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ABSTRACT. The adopted nutation series correspond to an elliptical 
uniformly rotating Earth with an elastic inner core, a liquid core and 
an elastic mantle. There exist nowadays a difference between the 
theoretical results and this theory. In this paper, we introduce the 
mantle inelasticity in the equations in order to give an idea of its 
contribution to the nutations. 

INTRODUCTION 

Due to the lunisolar attraction, there is a forced motion of the mean 
Earth rotation axis with respect to the inertial space and with respect 
to the Earth. In the first reference frame, they are called precession 
and nutations and in a reference frame uniformly rotating, they appear 
in the form of diurnal wobbles. Nowadays, the most complete, published 
nutation series are computed by Wahr (1981b) for an elliptical, 
rotating Earth with an elastic inner core, a liquid outer core and an 
elastic mantle. 

The analysis of Very Long Baseline Interferometry observations 
(Herring et al., 1986) has yielded estimates of important corrections 
to the seven largest nutation series coefficients in the Wahr 1s tables. 
The nutation series computation need assumptions about the Earth model. 
A part of these corrections may be explained by taking a more complete 
Earth model into account; for example, Herring et al. suggest to take a 
more complete core-mantle coupling in the model. In this paper, we 
will examine the effect of mantle inelasticity on the nutations. 
Recently, Wahr and Bergen (1987) have analysed this effect in terms of 
a first order perturbation theory and by constructing partial 
derivatives with respect to the Earth rheological parameters. They 
conclude that mantle inelasticity cannot resolve the discrepancy 
between the observations and the theory but that the effects are 
potentially observable. This is a good reason to develop the equations 

* Chargé de Recherche at the Fonds National de la Recherche Scientifique 

323 

A. K. Babcock and G. A. W il kins (eds.), The Earth's Rotation and Reference Frames for Geodesy and Geodynamics, 323-329. 

© 1988 by the IAU. 

https://doi.org/10.1017/S0074180900119680 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900119680


324 

using complex arithmetic and integrating directly the new equations 
(which are briefly presented in the first paragraph). 

Resonance effects are taken into account in Wahr's computations by 
using normal mode expansion (Wahr, 1981a). The problem with this 
theory is that the normal mode expansion is no more valid in the 
complex variable space (Wahr & Bergen, 1987). We will analyse this 
situation in paragraph 2. Finally, we will give new numerical values 
for some of the nutations (paragraph 3 ) . 

1. INTEGRATION OF THE DEFORMATION EQUATIONS FOR AN ELLIPTICAL, ROTATING 
EARTH WITH AN INELASTIC MANTLE. 

By using the correspondence principle of Biot (1954), the stress-strain 
relationship may be expressed in the frequency domain, in the same form 
as in the elastic case (i.e. Hooke law), but with complex and frequency 
dependent shear and bulk moduli. The partial differential equations 
become then complex as in the spherical case (Zschau, 1979). In order 
to find scalar equations, we separate real and imaginary parts and as 
in the elastic case (Smith, 1974), we expand the scalar, the vectorial 
and tensorial components using the Generalized Spherical Harmonic 
functions (GSH) introduced by Phinney and Burridge, in 1973. We obtain 
then twice the number of equations comparing to Smith (1974) and Wahr 
(1979) theory. The equations are presented in a previous paper 
(Dehant, 1987a) and in our thesis (Dehant, 1986). 

As explained by Wahr (1979 and 1982), the displacement field for 
an elliptical uniformly rotating Earth contains the effects of the 
nutations and of the variation of the rotation rate. The nutation 
effect is in that frame, a toroidal displacement of the order/=1, m=l; 
the variation of the rotation rate effect is a toroidal displacement of 
the order £=1, m=0. They are obtained when one computes the Earth 
response respectively to an external potential of the order ( i = 2 , m=l) 
and ( j i=2, m=0). In the case of an inelastic mantle Earth, these 
toroidal displacements are complex and one can deduce "complex 
nutations". 

In order to integrate numerically those equations, one needs 
complex profiles of the rheological properties. There are different 
models in the literature from which one can compute a shear modulus 
profile. Two models are based on strain retardation time distribution. 
They give either a quasi constant quality factor Q (Liu et al., 1976) 
or a frequency to the power α Q model (Anderson & Minster, 1979). 
Those models assume an Earth rheology comparable to standard linear 
solids in series. Zschau (Zschau & Wang, 1985) considers a stress 
relaxation time distribution in order to construct his model and 
assumes that the Earth is comparable to an infinite set of Maxwell 
bodies in parallel. This distribution is a cut gaussian distribution 
(Zschau, 1985). The parameters of this distribution (the mean, the 
standard deviation and the cut-off period) are computed by using a very 
large set of data. Details on this model are given in Dehant (1986 and 
1987a). As explained in this last paper, we believe that Zschau 1s 
model is the most appropriate for the Earth's mantle rheology. 
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Concerning the bulk modulus profile, there is no need for a model 
because the effects are to small (see Dehant 1987a). The values 
published by Dziewonski (PREM, 1981) can than be directly used. 

Introducing these rheological profiles and integrating the new 
equations, one gets the Earth's surface displacements, the response to 
a specific external tidal potential component. From these results, one 
can compute inelastic tidal parameters (Dehant 1987b and Dehant & 
Ducarme, 1987) and new nutations. 

2. NORMAL MODE EXPANSION 

2.1. Elastic Earth's case - Review 

The free oscillation equation of motion is deduced from the forced 
deformation equation by suppressing the external tidal force. 
Resonance effects in the forced deformations make it necessary to 
compute the Earth normal modes. Wahr (1979, 1981a and 1982) has 
developped a theory capable of accounting for these effects by using a 
normal mode expansion. The vectorial motion equations describing a 
deviation from the hydrostatic equilibrium, are first written in an 
unifomly rotating frame and in the frequency domain. Wahr (1981a) 
writes them using operators so that he can get the following forms, 
respectively in_the forced and free cases : 

wz = Az + F (1) 
w z = Az (2) 

He defines tRën a function space H in which he introduces an inner 
product. He uses an equivalence relation and verifies that A is 
self-adjoint, so that all the hypotheses of the spectral decomposition 
theorem are satisfied. He expresses then ζ as an expansion of the 
normal mode eigenfunctions ζ . He shows also that it is possible 
to express the response of the Earth to an external potential as a sum 
of a direct response of the Earth in the same frequency band at a 
frequency far from the eigenfrequencies, plus a correction due to 
resonance effects, thus inversely proportional to (W-WQ) and 
( w 0 - w n ) . 

2.2. Inelastic Earth's case 

In the inelastic case, the operator A defined in (1) is complex. The 
normal mode frequencies are complex and this is the reason why the 
hypothesis of the spectral decomposition theorem is not satisfied. 
Wahr and Bergen (1987) say that this is evident from the fact that 
self-adjoint operators have real eigenvalues, whereas the eigenvalues 
of A are complex. But there is a way to get out from this problem, 
considering that we are wgrking aj the first order in the ellipticity. 
If we introduce w = w +i w in the complex form of the 
equation of motion, at the first order in the ellipticity and if one 
computes the-j. normal mode expansion in the diurnal band, the*terms 
containing w can be neglected. Separating the real part and the 
imaginary part of the equation, one can work in the same way as in the 
elastic case with twice the number of vector components. This 
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situation is analysed in full details in a paper in preparation (Dehant 
& Antoine, 1987). 

3. NUMERICAL RESULTS AND DISCUSSION 

From the surface displacements, one can compute the tides, the 
nutations and the variation of the length of day. From the tides, one 
deduces the gravimetric factor and the Love numbers. These results 
were presented in Dehant (1987a and b) and in Dehant and Ducarme 
(1987). The inelasticity of the Earth gives a small increase of the 
gravimetric factor of about 0.1% in the semi-diurnal and diurnal band 
(far from the NDFW) and about 0.2% for M^. The most important 
difference lies in the definition that one uses to compare the theory 
with the observations. The difference was about 1.5% in Melchior and 
De Becker's paper (1983). With our definition, the remaining 
discrepancy is about 0.6% which is probably due to a calibration 
effect. The increase due to inelasticity for the Love numbers is much 
more significative. It is about 1.5% in the semi-diurnal and diurnal 
band and about 2.6% for h and 3% for k for M^. This is not 
negligible for VLBI observations. 

For evaluating the nutations, we must account for the resonance 
effects in the diurnal band and it is necessary to compute the normal 
mode frequencies. From the results, we conclude that for an inelastic 
Earth, these frequencies shift a little bit to the lower frequency part 
of the spectrum. Among the most important modes, the Nearly Diurnal 
Free Wobble (NDFW) also called Free Core Nutation (FCN) is due to an 
angle between the rotation axis of the core and the rotation axis of 
the mantle and produces a torque at the core-mantle boundary. Due to 
the deformations at this boundary, there exist a pressure torque acting 
against this effect and increasing the period in the inertial space. 
If one considers the Mantle inelasticity, the Earth deforms more 
(increase of the Love number h for example). This will produce an 
increase of the period of the FCN in the inertial space. This is in 
the opposite sense of the observations because the observed inertial 
space period is about 435 days (Neuberg et al., 1987). The elastic 
inertial space period computed by Wahr is about 460 days and the 
inelastic period is 463 to 467 days depending on the inelastic models 
presented in paragraph 1. The Tilt-Over-Mode (TOM) also called the 
Free Diurnal Nutation (FDN), is due to an angle between the mean 
rotation axis and the instantaneous rotation axis and is associated 
with the rotation of the Earth as a whole. It will not be so affected 
by the mantle inelasticity. The Chandler Wobble (CW) is due to an 
angle between the rotation axis and the figure axis. Its period 
increases from about 6 days to 15 days, depending on the inelastic 
models. The nutations are computed from the surface displacement 
field, response to an external potential of the order / = 2 , m=l, thus, 
in the diurnal band. This is the reason why the most important 
resonance effect is due to the presence of the NDFW in this band. Due 
to the difficulties to find the eigenfunctions, we decide to consider 
only the effects of inelasticity on the NDFW and on the direct 
computation of the tides. So that the surface displacement field, 
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response to an external potential of frequency w, is : 

ïï(w) = û(w n) + Σ Ί a (w,w n,w ) u (w ) (3) 
v ' v 0 y n=l n v ' 0' n 7 n v n 7 

where ÏÏ(WQ) and TTo(w^) are complex; n=l corresponds to the CW, n=2, to 
the TOM; n=3, to the NDFW;n=4 to 9 correspond to the most important 
Earth classical eigenfunctions of ±54min, ±28min and ±24min. 

The numerical results of the direct integration were presented in 

a previous paper (Dehant, 1987b). The annual, semi-annual and 18.6 

years nutation results are presented in table I where they are compared 

with Wahr*s theoretical results (1979) and to the observations (Herring 

et al., 1986). One can see that the discrepancy between the theory and 
the observation is not resolved, it is even worse than before. 

TABLE I 

Periods Present paper Wahr Kinoshita Observations 

18.6 yrs Δψ 17."1936 17."1922 17."2743 

Δε 9."2029 9."2025 9."2278 

annual Δψ 0."1424 0."1426 0."1254 0."1470 
Δε 0."0053 0."0054 -0."0001 0."0072 

semi- Δψ -1."3169 -1."3180 -1."2770 -1."3195 

annual Δε 0."5731 0."5736 0."5534 0."5739 

We believe that a part of the discrepancy may be due to the fact that 
other phenomena must be considered in the computation of the FCN. 
Gwinn et al. (1986), for example show that a non-hydrostatic 
ellipticity (variation of about 500 metres) at the core-mantle boundary 
may decrease the theoretical inertial space FCN period. Pressure 
torques due to displacements in the fluid core may also be involved. 
In the future, we will examine these problems in more details. 
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D I S C U S S I O N 

Yoder : I presume that the change in k, Λ, etc. is due to the use of Maxwell-like dissipation units. Have 
you considered models with Kelvin units (i.e. dashpot & spring in parallel)? 

R e p l y b y D e h a n t : Yes. I applied also models involving an infinite number of standard linear solids in 
series. First, the Liu et al. (1976) model (which corresponds to the Anderson and Minster model (1979) 
with a = 0) and, second, the Anderson and Minster model (1979) with a = 0.15 which is a realistic value for 
the Earth. The results obtained by using Zschau's model were in between the results of those two models. 
Ige t : 

Models 
Increases due to 

inelasticity for M ; 

h \ k 

Liu et al. 1976 about 2% 

Zschau 1985 2.6% 3% 

Anderson and 
Minster 1979 

about 4% 
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