Let x = X ^ = \ ^ 4 G F(T). If -̂ G T 
and xtj = Y,ir=i&k(tktj) = DJ=i 7A» t n e n 7r = 0 will be proved. One has 
t h a t yr = S ft, if this summation is taken over all & such t ha t tktj = tr. 
However, this sum is also the ent ry in the j t h position of the zero row vector 
X;Uo fikRk, as akj = 1, if, and only if, tktj = tr. This is t rue for each tj G T, 
hence x does not divide F(T). If x ^ 0, Lemma 5 yields a contradiction. 
Thus , x = 0, hence ft = 0 for each k and the rows of A are independent, 
as desired. 

Suppose t h a t S is of type C with / -c lass semigroup T. Let JT be the / -c lass 
such t ha t 0: JT —> tr as before. A corollary can be s ta ted using this notat ion. 

COROLLARY 1. If S is of type C and F(S) is q.-F., then for each non-zero 
b G <S and for each a G J r , b divides a. 

Proof. Theorem 1 shows t ha t F(S) q.-F. implies F(T) q.-F. Then t divides 
tr for each non-zero t G T (Lemma 5) . If <t>': S —» T is the / -c lass homo-
morphism, then a £ Jr implies t ha t <f>'(a) = tr. If b ^ 0 in 5 , then 0'(6) ^ 0 
in T; hence, there exists an element t = $'(c) £ T such tha t <f>f (a) = 
<t>f (b)4>r (c) = <j>'(bc). T h e definition of <// implies t ha t (6c)5 = aS, therefore 
there is an 5 G S such t ha t b (cs) = a. 

2. P r i m i t i v e i d e m p o t e n t s a n d t h e fixing g r o u p s . In this section, more 
necessary conditions for F(S) to be q.-F. are found using the relationship 
between the primitive idempotents of F(S) and the fixing groups Gt of the 
/-classes of 5 . All non-zero idempotents of F(S) are in F(G) (7). T h e result 
of Kupisch will be used. L e t / be an idempotent of F(S). T h e next theorem 
shows tha t an irreducible F(S)-submodule of F(S)f can be constructed from 
an irreducible F(G)-submodule of F(G)f by multiplying by an appropr ia te 
element of S. 

T H E O R E M 3. Let f be a primitive idempotent in F(S). If F(S) is q.-F., then 
the following conditions hold. 
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(i) There is an a (p^O) in S such that if s £ S and s $ A'(f), then s divides 
a in S. 

(ii) If F(G)u is the unique F (G)-irreducible submodule of F(G)f, then there 
exists a b Ç S, such that F(G)ub is the unique F\S)-irreducible submodule of 
F(S)f (clearly, b divides a in S). Moreover, if s Ç S and s $ A'(u), then s 
divides b in S. 

Proof. Refine the ideal series 5 D i ' ( / ) to a principal series S = 
S0 D Si D • • . 2> Sr+i, with Sp+i = A' '(/) and let Jv = Sv — Sp+i. Let M be the 
unique irreducible F (S) -submodule of F(S)f. If a £ Jp, then F[JP] = 
F[Ga] 2 F(S)af 3 M, by Lemma 2(iv), the choice of p, and the uniqueness 
of M. Use A'(J), then F(S)sf 2 M also. Thus, F[JP] H F(S)sf "D M * 
{0}. Then SSC\JVT^ {0} and, as a £ Jp, Lemma 2 (iv) implies that s divides a. 

Next refine 5 2) ^4'(w) to a principal series 5 = So D . . . Z) S r+i for 5 with 
S2+i = ^ ' (w) . Let b e Jq = Sq — Sq+i. Since S J) C Af(u), Siubf = {0} ; hence, 
F(S)ub = [F(G) + F(Si)]ufb = F(G)ub. However, w annihilates the radical 
of F(G) and /& annihilates F (Si) ; therefore, F(G)ub annihilates the radical 
of F(S). Thus, F(G)ub is a sum of irreducible F(S)-submodules of F(S)f. 
As F(S)f contains precisely one such submodule, F(G)ub must be F(S)-
irreducible. 

Note that if (c, \G\) = 1, then F(G) is semisimple and u may be set equal 
to / and a set equal to b. 

The result of Kupisch makes it clear that if e = e\ + . . . + en is a de
composition of the identity of F(S) into a sum of pairwise orthogonal primitive 
idempotents and if condition (ii) of Theorem 3 holds for each eu then F(S) 
is q.-F. 

Some additional information is needed concerning idempotents in a group 
ring. Certain subgroups of G will be associated with idempotents in F(G). 
If x = J^geaotgg, let ||x|| = ^OSGOLÇ. Clearly, if x, y Ç F (G), then \\x + y\\ = 

IMI + IMI-
LEMMA 6. If f is an idempotent in F(G), then \\f \\ is zero or one. 

Proof. All summations run over the elements of G. L e t / = ^gagg. Then 

H a& = \ H ad H X) OLhh ) = X) X) agahgh. 
g \ g / \ h / g h 

If k = g&, then X^a,,g = S f - ^ Œ * 0 ^ - 1 * ) ^ hence, £ ^ agag-ik = ah for 
each K G . Summing on &, one has that 

11/11 =]£«*= Z Z « A - ^ = X aJ X «(T-i* ) = V X «J = ll/ll2-
* & 0 0 ^ & / \ g / 

If £ = £i + . . . + en is a decomposition of the identity e of ,F(G) into a 
sum of idempotents e*, the lemma implies that 1 = \\e\\ = ||ei|| + ... + ||e«||; 
thus, for exactly one i, say i = 1, ||ei|| = 1, and ||e*|! = 0 for i = 2, . . . , n. 
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If et = YLgOLggy let Hi = {H: H is a subgroup of G and J2gçkHag = 0 for 
each & G G}. Let G be the group associated with a semigroup S of type C. 
For s G -S, let Gs be the subgroup of G that is the fixing group for the /-class 
that contains s. If R is a complete set of coset representatives for Gs in G, 
then S/Ê = sh', h, h! G i?, if, and only if, h = h'. Since 

5 G A'(ei) if, and only if, Gs G i?V Lemma 6 implies that G G Ht if i ^ 2 
and jffi = 0. Note also that A'{e\j = {0}. Assume that the et are pairwise 
orthogonal primitive idempotents and for each i = 1, . . . , n, let et and 6* be 
related as are / and b in Theorem 3. The following necessary condition for 
F(S) to be q.-F. can be stated with this notation. 

THEOREM 4. Let F(S) be q.-F. and let s G S. Then Gs G Pi Hif if the inter
section is taken over all i such that s does not divide b t in S. 

Proof. Suppose that Gs i Ht and 5 does not divide bt in S. Then set ^ 0; 
hence, F(S)ets 9^ {0} and F(S)eiS ^ F{S)Uibu contradicting the uniqueness 
of F(S)utbi in Theorem 3. 

3. Semigroups of type C obtained from semigroups of type C'. In 
the preceding discussion, a semigroup S of type C was given and from it a 
group G and the /-class semigroup T of type C were obtained. This can be 
reversed. I t will be described in a more general context first. Let T be an 
arbitrary finite (not necessary) semigroup, say T = {tt: i = 0, 1, . . . , r + 1} 
and let G be an arbitrary finite (not necessary) group. A collection of normal 
subgroups {Gim. i = 0, 1, . . . , r + 1} of G is said to be admissible relative to T 
if GtGj C Gjc whenever tttj = tk. Let (G, T) = {(g, t): g G G, / G T} be the 
direct product of G and T. In (G, T) define the congruence a as (g, tt)a(h, tj) 
if, and only if, i = j and g G hGt. Then 5 = (G, T)/a is said to be the semi
group constructed from T and the admissible collection {Gi}. Note that if 
S' is the collection of equivalence classes with representatives (e, tt), 
i — 0, l , . . . , r + l , then S' ~ T and the intersection of S' with each /-class 
of 5 contains precisely one element. The next theorem shows that these 
conditions are also sufficient for a semigroup S of type C to be constructed 
in this way. 

THEOREM 5. A semigroup S of type C can be constructed from a semigroup T 
of type C and admissible subgroups of an abelian group G if, and only if, there 
exists a monomorphism y: T —> S such that <j>n is an isomorphism of T onto the 
J-class semigroup of S. 

Proof. Suppose that <£ju is an isomorphism oî T = {tt: i = 0, 1, . . . , r + 1} 
onto the /-class semigroup of 5. Then <j>ntt = 0/x^ if, and only if, i = j ; hence, 
ixti and ixtj are in the same /-class of 5 only if i = j . The fixing groups Gt are 
determined by 5 and gntt = g'ptj if, and only if, i = j and g G g'Gt, as desired. 
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In the following discussion, 5 will be a semigroup of type C with group G 
and with a subsemigroup S* = \st: i = 0, 1, . . . , r + 1} such that 5* con
tains precisely one element of each /-class of 5. Let T = {tt: i = 0, 1, ..., r + 1} 
again denote the /-class semigroup of S, where 

T = To D T\ D . . . D rr+i, r, - ri+1 = {^}, 
is a principal series for T. Then 5* == T and one may assume that the s/s 
are labeled so that <£|s*: st —> tt is the isomorphism. If (c, \G\) = 1, Theorem 6 
will characterize semigroups 5 of this type such that F(S) is q.-F. by de
composing F(S) into a direct sum of semigroup rings which are formed from 
certain homomorphic images of T. Note that F(S) = 5Z*=o F(G)st; thus, 
for x G ^(5) , 

LEMMA 7. Ltf/ S be a semigroup of type C with group G and with a subsemigroup 
S* such that S* contains precisely one element from each J-class of S. Suppose 
that (c(F), \G\) = 1. If f is a primitive idempotent m F(G), let L = F(G)f. 
Then F(S)f ^ L(S*/A'(J) Pi 5*), the semigroup ring for S*/A'(f) P S * over 
the field L. 

Proof. Let S* = {st: i = 0, 1, . . . , r + 1}, s0 = e, sr+i = 0, with st —^st 

under the natural mapping of 5* onto S*/A'(f) P 5*. Define 

¥ : F(S)f->L(S*/A'(f) P S * ) 
as 

^l Z) £*5* ) = 12 ktsu kt G L. 
^ SiZS-A'if) ' si£S*-A'(f) 

If 
Z *^< = o, 

sies-A'(f) 

then as &* G F(G), ktSi = 0 for each i by Lemma 2(ii). Since L = F(G)f is 
F{G)-irreducible, if kt ^ 0, there is a 3> G ^(G) such that 3>&j = / . Then 
kiSt = 0 implies that 0 = yktSi = s if, contradicting s{ G 5 — A'(f). Thus, 
kt — 0 for each i; hence, ^ is a function. Clearly, ^ preserves sums, and, by 
the preceding remark, is one-to-one. Furthermore, ^(sif)^(sjf) = fsfsj = 
fSiSj = ^(SiSjf) = ^(SifSjf) as / G L\ thus, by linearity, products are pre
served and M> is an isomorphism. 

This lemma, together with (7, Lemma 1), provides the proof of the next 
theorem. 

THEOREM 6. Let S be a semigroup of type C with a subsemigroup S* as in 
Lemma 7. Suppose that (c(F), \G\) = 1 and e = e\ + . . . + en is a decom
position of the identity e of F(S) into pairwise orthogonal primitive idempotents. 
Let Lt = F(G)et. Then F(S) is q.-F. if, and only if, Lt(S*/'A'\et) P 5*) is 
q.-F. for each i = 1, . . . , n. 

As S* = T, the semigroup S*/A'(et) P S* can be obtained from T. If F 
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is a splitting field for G and (c, \G\) = 1, then 

F(S) ^ FlSr/A'ifiù H S*) 0 . . . 0 F(S*A4'(en) C\ S*)) 

hence, F(5) is q.-F. if, and only if, each F(S*/A,(ei)r
>\S*) is q.-F. As 

S*/A'(ei) r\ S* is of type C for each i, the algebra F(S) is a direct sum of 
semigroup algebras for semigroups of type C This theorem implies one of the 
conclusions of Theorem 1 in this more restrictive context. If ex = \G\~l Yi,g£G g, 
then A'id) = {0}; thus, F(S*M'(ei)) ^ F(T) is q.-F. if F(S) is q.-F. 
Theorem 6 also has the following corollaries. 

COROLLARY 2. Let G be a finite abelian group and let The a semigroup of type C 
Let S be the semigroup constructed from T and the admissible collection Gt = G, 
i = 0, 1, . . . , r + 1. If (c, \G\) = I, then F(S) is q.-F. if, and only if F(T) is q.-F. 

Proof. That F(S) q.-F. implies F(T) q.-F. has already been proved. Let 
e = e\ + . . . + en with the e3 pairwise orthogonal primitive idempotents 
and ex = \G\~l £ , € G g . Then A'(ex) = {0} and A'{ef) = Si for j > 1. Then 
5*M r(^i) r\S* ^ T and S*/A'(ej) C\ S* is a one-element group with zero 
for j > 1. As all L / s are fields and Lx ^ F, L^/A'id) C\ S*) is q.-F. for 
each i = 1, . . . , n; thus, F(S) is q.-F. by the theorem. 

COROLLARY 3. Let G be a finite abelian group and let T be of type C with 7\ 
cyclic. Suppose that (c, \G\) = 1 and that G * , i = l , 2 , . . . , r , is any collection 
of subgroups of G which is admissible with respect to T. If S is constructed from 
T and these groups, then F(S) is q.-F. 

Proof. Suppose that 7\ is generated by t, and r is the minimal positive 
integer such that tr+1 = 0. First note that if L is a field and T is a semigroup 
of the given type, then L(T) is q.-F. This follows from the fact that the matrix 
of parameters for T is non-singular if a one is placed in positions which cor
respond to V and all other entries are zero. As every homomorphic image of a 
semigroup of this type is again of this type, we have that 5*/^4/(^î) C\ S* 
is of this form for i = 1, . . . , n; hence, Lt(S*/Af (ei) H.S*) is q.-F. for each i. 
The theorem implies that F(S) is q.-F. 

An example of a semigroup of type C which cannot be constructed from a 
semigroup of type O and admissible subgroups of some group follows. 

s « g a b c d / h 0 
e 

g 
e g 
g e 

a b 
b a 

c d 
d c 

f h 
h f 

0 
0 

a 
b 

a b 
b a 

h f 
! h 

0 0 
0 0 

0 0 
0 0 

0 

o 
c 
d 

c d 
d c 

0 0 
0 0 

/ h 
h f 

0 0 
0 0 

0 
0 

I 
h 

f h 
h f 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 
0 

0 0 0 0 0 0 0 0 0 0 
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I t has no subsemigroup which contains one element from each /-class of 
S and is isomorphic to the /-class semigroup of S as a2 = b2 = h and c2 = d2= f 
are in the same /-class. The algebra F(S) is q.-F. for arbitrary fields as the 
matrix A of parameters obtained by replacing e and h by one and all other 
elements by zero in the table above (ignore the zero row and column) is 
non-singular. 
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