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Classification of Geometries with Projective Metric

By D. M. Y. SOMMEKVILLE, D.Sc.

(Bead and Received 14-th January 1910).

§1. In the Cayley-Klein projective metric it is ordinarily
assumed that the measure of angles, plane and dihedral, is always
elliptic, i.e. in a sheaf of planes or lines there is no actual plane or
line which makes an infinite angle with the others. With this
restriction there are only three* kinds of geometry—Parabolic,
Hyperbolic and Elliptic, i.e. the geometries of Euclid, Lobachevskij
and Riemann ; and the form of the absolute is also limited. Thus
in plane geometry the only degenerate form of the absolute which
is possible is two coincident straight lines and a pair of imaginary
points ; in three dimensions the absolute cannot be a ruled quadric,
other than two coincident planes. If, however, this restriction as
to angular measurement is removed, there are 9 systems of plane
geometry and 27 in three dimensions; for the measure of distance,
plane angle and dihedral angle may be parabolic, hyperbolic, or
elliptic.

It is the object of this paper to classify the geometries with
reference to the form of the absolute, first in three dimensions and
then generally in n dimensions.

§2. The points, lines, planes in the general geometry are
represented by the points, lines, planes of ordinary Euclidean
space. The points at infinity or absolute point* are represented by
the points of a quadric surface, the absolute : lines and planes at
infinity or absolute lines and planes are represented by the tangent
lines and planes of this surface. On every line there are two

* A distinction is not made here between the "antipodal" and the
"polar" forms of elliptio geometry. The antipodal form (as in ordinary
spherioal geometry) does not in fact make its appearanoe at all in the pro-
jective metric, for two lines determine just one point, as two points determine
just one line.
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absolute points, and through every line there are two absolute
planes. On every plane there is an assemblage of absolute points
and lines, represented by the points and tangents of a conic;
and through every point there is an assemblage of absolute lines
and planes, represented by the generators and tangent planes of a
cone. The " distance " (i.e. distance, plane angle or dihedral angle)
between two elements of the same kind is defined thus :

Two elements, P, Q (points, intersecting lines, planes), determine
a one-dimensional geometric form PQ (range of points, pencil of
lines, sheaf of planes), and in this form there are two absolute
elements, X, Y. Then, (XY, PQ) representing the cross-ratio of
the range, pencil or sheaf, we have

(PQ) = const xlog(XY, PQ).
For points, lines and planes the constant has independent

values, K, k, K.

§3. We have the following forms of pairs of elements :

(1) X, Y real and not separating P, Q. (XY, PQ) is positive
and log(XY, PQ) is real.

(2) X, Y real and separating P, Q. (XY, PQ) is negative and
log(XY, PQ) is of the form a + iir. a is zero if P, Q are
harmonic conjugates.

(3) X, Y imaginary. If the equations of P, Q are P = 0, Q = 0,
the equations of X, Y will be of the form P + (o + t6)Q = 0,

P+(o-i6)Q = 0. Then (XY, PQ) = ̂ 4 " = ̂  where
a — to

tan<£ = —, and log(XY, PQ) = 2i<t>.
a

(4) X = Y. (XY, PQ) = 1 and log(XY, PQ) = 0.
(5) P = Q. (XY, PQ) = 1 and log(XY, PQ) = 0.
(6) Q = Y ; (XY, PQ) = 0. Q = X ; (XY, PQ) = ». In either

case log(XY, PQ) = ±°°.
(7) X = Y = Q. (XY, PQ) is indeterminate.

If the absolute degenerates to two coincident planes, X = Y for
any point-pair, but since the distance must in general be finite K
must be infinite. In other cases K may be real or purely imaginary.
Similarly for k and K.
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Two similar elements are parallel when their intersection is on
the absolute.

X = Y and (PQ) = 0.

Two similar elements are mutually perpendicular when they are
harmonic conjugates with respect to the absolute.

(XY, PQ) = - 1 and (PQ) = wrC.

Distance is a periodic function. If (XY, PQ) = a + ib,

(PQ) = Clog(XY, PQ) = C(log Jo^TF* + itan"1— + 2MT»).

The period is thus 2i7rC.

In the ordinary (elliptic) measurement of angles the period is it
n

and k = -̂ -. When two lines are at right angles 6 = 0, a = — 1, and

the angle =fori = —. So that this value of the constant gives the

ordinary circular measurement of angles. Compare Laguerre's

expression for the angle between two lines u, u'; <j> = ~—]og(uu\ <•><•>'),

where to, <o are the two isotropic lines through («u'), i.e. the lines
joining (MM') to the two circular points. Any other value of the
constant simply corresponds to a different unit of measurement.

For example, if k = the unit angle is the degree.
IT

§4. The distance between two elements of a sheaf (or range) is a
definite multiple of the distance between their polars.

Let P, Q be two elements of a sheaf PQ, and let X, Y be the
absolute elements of PQ; p, q the polars of P, Q, determining with
PQ the elements F , Q' of the sheaf PQ. Let x, y be the absolute
elements of the range pq.

Then (XY, PF) = - 1 = (XY, QQ'),
and (xy, pq) = XY, FQ') = (XY, F P ) . (XY, PQ). (XY, QQ')

= (XY,PQ).
But (pq) = c\og(xy, pq) and (PQ) = Clog(XY, PQ)

Hence =—.
c C
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The distance between dissimilar elements can be expressed in
terms of the three constants, K, k, K.

For example, the angle between a line a and a plane o may be
defined thus, a cuts o in a point O. Take any other point P on a
and find the line PM perpendicular to o (i.e. join P to the pole of
a, cutting a in M). Then the angle aa is a definite multiple of
the angle POM. Or it may be defined in this way. Let the polar
of a cut a in S. Then the angle aa is a definite multiple of the
angle between the planes a and Sa. Or, let the polar of 0 cut a and
OM in points A, B. Then the angle aa is a definite multiple of the
distance (AB). These multiples are taken in such a way that the
angle between an actual plane and an actual line is real if they
intersect in an actual point.

Two non-intersecting lines a, b have two distances which may be
defined thus. Let a', b' be the polars of a, b. Then there are two
lines which cut the four lines a, b, a', b', and these are per-
pendicular to both a and b. The lengths of these common
perpendiculars, multiplied by an appropriate constant, are the two
distances.

If the two lines and their polars belong to the same regulus of a
ruled surface of the second order there are an infinite number of
common perpendiculars and they are all equal.

For take any two lines of the other regulus, cutting a, a', b, b',
in P, F , Q, Q' and P,, P/, Qu <&', and the absolute in X, Y and
X,, Y,. Then (PF, QQ') = (PI, P/, Q,, Q,'); X, Y are the double
points of the involution (PF, QQ') and Xlt Y[ are the double points
of the involution (P,, P/, Qlt Q,'). Hence PFQQ'XY and
PiIY Q1Q1' XiY, are projective ranges, and (XY, PQ) = (X,Yi,

§5. Let us now investigate the different systems of geometry.
We have three constants to fix, and any of them may be infinite,
real or imaginary, hence there are 27 possible systems. These
depend upon the form of the absolute and the conditions laid down
with regard to the actual* and ideal elements. We shall make the
following assumptions:

* The term "aotual" here is opposed to "ideal," and is preferred to
" real," which is opposed to "imaginary."
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1. An actual geometric form contains actual elements.
2. The distance between two actual elements of an actual geometric

form is real.
Having fixed upon one plane a as an actual plane, a line a in a

as an actual line, and a point A in a as an actual point, all points
at a real finite distance from A are actual points.* A line is actual
if it makes a real angle with a, or if it makes a real angle with an
actual line; and similarly for planes. The actual points are
separated from the ideal points by the absolute. The actual
elements of an actual sheaf (e.g. a sheaf of lines passing through an
actual point and lying in an actual plane) are separated from the
ideal elements by the two absolute elements of the sheaf.

The values of the constants are as follows :—
K, k or K is infinite if the absolute degenerates to two coincident

planes, lines or points.
K is real or imaginary, according as actual lines do or do not

cut the absolute.
K is real or imaginary, according as actual lines do or do not

project the absolute.
k is real or imaginary according as actual points in actual planes

do or do not project the section of the absolute.
When K, k, K is infinite, real, imaginary, the measure of distance,

plane angle, dihedral angle is parabolic, hyperbolic, elliptic. In
ordinary geometry, in hyperbolic geometry, and in elliptic geometry
the measure of angles, plane and dihedral, is elliptic; k and « are
both imaginary, while K is infinite, real, or imaginary.

§6. The forms of the absolute and the various geometries are
discussed as follows :—

A. Absolute a proper quadric.
I. Imaginary.

K, k, K all imaginary. Distances and angles are always
real and periodic. (ELLIPTIC GEOMETRY.)

II. Real and not ruled.
The absolute divides space into an actual and an ideal
region of points, lines, and planes, and possesses an

* It may happen that the hannonio conjugate A' of A is at a real finite
distance from A, but points on AA' in the vicinity of A' are ideal. In this
case A' is ideal.
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interior and an exterior. A line projects the quadric if
it does not cut it.

1. Actual points within. Actual lines and planes cut
the quadric. K real, k and K imaginary.
(HYPEBBOLIC GEOMETRY.)

2. Actual points outside. Actual lines and planes cut
the quadric. K and k real, K imaginary.

3. Actual points outside. Actual planes cut the
quadric, but actual lines do not. K imaginary,
k and K real.

4. Actual points outside. Actual lines and planes
do not cut the quadric. K and k imaginary,
K real.

I I I . Ruled.
There is no point from which real tangent lines and

planes may not be drawn to the quadric, and every
plane cuts the quadric. A line projects the quadric
if it cuts it.
1. Actual lines cut the quadric.

Take any such line and draw an arbitrary plane
through it, cutting the quadric in a conic S. Let
this plane be actual. Then there are two cases.

(a) Points within S are actual.
K real, k imaginary, K real.

(6) Points outside S are actual.
K, k, K real.

2. Actual lines do not cut the quadric.
K imaginary, k real, K imaginary.

In the case of a ruled quadric there are two systems of lines
which do not cut the quadric, and these are separated by the
quadric. If, therefore, we fix upon one line as actual, all lines of
the other system are ideal since they contain no actual points. The
absolute divides the points of space into two sets, and it is arbitrary
which, set we agree to take as actual.

B. Absolute a simply degenerate quadric.
I. A cone, two coincident points, K = ».

1. Imaginary cone.
K and k imaginary.

2. Seal cone.
(a) Actual points within. K real, k imaginary.
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(b) Actual points outside. Actual lines cut the
cone. K, k real.

(c) Actual points outside. Actual lines do not
cut the cone. K imaginary, k real.

II. Two coincident planes, proper conic. K = •».
1. Imaginary conic.

k, K imaginary. (PARABOLIC GEOMETRY).

2. Real conic.
(a) Actual lines pass within the conic.

k real, K imaginary.
(b) Actual lines and planes pass outside the

conic, k imaginary, K real.
(c) Actual lines pass outside, actual planes cut

the conic, k, K real.
III. Two planes, two coincident lines, two points. & = «.

1. Imaginary planes, imaginary points.
K, K imaginary.

2. Imaginary planes, real points.
K imaginary, K real.

3. Real planes, imaginary points.
K real, K imaginary.

4. Heal planes, real points.
K, K real.

C. Absolute a doubly degenerate quadric.
I. Two coincident planes, two coincident lines, two points.

K, £ = «.
1. Imaginary points. K imaginary.
2. Heal points. K real.

II. Two coincident planes, two lines, two coincident points.
K, K = « .

1. Imaginary lines. k imaginary.
2. Heal lines. k real.

III. Two planes, two coincident lines, two coincident points,
k, K = ° ° .

1. Imaginary planes. K imaginary.
2. Real planes. K real.

D. Absolute a triply degenerate quadric.
Two coincident planes, two coincident lines, two coincident
points. K, k, K = oo.

§7. These 27 geometries are tabulated in the following scheme.
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§8. We shall now extend the investigation to space of n
dimensions. Here there are n constants, km klt ..., kn_1, and there-
fore 3" geometries.

The absolute takes the following forms:
Ao. A proper hyperquadric of n dimensions ("n-quadric").

I. Imaginary.
II. Seal and not ruled.

III . Ruled.
A,. Simply degenerate.

(r) A hypercone of species r ofn dimensions (" (n, r)-cone").
This is formed by joining the points of a proper
(n — r)-quadric to the points of an (r-l)-flat (the
axis), and in the axis is taken a proper (r - l)-quadric.
An (n, n)-cone consists of two coincident (n- l)-flats
with an (n - l)-quadric; an (n, n - l)-cone consists of
two (n-l)-flats with an (n - 2)-quadric; and an
(n, 0)-cone is a proper w-quadric.

A,, l-ply degenerate.
(r,,ra .. ,r,). Two coincident (^ - 1)-, (r2 - 1)-,... (r, - 1 )-flats

(rj < r» < ... < rt). An (n, r,)-cone with an (rn r(_,)-cone
in its axis, and an (r,_lt r,_2)-cone in the axis of
the second hypercone, and so on, and finally an
(ri ~ l)-quadric in the axis of the last hypercone. •

The number of geometries with non-degenerate absolute is 2".
With an ?-ply degenerate absolute with the symbol (r,, rB ..., r,)
there are 2**-* geometries ; and there are nC, different £-ply degene-
rate absolutes.

§9. The geometries with non-degenerate absolute are classified—
first, partly according to the nature of the absolute; second, partly
according to the nature of the section of the absolute by an
"actual" (ji-l)-flat. If the absolute is real and not ruled the
section may be real and not ruled or imaginary; if the absolute is
ruled the section may be real and not ruled or ruled; if the
absolute is imaginary the section is imaginary. Thirdly, the
geometries are classified partly according to the nature of the section
by an actual (n - 2)-flat, and so on.

If the absolute is not ruled the tangent (w - l)-flats through an
(n — 2)-flat are imaginary or real according as the (n — 2)-flat does or
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does not cut the absolute. If the absolute is ruled the tangent
(re-l)-flats through a non-intersecting (n - 2)-flat are imaginary,
but those through an intersecting («• — 2)-flat may be either real or
imaginary.

To prove these statements consider first an unruled quadric.
The tangent (n - l)-flats through an (n - 2)-flat are determined by the
(n - 2)-flat and the points in which the polar line of the (n — 2)-flat
cuts the quadric. The polar line of an intersecting (n - 2)-flat
is the intersection of the (n - l)-flats which touch the quadric at its
intersection. These have only one real point in common with the
quadric, and hence the polar line does not cut the quadric. On the
other hand, the polar line of a non-intersecting (n — 2)-flat is the
locus of the poles of the (n - 2)-flat with respect to the section of the
quadric by (n - l)-flats through the (n - 2)-flat. Now some of these
(n - 1 )-flats cut the quadric, and the corresponding poles lie within
the section : the polar line therefore cuts the quadric.

Suppose next that the quadric is ruled,* and consider a non-
intersecting (n-2)-flat. Then all the (ra-l)-flats through it cut
the quadric in unruled sections, for a (p - l)-flat always cuts a ruled
quadric in Rp in a real section. Hence the tangent (w-l)-flats
must be imaginary for they would cut the quadric in hypercones.
But the (n - l)-flats through an intersecting (n - 2)-flat may cut the
quadric in sections either ruled or unruled. If one section is
unruled then the section by the (n - 2)-flat must be unruled; but
all the sections cannot be unruled, for then there would be no lines

* The discussion for a ruled quadrio is not complete, as in space of
n dimensions, R», there are ruled quadrica of different ranks, viz., in
Rsp_i or Rgp ruled quadrics may contain lines, planes, 3-flats, ... or
(p-l)-flats. At any stage these may become imaginary, so that there are
quadrios of rank p - 1 down to 0 (unruled) and - 1 (imaginary). Central
quadrics of each rank exist. If the equation of a central quadric in Rn-i be
written in homogeneous coordinates Sarxr

2 = 0, where k of the coefficients
are positive and n—k negative, the rank is i { » - | 2k —n | } - 1. For some
of the properties of ruled quadrics see Bertini, Introduzione alia geometria
proiettiva degli iperspazi, Pisa, 1907.

The discussion in the text is sufficient, however, for the classification.
The theorems relating to the tangent (n-l)-flats through an (n-2) flat may
be regarded merely as existence-theorems, the circumstances under which
they are true not being completely disouased.
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belonging to the surface passing through any of the points of the
section by the (n - 2)-flat. The limits between the ruled and the
unruled sections are the tangent (n ~ l)-flats, which are therefore
real. On the other hand, if the section by the (n - 2)-flat is a ruled
quadric of the same rank as the absolute, so also is every section
through the (n-2)-flat. The tangent (rt-l)-flats, if they were
real, would meet the absolute in hypercones, and the (n - 2)-flat
would cut the hypercones in ruled quadrics of lower rank unless it
contained the vertex. Hence either the tangent (n - l)-flats are
imaginary or the (n - 2)-flat is itself a tangent to the quadric.

I. If the absolute is imaginary there is one geometry, since all
the sections are imaginary. The constants £„, ..., &„_] are all
imaginary. (Elliptic geometry).

II. The number of geometries with a real unruled absolute is
n + 1. This may be proved by induction. Assume that there are
r sub-classes of geometries according to the nature of the section by
an actual intersecting (r - l)-flat. Then if the section by an actual
r-flat is real, the section by an actual (r-l)-flat may be real or
imaginary. In the former case we have r sub-classes and in the
latter 1. But for the section by an intersecting line there are two
sub-classes, according as actual points are within or outside the
section by an actual plane. If actual r-flats cut the absolute while
actual (r-l)-flats do not (w>r>l) , Ao, ..., &,_„, kr+1, ..., £._i
are all imaginary, while k^ and kr are real; if actual (n - l)-flats
do not cut the absolute k0, ..., kn_2 are imaginary while &,,_, is
real; and if actual points lie within the absolute (Hyperbolic
geometry) k0 is real and klt ..., kn_l are imaginary. The values
of the constants are therefore tabulated as follows :—

r i i i i
r r i i i
i r r i i

t i t r r

i i i i r

III. If the absolute is ruled there are the remaining 2" - (n + 2)
geometries. If the section by an actual («-l)-flat is an unruled
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quadric this gives n geometries. For these the constants are as
follows:—

*0 *I *2 * n - 3 *«—2 * n - l

r i i i i r
r r i i i r
i r r i i r

t i i r r

i i i i r

If the section by an actual (n — l)-flat is ruled there are two
cases according as an actual (n - 2)-flat does or does not project the
absolute. Corresponding to each of these cases there will be
J(2" - n - 2 - n) = 2""1 - (n + 1) geometries. In the first case kn_i is
real, in the second case imaginary; the values of the other
constants are the same in the two cases, and are just those which
correspond to a ruled quadric in space of n - 1 dimensions The
next classification is according to whether the section by an actual
(n - 2)-flat is ruled or unruled. The latter case gives (n - 1)
geometries. The former gives again two cases according as an
actual (n - 3)-flat does or does not project the section of the absolute
by the actual (n - l)-flat, and each gives 2"~2 - n geometries; in the
first set A«_2 is real, in the second imaginary. Continue this
classification down to the section by a ruled 3-flat. This gives two
cases according as an actual plane does or does not project the
section of the absolute by an actual 4-flat, and each gives 23 - 5 = 3
geometries. These are classified lastly according as :—

1. An actual line cuts the absolute, and actual points lie within
the curve of section of an actual plane. (k0 real,
&, imaginary, £, real).

2. An actual line cuts the absolute, and actual points lie out-
side the curve of section of an actual plane. (£0 real,
£, real, k2 real).

3. An actual line does not cut the absolute. (k0 imaginary,
&! real, Av, imaginary).

§10. The geometries with an £-ply degenerate absolute with
symbol (r,, r2, ..., »•,) are classified first according to the nature
of the hypercones, real or imaginary, and then according to the
nature of the sections. &„_, = « , (i= 1, 2, ..., I).
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A real (n, r)-cone is, in general, cut by an (n - l)-flat in a real
(re - 1, r - l)-cone, for the (n - l)-flat cuts the axis in an (r - l)-flat
and every line through any point cuts the (n - l)-flat. Hence a real
(re, r)-cone is, in general, cut by any p-flat (p^- n - r + l ) i n a real
(p, p + r-«)-cone. If p^n-r the section is a real p-quadric.

With the («, r,)-cone we have then the following cases:—
1. The hypercone imaginary. km klt ..., A,_r_j all imaginary.

2. The hypercone real and cut by an actual (n - r,)-flat in a
real hyperquadric, with reference to which the geometries
are classified into 2"~i- l classes, and kQ, ks, ..., &„_,_,

take all combinations of real and imaginary values except
all imaginary.

If n - r, = 2 the hyperquadric is a proper conic. The classifica-
tion of the geometries with respect to this is as follows :—

1. The conic imaginary. km &, imaginary.
2. Real points within. k0 real, ky imaginary.
3. Real lines cut the conic, real points outside. km A, real.
4. Real lines do not cut the conic. kQ imaginary, k} real.

There are thus 22 cases, which agrees with the general result for
quadrics.

With the first hypercone there are thus 2"~r> classes.
With the second hypercone we have the following cases :—

1. The hypercone imaginary. k^_r(¥1, A^(+2, ..., ^—r^-i a]l

imaginary.
2. The hypercone real and cut by an actual (r, - r,^ - l)-flat

lying in the (^-^-flat in a real hyperquadric, with
reference to which the geometries are classified into
2P — 1 classes, where p = rt- »•,_, - 1.

K-rl+i,K-rl+^--;K-rt_1-i take all combinations of
real and imaginary values except all imaginary.

There are thus 2P classes according to the nature of the second
hypercone and its sections.

Finally in the axis of the (ra r^-cone there is a hyperquadric,
real or imaginary, with reference to which the geometries are
classified into 2P<~1 classes. kn_r+1, An_r+2, ..., kn take all com-
binations of real and imaginary values.
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Hence altogether there are
On—r* Or—r, .—1 Or.,—r —1 *)''„—»\—l f>»\ — 1 _ 0«—*
—' . J j »—1 . . . * J o ^ , It 2, 1 . —i 1 —— ^

geometries with an £-ply degenerate absolute with a given symbol.

§11. This completes the discussion of the general case.
A word may be said in elucidation of the method of determining

the values of the constants in the case of a degenerate absolute.
For simplicity suppose the absolute to be simply degenerate with
£„_, = ». It therefore has two coincident 3-flats and consists of an
(re, 4)-cone with a proper quadric in its axis. The values of km klt ...,
ka_t are determined with reference to a real (re - 4)-quadric; the values
of kn_s, kn_a An_j with reference to a 3-quadric. An (rt-l)-flat,
an (re - 2)-flat and an (re - 3)-flat cut the 3-flat containing this
quadric in a plane, a line and a point respectively, and then k,,_z,
£«-» K-u a r e considered just as if they referred to point-pairs, plane
and dihedral angles. Thus if the quadric is real and not ruled, and
actual (re - 3)-flats pass within it, the absolute (n - 1 )-flats of a sheaf
of (n - l)-flats through an actual (n - 2)-flat are imaginary, and so
also are the absolute (re - 2)-flats of a sheaf of (n - 2)-flats through
an actual (n - 3)-flat and lying in an actual (re-l)-flat, but the
absolute (re - 3)-flats of a sheaf of (n - 3)-flats through an (n - 4)-flat
and lying in an actual (re - 2)-flat are real, since these are
determined by the (n - 4)-flat and the real points in which the
(re - 2)-flat cuts the quadric; i.e. fcn_, and &„_., are imaginary, while
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