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ON HOMEOMORPHIC EMBEDDINGS OF Km,n 

IN THE CUBE 

JEHUDA HARTMAN 

1. Introduction. Homeomorphic embeddings of Kn in the ra-cube 
were investigated in [6]. In particular, it was proved that any homeo-
morph of Kn+i embedded in the ra-cube has at least n2 edges. Further
more, homeomorphic embeddings of Kn+i having exactly n2 edges are 
unique up to isomorphism. In this paper a similar problem for the com
plete bipartite graph is considered. 

We adopt the notation and terminology of [5]. 
All graphs considered are without loops and multiple edges. 
Let x — uv be an edge of a graph G; x will be called subdivided if it is 

replaced by a vertex w and by edges uw and wv. A graph G is called a 
subdivision of G if it is obtained from G by a subdivision of an edge of G. 
A refinement G of G, is a graph isomorphic to a graph obtained from G 
by a finite sequence of subdivisions. The vertices of G corresponding to 
vertices of G are called essential vertices, whereas the vertices of G which 
are not essential are called false vertices. Two graphs are said to be 
homeomorphic if both can be obtained from the same graph by a sequence 
of subdivisions of edges. Note that if m, n > 2, then the homeomorphs 
of Km,n are refinements of Km>n. A graph G' is defined to be homeomor-
phically embeddable, or simply embeddable in a graph G, if there exists a 
homeomorph of G' which is isomorphic to a subgraph of G. 

Let Ql denote the graph of the /-dimensional cube. Ql has 2l vertices, 
which may be labeled by binary vectors of length /. Two vertices of Ql are 
adjacent if their binary representations differ at exactly one coordinate. 
The infinite graph Q is defined as a graph whose vertices are infinite 
binary sequences with a finite number of ones, and two vertices are 
adjacent in Q if their binary representations differ at exactly one place. 
Clearly, a finite graph G is a subgraph of Q if and only if there exists a 
finite / such that G C Ql. 

Since Km+n is embeddable in Qm+n-i [6] and Km,n C Km+n, Km<n is also 
embeddable in Qm+n~l and therefore in Q. 

Denote by e(G) the number of edges of G and for 1 ^ m} n < oo define 
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the function ë(m, n) as follows: 

ë(m, n) = MinT{e(T): V is a refinement of Km>n, r C<2). 

Our aim in this paper is to calculate ë(m, n) for 1 ^ m, n < co and to 
characterize refinements of Kmt7l embedded in Q having exactly e(rn, n) 
edges (i.e., the minimal embedding of KMtn in Q). 

2. Bounds on e(m, n). In this section we introduce more notation and 
derive lower and upper bounds for e(m, n). 

Km<n has two sets of vertices, which shall be denoted by Xi, x2j . . . , xm 

and y1} y2l . . . , yn. Let Kmtn be a refinement of Km<n. Denote by 
Xi, X2, . . . , xmy yi, $2, • . . , yn the essential vertices of Km%n corresponding 
to Xi, X2j . . . , xm, yi, y2, . . . , yn, respectively. Let p^ be the path in 
Kmi7l connecting xt and jj and corresponding to the edge x^j in Km.tTl. 
We denote by Kmn — xt the refinement of Km_iy7l obtained from Kmtn by 
elimination of the vertex xt and all the false vertices on the paths ptj 

(1 g j ^ «). Km,n — Jj is defined similarly. 
By [x] we mean the smallest integer ^ x . 

LEMMA 1. For 2 ^ n and 1 ^ w, 

(1) e(ra, ?z) ^ "j • e(m, n — 1) r . 

Proof. Let i?m,n C Q be any refinement of i£m>w. Since KmtU — y5 is a 
refinement of i£m>w_i (1 S j ^ n)y we have, 

(2) * ( £ „ , „ - 3^) ^ *(*»,» - 1). 

Therefore 

n 

(3) X) g ( 4 , « - Jj) è w ë(m, » - 1). 

On the other hand, 

(4) Z *(£„,» - yj) = (n - l)e(£Wfll). 

From (3) and (4) 

(5) (n — l)e(Km>n) ^ n-l{m, n — 1). 

By choosing Km<n with ë(m, n) edges, we obtain from (5) 

(n — l)ë(ra, n) ^ në(m, n — 1), 

from which (1) follows. 

Note that from the symmetry of ë(m, n) we have 

(6) ë(m, n) ^ \——- • e(rn — 1, n) f for 2 ^ w, 1 S n. 
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Since Kn is homeomorphically embeddable in Qn~l and Km>n C Km+n, the 
methods of [6] can be used to obtain homeomorphic embeddings of KmiTl 

in Qm+n~1 and consequently achieve an upper bound on e(m, n). 

THEOREM 1. There exists a subgraph Y of Qm+n~l which is a refinement of 
Km,n and 

e(T) = 2rnn — max(m, n). 

Proof. Let v0 = (0, 0, . . . , 0) and vt = (ai, a2, . . . , am+n_i), where 
af = 1, aj• = 0 Vj'7e i and define v^ as the vector sum of vt and v5. 
Assume n ^ m and construct T as follows. The vertices of V are 
Vo, Vi, . . . , vm+n-i, whereas the edges are v0Vj (m ^ j < m + n) and 
VfVij, VfjVj (m ^ j < m + n, 1 rg i < m). T is obviously a refinement of 
i£m,w and has 2mn — n edges. 

If we denote e*(m, n) = 2mn — max(m, n), then by Theorem 1, 

(7) ë(m,n) ^ e*(m,n). 

It will be shown that except for a finite number of cases, equality holds 
in (7). 

A subgraph V of Q is defined to be standard if there exists an auto
morphism of Q transforming V to the graph described in Theorem 1. For 
a refinement 2?m,n of KmtH we define a matrix Hm<n = (hif) (1 ^ i ^ m, 
1 ^ 7 ^ ^ ) where h a is the number of false vertices of Km>n on the path 
pij (connecting xt with jj in Km>n). Hm>n is called the refinement matrix 
of i£m>w, and it characterizes Km>n up to isomorphism. 

Note that after an appropriate arrangement of the vertices of a stan
dard refinement of Kmj7l (n ^ m) the corresponding refinement matrix 
will have the form, 

J^-m.n 

1 . . . 1 
1 . . . 1 

1 1 1 
0 0 . . . 0 

On the other hand, it is clear that a matrix Hmtn of this form represents a 
standard refinement of KmtTl. Let 

ri = X) *« 1 = * = w> 
i = i 

Z) **i i = i = ^ 
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and 

mtj = htj + ht+itj + hitj+i + Ai+i.i+i, 1 ^ i < m, l S J < n. 

mu is the number of false vertices on a cycle of Kmn. Since all cycles of 
Q are even, we have 

LEMMA 2. If Kmt7l is a refinement of Km<n and Km>n C Q, then 

mtj = 0(mod 2), 1 S i < m, 1 ^ j < n. 

3. The minimal embeddings. Denote by P(m, n) the following 
statement: If T is any subgraph of Q which is a refinement of Km>n then 
e(T) ^ e*(m, n). In view of (7) if P(m, n) then e(m, n) = e*(rn, n). 

Denote by P*(w, n) the statement: P(my n) and if e(T) = e*(rn, n), 
then T is standard. Obviously, P(ra, n) <-> P(w, m) and the same holds 
for P*(m, n). 

We shall prove P(m, n) ior 1 ^ m S n < co except for the pairs (2, 2), 
(2, 3) and (3, 3), where P(ra, n) is not true. P*(ra, w) will be proved for 
1 S m S n < oo except for the pairs (2, 2), (2, 3), (2, 4), (3, 3), (3, 4) 
and (4, 4), where P*(m, n) does not hold. (Clearly, P*(l , n)). The excep
tional cases were investigated and the results will be stated without 
proofs. 

THEOREM 2. If n ^ m, then 

P(m, n) —> P(ra, n + 1). 

Proof. Assume P(w, w), i.e., é(ra, n) = (2w — l)w. By Lemma 1, 

n + 1 
e(w, w + 1) ^ ë(w, n) — (2m — 1) (n + 1), 

which proves P(ra, w + 1). 

THEOREM 3. / / n ^ m > 2, //^w 

P*(m,n) ->P*(?n,n + 1). 

Proof. We assume P*(w, w) and therefore P(w, w). By Theorem 2 
P(ra, w + 1) follows. Let i?,n,n+i be any refinement of i£m,w+i such that 
K-m,n+i C (? and e{Km>n+i) = ë(m, n + 1). Using (4) and (5), the graph 
Km,n+i — Jj must be minimal for 1 ^ ; g w + 1. By the assumption 
P*(w, w), KmtU+i — yj is standard for 1 ^ jf ^ n + 1. In particular, 
Km,n+i — %+\ is standard. Let Hm>n+i be the refinement matrix of 
Km,n+i and assume n > m. Since J£m,n+i — yn+\ is standard, i7m>n+i has 
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the following form: 

H„ m,n+l 

1 . . . 1 
1 . . . 1 

1 1 . . . 1 
0 0 0 *"m,n+l 

The elimination of the j - th column (1 ^ j S n) from HmyTl+i results in a 
refinement matrix of Km,n+i — Jj which is also standard; therefore 

hitn+i = 0, 1 for 1 ^ i ^ m. 

From the minimality of KmiH+i — yn+iy 

(8) cn+i = (2m — l)(n + 1) — m(n + 1) — n(m — 1) = m — 1. 

Furthermore, from Lemma 2, 

hitn+! = hjy7l+1(mod 2) and ATO,n+i ^ &*>w+i(mod 2), 1 <, i, j < m. 

Hence the w + 1-th column of Hmtn+i is either (0, 0, . . . , 0, l ) r or 
(1, 1, . . . , 1, 0 ) r . The first possibility contradicts (8) (m > 2) ; the 
second possibility proves that Km>n+i is standard. The case n = m is 
treated similarly. 

LEMMA 3. If n ^ 5 then 

P*(n - 1, w) ->P(n,n), 

Proof. By Lemma 1 and P*(n — 1, n), 

(9) e(n,n) ^ { - ^ - j ; ' ë(w,w - 1 ) | = <! —^—• (2»(w - 1) - w ) | 

= \2n — w — 1 — 

By (7) and (9), 

(10) 2n2 - n è ë(w, w) ^ 2n2 

= 2w n — 1. 

1. 

Assume e(n, n) = 2n2 — n — 1. Then there must exist a graph 
Kn,n C Ç, such that Kni7l is a refinement of KnjTl and has w2 — n — 1 false 
vertices. 

If Hn,n denotes the refinement matrix of Kn,n then, 

n n 

S ri = S Cj = n2 — n — 1. 
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Observe that 

(11) Cj, rt ^ n — 1,1 :g i, j ^ n. 

Otherwise there would exist a graph Kn-i>n C Q such that 

^(^n-i,n) ^2n2 - n - 1 - 2n < e*(n - 1, «), 

contradicting P*(?z — 1, n). On the other hand, there must be a natural 
number k (1 ^ k ^ n)y such that ck = n — 1. Otherwise, 

^3 Cj ^ n(n — 2) < n2 — n — 1. 

Assume without loss of generality 

(12) cn = n - l . 
Let Hntn-i be the matrix obtained from HHtn by omitting the n-th column. 
For the graph Kn>n — yn whose refinement matrix is Hn,n-\ we have 

e(Kn,n - yn) = 2n2 - n - 1 - (2n - 1) = e*(n - 1, n). 

By P*(n — 1, n), Kntn — yn must be standard and hence we may assume 
for Hn,n that ha = 0 (1 ^ i ^ «), A^ = 1 (1 S i S n, 2 S j ^ n - 1). 

From (11) hin S 1, 1 = i ^ w. From (12) we may assume without loss 
of generality h\n = 0 and consequently hin = 1, 1 < i S n. But then 
mitn-i = l(mod 2), contradicting Lemma 2. 

Therefore from (10), e(n, n) = 2n2 — n, which proves the lemma. 

THEOREM 4. If n ^ 5, /Aera 

P*(n - l,n - 1) -+P*(n,n). 

Proof. P*(n — 1, n — 1) —> P*(?z — 1, w) by Theorem 2 and 
P*(w — 1, n) —> P(n, n) by Lemma 3. Let Knr7l C Q be any refinement 
of Kn>n such that 

(13) e(Kn>n) = 2n2 - n. 

From (13) we have, 

n n 

(14) J2 ri = H CJ = n2 - n-

Similarly to the proof of (11), the following can be shown: 

(15) ck, rk ^ n, 1 ^ k ^ n. 

Now we show that there must exist an integer k (1 ^ k ^ n), such that 
rk = n or ck = n. For assume rk ^ n — 1 and cfc ^ w — 1 (1 ^ fe ^ «). 
Then by (14), 

(16) rk = ck = n - 1,1 S k ^ n. 

https://doi.org/10.4153/CJM-1980-050-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-050-6


650 JEHUDA HARTMAN 

Since 

1] 2] hu = n2 — n, 

there must exist integers i and j (1 ^ i,j S n), such that htj = 0. 
Without loss of generality we may assume hniU = 0. 
Let i7n_i>n_i be the matrix obtained from Hnj7l by omitting the nth row 

and nth column. i7w_]in_i is a refinement matrix of a graph j?n_itn_i, 
which is a refinement of i£n_iin_i and is obtained from Kn<n by omitt
ing xn and ^ and all the false vertices on the paths corresponding to 
the edges incident with xn and yn in Kn<n. Thus Kw_i>n_i has exactly 
n2 — n — 2(n — 1) false vertices. Consequently, 

e(£„-i>n-,) = (» - l ) 2 + n2 - n - 2(n - 1) = e*(rc - 1, n - 1). 

By P*(n — 1, w — 1), i?w_i)W_i is standard. We may therefore assume 
that HntTl has the form, 

-H-n,n 

0 
0 

0 1 

kin 

h2n 

1 
""n,n—1 1 

From (16), 

hn2 = hn% = . . . = hnjH-i = 0 

(17) A*! = » - 1 

Aln = kin = • • • = K-l,n = 1 

$2, 3>3, 3̂4 are all adjacent to y\ in Q, since Aw_ijW_i is standard. From 
(17) $2, 3̂ 3, 3>4 are also adjacent to xn. Thus, Kn<n 3 K2^. However Kitz 
is not a subgraph of Q (see Proposition 1). This completes the proof that 
there exists an integer k (1 ^ k ^ n), such that 

rk n or Cfc w. 

Without loss of generality assume cn = n and let Hn,n-\ be the matrix 
obtained from HniTl by the elimination of the nth column. From (14), 

(18) £ £ K = n" 
i=l j=l 

2n. 

Therefore, if Kn>n 

ffn.n-1» then 
yn is the refinement of Kntn-i, represented by 

(19) e(Kn,n - %) = n2 — 2n + n(n — 1) = e*(n, n - 1). 
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By Theorem 3 and (19), Kn>n — yn must be standard. Therefore, for 

hu = h2X = . . . = hni = 0 
and 

htj = 1 1 ^ i ^ n, 1 < j < n. 

But then cn-\ = w and as before, Kn.n — $n_i is standard, which indicates 
hin ^ 1,1 ^ i ^ n. Since cn = w we have /&*w = 1 , 1 ^ ^ ^ ft. Therefore 
i?n>w is standard and P*(w, ft) is proved. 

From Theorems 3 and 4 we conclude the following. 

COROLLARY 1. If there exist i, j ^ 5 such that P*(i, j) then 

P*(m, n) for m ^ i, n ^ 7. 

We now list some special cases. The proofs of the statements follow 
from similar methods used in the previous arguments. (Clearly, 
e(2, 2) = 4). 

PROPOSITION 1. (a) e(2, 3) = 8. 

(b) Let T be any refinement of K2.z such that T C Q and 
e(T) = 8. Then T is unique (tip to automorphism 
ofQ). 

PROPOSITION 2. (a) P(2, n) for n ^ 4. 

(b) There are exactly two isomorphism types of sub
graphs of Q, having exactly e*(2, 4) edges, which are 
refinements of K2A. 

(c) P*(2,n)for n ^ 5. 

Note that, in a standard refinement of K2<n, essential vertices of degree 
two may be exchanged by false vertices. 

PROPOSITION 3. (a) ë(3, 3) = 14. 

(b) Let T be any refinement of i£3|3 such that T C Q and 
e(T) = 14. Then T is unique (up to automorphism 
ofQ). 

PROPOSITION 4. (a) P(3 , n) for n ^ 4. 

(b) There are exactly four isomorphism types of sub
graphs of Q, having e*(3, 4) edges, which are refine
ments of KzA. 

(c) P*(S,n)for n ^ 5. 

PROPOSITION 5. (a) P(4, n) for n ^ 4. 

(b) There are exactly three isomorphism types of sub
graphs of Q, having e*(4, 4) edges, which are refine
ments Of î 4,4-

(c) P*(4:,n)for n ^ 5. 
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PROPOSITION 6. (a) P*(5, 5). 

From Corollary 1 and Proposition 6, we get the following scheme for 
proving P*(rn, n) for m, n ^ 5. 

Thus, 

THEOREM 5. P*(m, n) /or m, n ^ 5. 
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